JPH0354920A - Loose coupling oscillator interlocking with reference radio wave receiver - Google Patents

Loose coupling oscillator interlocking with reference radio wave receiver

Info

Publication number
JPH0354920A
JPH0354920A JP1188778A JP18877889A JPH0354920A JP H0354920 A JPH0354920 A JP H0354920A JP 1188778 A JP1188778 A JP 1188778A JP 18877889 A JP18877889 A JP 18877889A JP H0354920 A JPH0354920 A JP H0354920A
Authority
JP
Japan
Prior art keywords
phase
radio wave
signal
output
standard radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188778A
Other languages
Japanese (ja)
Other versions
JP2855449B2 (en
Inventor
Hitoshi Ujiie
仁 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP1188778A priority Critical patent/JP2855449B2/en
Publication of JPH0354920A publication Critical patent/JPH0354920A/en
Application granted granted Critical
Publication of JP2855449B2 publication Critical patent/JP2855449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuits Of Receivers In General (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To obtain a highly accurate frequency signal without using an expensive atomic frequency standard by variably controlling the frequency of an oscillation output obtained from a loose coupling oscillator based upon a phase difference obtained by comparison. CONSTITUTION:A standard radio wave received from as antenna 22 is applied to a phase comparator 30 through a high frequency amplifier 24 and an intermediate frequency amplifier 26 and compared with the phase-compared with an output signal from a voltage controlled type crystal oscilaltor (VCXO) 44 and the phase-adjusted signal is outputted to a digital phase comparator 34. The comparator 30 is driven by an output signal from a synchronism detector 28 for detecting synchronism between the output signals of a phase shifter 32 and an intermediate frequency amplifier 26 and phase synchronism is executed only in the mark part of the received wavelength reference radio wave. In addition to the output of the phase shifter 32, an output from the VCXO 44 is also inputted to the comparator 34, compares both the input signals in each 2 seconds and outputs the compared result to a digital filter 36.

Description

【発明の詳細な説明】 〈産業上の利用分野) 木発明は位相追尾式の標準電波受信機に連動した弱結合
発振器に関し、殊に標準電波の電波伝搬による位相変動
を補正し、標準電波の!振に高精度に同期した信号を得
るための弱結合発振器の構成に関する. (従来技術) 従来、各種機器の周波数測定や校正を行う高精度な基準
周波数を得る場合には原子周波数標準器の出力を変調信
号又は搬送波とした標準電波を受信し、校正する比較信
号をその位相に追尾させる方法と前記原子周波数標準器
出力をデジタル通信網を介して受信し、弱結合発振器を
用いて前記原子周波数標準器出力に同期した安定で高精
度な出力を再生する方法とがある。
[Detailed Description of the Invention] <Industrial Application Fields> The invention relates to a weakly coupled oscillator linked to a phase-tracking standard radio wave receiver, and in particular corrects phase fluctuations due to radio wave propagation of standard radio waves, and ! This paper concerns the configuration of a weakly coupled oscillator to obtain a signal that is highly precisely synchronized with the vibration. (Prior art) Conventionally, when obtaining a highly accurate reference frequency for frequency measurement and calibration of various devices, a standard radio wave with the output of an atomic frequency standard as a modulation signal or carrier wave was received, and a comparison signal to be calibrated was received from that signal. There is a method of tracking the phase, and a method of receiving the output of the atomic frequency standard via a digital communication network and using a weakly coupled oscillator to reproduce stable and highly accurate output synchronized with the output of the atomic frequency standard. .

標準電波とは電波管理、学術研究及び産業活動等におけ
る基準周波数となるものであり、わが国における標準電
波はセシウムビーム周波数標準器を原器として作出され
ており、その精度は1 0−13台の高精度を維持し、
その周波数帯域は長波で1波、短波で5波送信されてい
る。
Standard radio waves are the reference frequencies for radio wave management, academic research, industrial activities, etc. Standard radio waves in Japan are created using the cesium beam frequency standard as a prototype, and their accuracy is 10 to 13. maintain high precision,
The frequency band is one long wave and five short waves.

