JPH0354529A - Waveguide amplifier made of glass added with rare earth element - Google Patents
Waveguide amplifier made of glass added with rare earth elementInfo
- Publication number
- JPH0354529A JPH0354529A JP18888789A JP18888789A JPH0354529A JP H0354529 A JPH0354529 A JP H0354529A JP 18888789 A JP18888789 A JP 18888789A JP 18888789 A JP18888789 A JP 18888789A JP H0354529 A JPH0354529 A JP H0354529A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth element
- glass waveguide
- waveguide
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 50
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 238000005086 pumping Methods 0.000 claims abstract description 19
- 230000001360 synchronised effect Effects 0.000 claims abstract description 8
- 230000005284 excitation Effects 0.000 claims description 23
- 239000013307 optical fiber Substances 0.000 claims description 21
- 150000002910 rare earth metals Chemical class 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 abstract description 6
- 230000000644 propagated effect Effects 0.000 abstract description 4
- 238000002513 implantation Methods 0.000 abstract 2
- 230000000087 stabilizing effect Effects 0.000 abstract 2
- 230000003287 optical effect Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/0632—Thin film lasers in which light propagates in the plane of the thin film
- H01S3/0637—Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は希土類元素を添加したガラス導波路増幅器に関
するものである.
[従来の技術]
光ファイバのコアに希土類元素を添加した光ファイバ増
幅器及びレーザーの研究が活発に行われるようになり、
光波通信用増幅器及びレーザーとして注目されるように
なってきた。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a glass waveguide amplifier doped with rare earth elements. [Prior Art] Research into optical fiber amplifiers and lasers in which rare earth elements are added to the optical fiber core has been actively conducted.
It has started to attract attention as an amplifier and laser for light wave communication.
従来、光ファイバ増幅器として、第7図に示すように、
希土類元素Erを添加した光ファイバ32内に信号光を
伝搬させ、この信号光の伝搬方向に対して励起光を光フ
ァイバカプラ33を用いて合成し、反転分布状態を形戒
させることにより信号光を増幅させ、出力II!より光
ファイバカグラ34で励起光を分離させる方法が検討さ
れている(木村,中沢:光ファイバレーザーの発振特性
とその光通信への応用.レーザー学会研究会, RTM
−87−16.PP.31〜37.1988年l月)。Conventionally, as an optical fiber amplifier, as shown in Fig. 7,
Signal light is propagated in an optical fiber 32 doped with the rare earth element Er, and pumping light is combined with the optical fiber coupler 33 in the propagation direction of the signal light to form a population inversion state. Amplify and output II! A method of separating the excitation light using an optical fiber capacitor 34 is being considered (Kimura, Nakazawa: Oscillation characteristics of optical fiber lasers and their application to optical communications. Laser Society Research Group, RTM
-87-16. PP. 31-37. January 1988).
[発明が解決しようとする課題]
光ファイバ増幅器及びレーザーは、(1)コア系が10
ALl1程度と細径であるため、励起パワー密度が大き
くなり励起効率が上がること、(2)相互作用長を長く
とれること、(3)石英系光ファイバの場合、非常に低
損失であることなどの特徴がある。[Problems to be solved by the invention] The optical fiber amplifier and laser have (1) a core system of 10
Because it has a small diameter of about ALl1, the pumping power density increases and the pumping efficiency increases; (2) the interaction length can be long; and (3) in the case of silica-based optical fibers, the loss is extremely low. It has the characteristics of
しかしながら、半導体レーザー.受光素子,光変則回路
,光分岐・結合回路,光スイッチ回路,光合分波回路な
どと共に実装したシステムを構或しようとする陽合に、
それぞれが個別部品であるので、小形化,低損失化がむ
ずかしいといった問題点がある.また個別部品を個々に
光軸調整して配置させなければならないので、調整時間
が膨大にかかり、コスl・高になる、@頼性にljjj
題がある、などの課題もあった.
また高利得特性を実現させるためには励起光源の出力を
大きくする必要があるが、大出力の励起光源はコスト高
であるという問題もあった。However, semiconductor lasers. For those who are trying to construct a system that includes a photodetector, an optical anomalous circuit, an optical branching/coupling circuit, an optical switch circuit, an optical multiplexing/demultiplexing circuit, etc.
Since each component is an individual component, it is difficult to downsize and reduce loss. In addition, since the optical axis of each individual component must be adjusted and arranged individually, it takes an enormous amount of adjustment time, increases costs, and reduces reliability.
There were also issues such as: Furthermore, in order to achieve high gain characteristics, it is necessary to increase the output of the pumping light source, but there is also the problem that