上記短波標準電波の場合、電離層伝搬により電波伝搬が
行われるため、遠達性があるが伝搬路の変動により土し
るドップラー効果等により、その信号受信精度は周波数
で10−7〜10 に留まっている. 一方、長波標準電波の場合、その電波f云搬は波長が長
いため地表波の減衰が少なく、且つ空間波も最も安定し
ている最下部電離層(D層)で反射するため周波数、強
度共に安定であり、日周位相変動或は急始電離層擾乱等
による突発的な位相変動を補正することにより24時間
比較で10 程度の高精度な周波数比較が得られる. 上述した理由により標準電波を用いて高精度の周波数測
定を行う場合には、位相追尾式の長波標準電波受信機を
用い、受信した標準電波の位相とローカル標準周波数の
位相とを比較し、両者の位相が常に一致するように移相
器でローカル標準周波数の位相を制御する手段が用いら
れている.しかしながら、標準電波を用いて高精度な出
力を得る方法は電波の伝搬路上の影響によりその精度が
左右され、また標準電波の電界強度の劣化や停波により
受信機より標準電波を受けられない場合等には高精度な
周波数信号を得ることが出来ないという問題点があった
In the case of the above-mentioned shortwave standard radio waves, the radio waves propagate through ionospheric propagation, so they have long range, but due to the Doppler effect caused by fluctuations in the propagation path, the signal reception accuracy remains at a frequency of 10-7 to 10. ing. On the other hand, in the case of long-wave standard radio waves, the propagation of radio waves f has a long wavelength, so there is little attenuation of surface waves, and spatial waves are also reflected at the lowest ionosphere (D layer), where they are most stable, so both frequency and intensity are stable. By correcting sudden phase fluctuations due to diurnal phase fluctuations or sudden onset ionospheric disturbances, highly accurate frequency comparisons of about 10 can be obtained in 24-hour comparisons. For the reasons mentioned above, when performing high-precision frequency measurements using standard radio waves, a phase-tracking type long-wave standard radio wave receiver is used, and the phase of the received standard radio wave is compared with the phase of the local standard frequency. A means is used to control the phase of the local standard frequency using a phase shifter so that the phases of the local standard frequencies always match. However, the accuracy of the method of obtaining high-precision output using standard radio waves is affected by the influence of the radio wave propagation path, and there are cases where the standard radio wave cannot be received by the receiver due to deterioration of the standard radio field strength or stoppage. etc. had the problem that it was not possible to obtain highly accurate frequency signals.

一方、デジタル通信四線網より基準クロックを直接抽出
し、該クロック信号を用いて高精度な出力を得る方法は
、前述したような標準電波を用いる場合と異なり電界層
の影響は受けないものの伝搬路上の影響により位相変動
(ジッタ)が重畳されるため直接通信@器等には用いる
ことが出来ない問題点がある. この問題点を除去するためにデジタル通信回線綱より基
準クロックを抽出し高精度な周波数信号を得る方法は、
該基準クロックを用いて弱結合発振器を制御することに
よりシステムジッタ等の影響を除去している. しかしながら、上記デジタル通信回線網を使用する方法
は専用線が必要であり任意の場所において容易に高精度
の標準周波数を得ることが出来ないという問題点があっ
た. (発明の目的〉 本発明は上述した如き従来の問題点に鑑みなされたもの
であって、標準電波を任意の位置で捕捉するという電波
伝搬による利点を有すと共に標準周波数信号の受信強度
が劣化した場合または標準電波が停波した場合等であっ
てもその影響が直接及ぶことを防止し、極めて高精度な
周波数信号を得ることが出来る標準電波受信機と連動し
た弱結合発振器を提供することを目的とする.(発明の
概要) この目的を達戒するために本発明の標準電波受信機と連
動した弱結合発振器は、標準電波受信機からの復調信号
である位相追尾信号を弱結合発振器に入力し、また弱結
合発振器出力を前記標準電波受信機の外部基準信号とし
て標準電波受信機に入力するとともに、該弱結合発振器
において弱結合発振器出力信号と前記位相追尾信号との
位相を比較し、該比較により得た位相差に基づいて弱結
合発振器の発振出力の周波数を可変制御することにより
標準電波の信号に同期した信号を得たことを特徴とする
On the other hand, the method of directly extracting a reference clock from a digital communication four-wire network and using this clock signal to obtain a highly accurate output is different from the case of using standard radio waves as described above, and is not affected by the electric field layer, but the propagation Since phase fluctuations (jitter) are superimposed due to road effects, there is a problem that it cannot be used for direct communication devices. In order to eliminate this problem, the method of extracting the reference clock from the digital communication line and obtaining a highly accurate frequency signal is as follows.
By controlling the weakly coupled oscillator using this reference clock, the effects of system jitter etc. are removed. However, the method using the digital communication network described above requires a dedicated line and has the problem that a highly accurate standard frequency cannot be easily obtained at any location. (Objective of the Invention) The present invention has been devised in view of the conventional problems as described above, and has the advantage of radio wave propagation in that the standard radio wave can be captured at any position, and the reception strength of the standard frequency signal deteriorates. To provide a weakly coupled oscillator that is interlocked with a standard radio wave receiver, which can prevent direct influence even when the standard radio wave is stopped or when the standard radio wave is stopped, and can obtain extremely high-precision frequency signals. (Summary of the Invention) In order to achieve this purpose, the weakly coupled oscillator interlocked with the standard radio wave receiver of the present invention converts the phase tracking signal, which is the demodulated signal from the standard radio wave receiver, into the weakly coupled oscillator. and input the weakly coupled oscillator output to the standard radio wave receiver as an external reference signal of the standard radio wave receiver, and compare the phases of the weakly coupled oscillator output signal and the phase tracking signal in the weakly coupled oscillator. The present invention is characterized in that a signal synchronized with the standard radio wave signal is obtained by variably controlling the frequency of the oscillation output of the weakly coupled oscillator based on the phase difference obtained by the comparison.

《実施例) 以下、本発明を図面に示した実施例に基づいて詳細に説
明する. 先ず、本実施例の理解を助けるため従来用いられていた
標準電波受信機を用いた標準周波数受信方法とデジタル
通信[ilOEJi KNを用いて標準周波数信号を得
る方法とを簡単に説明する。
<<Example>> Hereinafter, the present invention will be explained in detail based on an example shown in the drawings. First, in order to facilitate understanding of this embodiment, a standard frequency reception method using a conventionally used standard radio wave receiver and a method for obtaining a standard frequency signal using digital communication [ilOEJi KN] will be briefly explained.

第2図は従来用いられていた長波標準電波受信機を用い
て相対周波数偏差を測定する装置の回路構成を示すブロ
ック図であって、同図において1はアンテナであって、
該アンテナを介して受信した標準電波を高周波増幅器2
及び中間周波増幅器3を介して位相比較器6に入力し、
該入力信号を基準として被測定信号の位相変化量を測定
すると共に該位相比較器6出力は次段の移相器5に与え
られ、該移相器5は前記位相比較i}36出力に応じ被
測定信号の移相互を制御し、位相追尾信号出力として出
力すると共に必要であれば移相器5における制御量をD
/Aコンバータ7を介してアナログ信号として出力する
. また、前記am電波の搬送波は例えば40k}l2、5
 0 0 nas断続のIHz信号であり、該標準電波
信号と移相器5出力信号とを同期検波器4に入力するこ
とにより標準電波信号のマーキング部のみにおいて位相
比較器が作動するように制御する.上述したような位相
追尾式(位相引き込み式)位相同期方式は、長波標is
電波を用いた標準周波数信号手段の中で他の方式、例え
ばフリップフロップ式位相比較受信機またはPLL方式
受信機等を用いた方式と比較してゲート回路の制御及び
フィルタが必要ないことから標準電波のレベルが雑音レ
ベル以下になっても高精度な周波数比較が出来、高安定
の標準周波数を得ることが出来るという利点を有す. 一方、デジタル通信回線網を用いて標準周波数を得る弱
結合発振器を用いた手段は第3図に示す如くデジタル位
相比較器10、マイクロプロセッサ12、デジタルフィ
ルタ14、デジタルアナログコンバータ16および電圧
制御型水晶発振器(以下、vCX○と記す)18から構
戒されている.デジタル通信回路網よりの同期クロック
信号とVCX○18からの出力信号とをデジタル位相比
較器10に入力し、該デジタル位相比較器10において
両者の位相差を例えば2ミリ秒毎に検出すると共にその
出力は次段のデジタルフィルタ14に与えられる. 該デジタルフィルタ14では前記2ミリ秒毎にデジタル
位相比較器10より出力される8.192秒間分のデー
タ、即ち4096個の位相差データをマイクロプロセッ
サ12に与え、該マイクロプロセッサ12では8.19
2秒間に於ける位相差データの平均値を算出すると共に
該平均値の階差も算出し、その結果をデジタルフィルタ
14を介して次段のデジタルアナログコンバータ16に
出力する. 該デジタルアナログコンバータ16は前記デジタルフィ
ルタ14より印加された8y1.92秒間の位相差平均
値に応じて作出された制御信号に基づいて直流電圧を発
生し、これを次段のvcxo18に印加し、その結果、
該VCXO18の出力は通信回線網より供給された同期
クロックとの位相差を補正され、該同期クロックに正確
に同期した出力信号を発振する. したがって、長波標準電波より抽出した標準周波信号で
弱結合発振器を制御し、高精度な周波数信号を得るため
には、第2図に示した移相器5の出力である位相追尾信
号を第3図の同期クロックとして用いれば良いが、デジ
タル回線網に起因して発生するジッターを抑圧するため
に弱結合発振器Gこ於ける入力位相変動〈ジッター)抑
圧周期が一般に約8秒〜10秒以下と設定されているた
め、標準電波故に発生する電波伝搬に起因した数10分
〜数時間周期の位相変動は長波標準電波受信機の復調信
号に重畳されたまま弱結合発振器の同期クロックとして
供給され、抑圧することが出来ないという問題点があっ
た。
FIG. 2 is a block diagram showing the circuit configuration of a device for measuring relative frequency deviation using a conventional long-wave standard radio wave receiver, in which 1 is an antenna;
The standard radio waves received through the antenna are transmitted to the high frequency amplifier 2.
and input to the phase comparator 6 via the intermediate frequency amplifier 3,
The amount of phase change of the signal under test is measured using the input signal as a reference, and the output of the phase comparator 6 is given to the next stage phase shifter 5, and the phase shifter 5 responds to the output of the phase comparison i}36. Controls the shift of the signal under test, outputs it as a phase tracking signal output, and if necessary, changes the control amount in the phase shifter 5 to D.
/A converter 7 and output as an analog signal. Further, the carrier wave of the AM radio wave is, for example, 40k}l2,5
0 0 nas is an intermittent IHz signal, and by inputting the standard radio wave signal and the phase shifter 5 output signal to the synchronous detector 4, the phase comparator is controlled to operate only in the marking part of the standard radio wave signal. .. The phase tracking type (phase pull type) phase synchronization method as described above is
Compared to other methods of standard frequency signal means using radio waves, such as methods using flip-flop phase comparison receivers or PLL receivers, standard frequency signals do not require gate circuit control or filters. It has the advantage of being able to perform highly accurate frequency comparisons even when the signal level is below the noise level, and obtaining a highly stable standard frequency. On the other hand, means using a weakly coupled oscillator to obtain a standard frequency using a digital communication network is as shown in FIG. The oscillator (hereinafter referred to as vCX○) 18 has been warned. The synchronized clock signal from the digital communication circuit network and the output signal from the VCX○18 are input to the digital phase comparator 10, and the digital phase comparator 10 detects the phase difference between them every 2 milliseconds, for example. The output is given to the next stage digital filter 14. The digital filter 14 provides the microprocessor 12 with 8.192 seconds worth of data output from the digital phase comparator 10 every 2 milliseconds, that is, 4096 pieces of phase difference data.
The average value of the phase difference data for 2 seconds is calculated, and the difference between the average values is also calculated, and the result is outputted to the next-stage digital-to-analog converter 16 via the digital filter 14. The digital-to-analog converter 16 generates a DC voltage based on a control signal generated according to the average value of the phase difference for 8y1.92 seconds applied by the digital filter 14, and applies this to the next stage VCXO 18, the result,
The output of the VCXO 18 is corrected for the phase difference with the synchronous clock supplied from the communication network, and oscillates an output signal precisely synchronized with the synchronous clock. Therefore, in order to control the weakly coupled oscillator with the standard frequency signal extracted from the long wave standard radio wave and obtain a highly accurate frequency signal, the phase tracking signal which is the output of the phase shifter 5 shown in FIG. It can be used as the synchronized clock shown in the figure, but in order to suppress jitter caused by the digital line network, the input phase fluctuation (jitter) suppression period of the weakly coupled oscillator G is generally about 8 to 10 seconds or less. Because of this setting, phase fluctuations with a period of several tens of minutes to several hours due to radio wave propagation that occur due to standard radio waves are superimposed on the demodulated signal of the long wave standard radio wave receiver and are supplied as the synchronization clock of the weakly coupled oscillator. The problem was that it could not be suppressed.

また、電波伝搬による位相変動を抑圧するために弱結合
発振器におけるデジタルフィルタ部の平均値算出周期を
長くすると、vcxoを制御する間隔が長くなりすぎて
しまい、短期的な周波数の安定が失われてしまうという
問題点があった。
In addition, if the average value calculation period of the digital filter section in the weakly coupled oscillator is lengthened in order to suppress phase fluctuations due to radio wave propagation, the interval for controlling the VCXO becomes too long, resulting in loss of short-term frequency stability. There was a problem with it being put away.

これら上述した問題点を除去するために本発明に係る標
準電波受信機を用いた弱結合発振器は例えば第l図に示
す如く構成する. 同図において、22はアンテナ、24は高周波増幅器、
26は中間周波増幅器、28は同期検波器、30は位相
比較器、32は移相器、34はデジタル位相比較器、3
6及び38はデジタルフィルタ、40及び41はマイク
ロプロセッサ、42はデジタルアナログコンバータ、4
4は電圧制御型水晶発振器(VCXσ)である。
In order to eliminate these above-mentioned problems, a weakly coupled oscillator using a standard radio wave receiver according to the present invention is configured as shown in FIG. 1, for example. In the figure, 22 is an antenna, 24 is a high frequency amplifier,
26 is an intermediate frequency amplifier, 28 is a synchronous detector, 30 is a phase comparator, 32 is a phase shifter, 34 is a digital phase comparator, 3
6 and 38 are digital filters, 40 and 41 are microprocessors, 42 is a digital to analog converter, 4
4 is a voltage controlled crystal oscillator (VCXσ).

このように構成した装置においてアンテナ22から受信
した標準電波は高周波増幅器24および中間周波増幅器
26を介して位相比較器30に与えられVCXO44の
出力信号と位相比較を行い、その比較結果に基づいて次
段の移相器32を制御し、VCXO44出力の位相調整
を行い、該位相調整を行った信号をデジタル位相比較器
34に出力する。
In the device configured as described above, the standard radio wave received from the antenna 22 is given to the phase comparator 30 via the high frequency amplifier 24 and the intermediate frequency amplifier 26, and the phase is compared with the output signal of the VCXO 44. Based on the comparison result, the following is performed. It controls the phase shifter 32 in the stage, adjusts the phase of the output of the VCXO 44, and outputs the phase-adjusted signal to the digital phase comparator 34.

前記位相比較器30は移相器32と中間周波増幅器26
の出力信号を同期検波し、該同期検波器出力に基づいて
作動しており、それにより受信した長波標準電波のマー
ク部においてのみ位相同期を行っている。
The phase comparator 30 includes a phase shifter 32 and an intermediate frequency amplifier 26.
It operates based on the output of the synchronous detector, and phase synchronization is performed only in the mark portion of the received long-wave standard radio wave.

デジタル位相比較器34には前述した移相器32出力以
外にVCXO44からの出力信号も入力しており、両入
力信号の位相を2ミリ秒毎に比較し、その結果をデジタ
ルフィルタ36に出力する。
In addition to the output of the phase shifter 32 described above, the digital phase comparator 34 also receives an output signal from the VCXO 44, compares the phases of both input signals every 2 milliseconds, and outputs the result to the digital filter 36. .

該デジタルフィルタ36では2ミリ秒毎に入力する位相
差信号を演算処理を行うマイクロプロセッサ40に与え
マイクロプロセッサ40は4096個(8.192秒間
)の位相差信号を入力することによりその平均値を算出
し、該算出値に基づいてデジタルフィルタ36の出力は
制御される。
In the digital filter 36, the phase difference signal input every 2 milliseconds is sent to the microprocessor 40 which performs arithmetic processing, and the microprocessor 40 calculates the average value by inputting 4096 phase difference signals (8.192 seconds). The output of the digital filter 36 is controlled based on the calculated value.

即ち,デジタルフィルタ36は短周期のジッターを抑制
するものであり、その出力は8.192秒間の平均位相
差比較データである. 前記デジタルフィルタ36出力は次段のデジタルフィル
タ38に入力し、該デジタルフィルタ38はその信号を
マイクロプロセッサ41に出力する. 該マイクロプロセッサ4lでは前記8.192秒間の平
均位相差比較データをさらに平滑化するために゜゜T′
゜時間分のデータをMMすると共に、8。192秒毎に
“T′時間分の移動平均値を算出し、該算出値を制御デ
ータに変換してD/Aコンバータ42へ出力する. 即ち、デジタルフィルタ38は電波伝搬により生じる数
10分〜数時間の中、長周期な位相変動を十分抑制する
ような時間に設定し、前記“T ”時間は例えば10時
間程度にすればよい。
That is, the digital filter 36 suppresses short-period jitter, and its output is average phase difference comparison data for 8.192 seconds. The output of the digital filter 36 is input to the next stage digital filter 38, and the digital filter 38 outputs the signal to the microprocessor 41. The microprocessor 4l processes ゜゜T' in order to further smooth the average phase difference comparison data for the 8.192 seconds.
MM of data for ゜ hours, calculates a moving average value for "T'' hours every 8.192 seconds, converts the calculated value into control data, and outputs it to the D/A converter 42. That is, The digital filter 38 is set to a time that sufficiently suppresses long-period phase fluctuations within several tens of minutes to several hours caused by radio wave propagation, and the "T" time may be, for example, about 10 hours.

前記デジタルアナログフィルタ38出力は短周期及び中
、長周期の位相変動を抑圧した制御データを次段のD/
Aコンバータ42に出力し、該制御データを入力したD
/Aコンバータ42は入力デジタル信号を直流電圧に変
換し、VCXO44を制御することにより標準電波のi
器であるセシウムビーム周波数標i器の発振周波数に高
精度に同期することが出来る. 尚,前記マイクロプロセッサ40及び4lはその内部メ
モリ或は図示した外部メモリに抽出したデータをサイク
リックに記憶しておき、電界強度の悪化や停波によって
、受信機よりの位相追尾信号を得ることが出来ない場合
であっても、その直前に入力した制御データを初期値と
して電圧制御型水晶発振器が自走状態で出力し続けるよ
うに構戒してもよく、更には受信機より位相追尾信号が
再び出力された際に、位相追尾信号に対する弱結合発振
出力の位相差を位相追尾信号が停波、あるいは電界強度
の悪化等により得られなくなる直前の位相差と同じ値に
なるように補正し、再び標準電波に対して同期するよう
に制御を開始すれば、電圧制御発振器の自走期間に生じ
た位相差を補正して、再入力する標準電波に対する周期
を早める上で有効である. したがって、標準電波信号を受信している際には短、中
及び長周期の位相差変動を補正し、高精度に周波数同期
した弱結合信号出力を得ることが出来ると共に標準電波
信号が何らかの原因により得ることが出来ない場合には
マイクロプロセッサに記憶されたデータに基づいて電圧
制御型水晶発振器を自走させるため略安定した出力を得
ることが出来る. 尚、本発明の実施例ではマイクロプロセッサを2つ用い
て説明したがこれに限定されるものではなく1つのマイ
クロプロセッサによりその両者の演算処理を行ってもよ
く、あるいは日、月,年等、3以上の異なる周期変動に
対応するために夫々の期間毎の位相変化平均を算出する
フィルタブロックを縦列接続することも有用であろう。
The digital analog filter 38 outputs control data with suppressed short-cycle, medium-, and long-cycle phase fluctuations to the next stage D/A.
D that outputs the control data to the A converter 42 and inputs the control data.
The /A converter 42 converts the input digital signal into a DC voltage and controls the VCXO 44 to convert the standard radio wave i
It can be synchronized with high precision to the oscillation frequency of the cesium beam frequency marker. Note that the microprocessors 40 and 4l cyclically store the extracted data in their internal memory or external memory as shown in the figure, and can obtain a phase tracking signal from the receiver depending on the deterioration of the electric field strength or the stoppage of the electric field. Even if this is not possible, the voltage-controlled crystal oscillator may continue to output in a free-running state using the control data input immediately before as an initial value, and the receiver may also output a phase tracking signal. When the signal is output again, the phase difference between the weakly coupled oscillation output and the phase tracking signal is corrected so that it becomes the same value as the phase difference just before the phase tracking signal stopped or became unobtainable due to deterioration of the electric field strength, etc. If control is started again to synchronize with the standard radio wave, it is effective to correct the phase difference that occurred during the free-running period of the voltage-controlled oscillator and to speed up the cycle for the standard radio wave that is re-input. Therefore, when receiving a standard radio wave signal, it is possible to correct short, medium and long period phase difference fluctuations, and obtain a weakly coupled signal output with highly accurate frequency synchronization. If this is not possible, the voltage-controlled crystal oscillator is made to run freely based on the data stored in the microprocessor, making it possible to obtain a nearly stable output. Although the embodiments of the present invention have been described using two microprocessors, the present invention is not limited to this, and a single microprocessor may perform the arithmetic processing for both, or the day, month, year, etc. In order to accommodate three or more different period fluctuations, it may be useful to cascade-connect filter blocks that calculate the average phase change for each period.

また、標準電波として長波標準電波を受信する場合につ
いて説明したが、これに限定されるものではなく、短波
標準電波を用いたものに適用しても同様の効果を得るこ
とが出来る。
Further, although the case where a long wave standard radio wave is received as the standard radio wave has been described, the present invention is not limited to this, and the same effect can be obtained even if the present invention is applied to a case using a short wave standard radio wave.

更に、他の原子周波数標準器を原器としている信号、例
えばテレビジョンの同期信号を抽出し、該同期信号を位
相追尾信号として用いても同様に高精度且つ高安定な信
号を作出することが出来、また弱結合発振器として電圧
制御型水晶発振器を用いて説明したが、発振周波数制御
が可能な発振器であれば他の方式のものを用いてもよい
ことは明かである. (発明の効果) 本発明の標準電波受信機と連動した弱結合発振器は以上
説明したように電波伝搬による様々な時間周期を有ず位
相変動を抑制しながら短時間の周期で同期制御を行うこ
とにより安定な弱結合信号出力を得ることが出来ると共
に電界強度の悪化あるいは停波等により位相追尾信号が
得られない間においても比較的安定した周波数信号を自
走により出力することが出来るため、高価な原子周波数
標準器を用いずに高精度な周波数信号を得る上で著しい
効果がある。
Furthermore, even if a signal based on another atomic frequency standard is extracted, for example a television synchronization signal, and the synchronization signal is used as a phase tracking signal, a highly accurate and highly stable signal can be similarly created. Although the explanation has been given using a voltage-controlled crystal oscillator as a weakly coupled oscillator, it is clear that other types of oscillators may be used as long as the oscillation frequency can be controlled. (Effects of the Invention) As explained above, the weakly coupled oscillator interlocked with the standard radio wave receiver of the present invention does not have various time periods due to radio wave propagation, and can perform synchronous control in short periods while suppressing phase fluctuations. It is possible to obtain a stable weakly coupled signal output, and even when a phase tracking signal cannot be obtained due to deterioration of electric field strength or signal stoppage, it is possible to output a relatively stable frequency signal by free running, so it is expensive. This method has a remarkable effect on obtaining highly accurate frequency signals without using a standard atomic frequency standard.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は従来の長
波標準電波受信機を用いて相対周波数偏差を測定する装
置のブロック図、第3図は従来の弱結合発振器を用いて
標準周波数を得る装置のブロック図である. 1、22・・・アンテナ、2、24・・・高周波増幅器
、3、26・ ・中間周波増幅器、4、28・・・同期
検波器、6、30・・・位相比較器、5、32  ・移
相器、7、16、42・・・デジタルアナログコンバー
タ、10、34・・・デジタル位相比較器、12、40
、41・・・マイクロプロセッサ、14、36、38・
  デジタルフィルタ、18、44・・・電圧制御聖水
晶発振器
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a block diagram of a device for measuring relative frequency deviation using a conventional long-wave standard radio wave receiver, and Fig. 3 is a diagram showing an apparatus for measuring relative frequency deviation using a conventional long-wave standard radio wave receiver. Fig. 2 is a block diagram of a device for obtaining standard frequencies. 1, 22... Antenna, 2, 24... High frequency amplifier, 3, 26... ・Intermediate frequency amplifier, 4, 28... Synchronous detector, 6, 30... Phase comparator, 5, 32 ・Phase shifter, 7, 16, 42...Digital analog converter, 10, 34...Digital phase comparator, 12, 40
, 41... microprocessor, 14, 36, 38...
Digital filter, 18, 44...voltage controlled holy crystal oscillator

Claims (1)

【特許請求の範囲】[Claims] 標準電波受信機と該標準電波受信機と連動して作動する
弱結合発振器とからなり、前記標準電波受信機において
前記該弱結合発振器出力を標準電波信号に同期させた位
相追尾信号を作出すると共に、前記弱結合発振器におい
て該弱結合発振器出力信号と前記位相追尾信号との位相
を比較し、該比較により得た位相差に基づいて当該弱結
合発振器の発振出力の位相又は周波数を可変制御するこ
とにより標準電波の信号に同期した信号を得たことを特
徴とする長波標準電波受信機と連動した弱結合発振器。
It consists of a standard radio wave receiver and a weakly coupled oscillator that operates in conjunction with the standard radio wave receiver, and in the standard radio wave receiver, the output of the weakly coupled oscillator is synchronized with the standard radio wave signal to generate a phase tracking signal. , Comparing the phases of the weakly coupled oscillator output signal and the phase tracking signal in the weakly coupled oscillator, and variably controlling the phase or frequency of the oscillation output of the weakly coupled oscillator based on the phase difference obtained by the comparison. A weakly coupled oscillator linked with a long wave standard radio wave receiver, characterized in that a signal synchronized with a standard radio wave signal is obtained by
JP1188778A 1989-07-24 1989-07-24 Standard frequency signal generator Expired - Lifetime JP2855449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188778A JP2855449B2 (en) 1989-07-24 1989-07-24 Standard frequency signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188778A JP2855449B2 (en) 1989-07-24 1989-07-24 Standard frequency signal generator

Publications (2)

Publication Number Publication Date
JPH0354920A true JPH0354920A (en) 1991-03-08
JP2855449B2 JP2855449B2 (en) 1999-02-10

Family

ID=16229626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188778A Expired - Lifetime JP2855449B2 (en) 1989-07-24 1989-07-24 Standard frequency signal generator

Country Status (1)

Country Link
JP (1) JP2855449B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537173A (en) * 1992-10-23 1996-07-16 Olympus Optical Co., Ltd. Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film
US5610677A (en) * 1993-06-08 1997-03-11 Olympus Optical Co., Ltd. Camera
US5835805A (en) * 1996-04-08 1998-11-10 Fuji Photo Film Co., Ltd. Film transporting device of camera and clutch structure and camera with magnetic recording function
JP2010054265A (en) * 2008-08-27 2010-03-11 National Institute Of Information & Communication Technology Remote frequency calibration device using standard radio wave
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537173A (en) * 1992-10-23 1996-07-16 Olympus Optical Co., Ltd. Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film
US5543877A (en) * 1992-10-23 1996-08-06 Olympus Optical Co., Ltd. Means for controlling driving of a driving fork and take-up spool for automatic feeding and rewinding of a film in a camera
US5610677A (en) * 1993-06-08 1997-03-11 Olympus Optical Co., Ltd. Camera
US5835805A (en) * 1996-04-08 1998-11-10 Fuji Photo Film Co., Ltd. Film transporting device of camera and clutch structure and camera with magnetic recording function
JP2010054265A (en) * 2008-08-27 2010-03-11 National Institute Of Information & Communication Technology Remote frequency calibration device using standard radio wave
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
US11711178B2 (en) * 2017-04-28 2023-07-25 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method

Also Published As

Publication number Publication date
JP2855449B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4494211A (en) Balanced system for ranging and synchronization between satellite pairs
US5629649A (en) Frequency standard generator synchronized with satellite or other communication network reference clocks
US7548600B2 (en) Apparatus and method for compensating the drift of a local clock used as sampling frequency
JP2000510668A (en) Multiple input frequency fixed loop
Mills Modelling and analysis of computer network clocks
US20160061972A1 (en) Data acquisition apparatus using one single local clock
AU695013B2 (en) Highly stable frequency generator
EP0653845A1 (en) A method for synchronizing the reference frequency oscillator to a master oscillator
JPH0354920A (en) Loose coupling oscillator interlocking with reference radio wave receiver
US5220333A (en) Method and apparatus for determining universal coordinated time from Loran-C transmissions
JP2000507343A (en) Phase angle measurement method and system in power system
TW198755B (en)
US11637586B2 (en) Systems and methods for wireless atomic clock synchronization using ultra wideband (UWB) pulse trains
Shaull Adjustment of high-precision frequency and time standards
CN115173983A (en) Method and device for compensating internal delay of communication system equipment
CN104639158B (en) Synchronous two phase-locked loop adjusting method
US5847613A (en) Compensation of long term oscillator drift using signals from distant hydrogen clouds
JP2001215283A (en) Seismometer
US4035736A (en) FM discriminator having low noise characteristics
Malling Phase-stable oscillators for space communications, including the relationship between the phase noise, the spectrum, the short-term stability, and the Q of the oscillator
JP3246459B2 (en) Clock synchronization method and clock synchronization circuit
JPH04278723A (en) Satellite navigation receiver
Wang The frequency and time standard and activities at the Beijing Institute of Radio Metrology and Measurements
SU1067602A1 (en) Adjustable generator with external synchronization
RU2113763C1 (en) Tracing receiver of wide-band signal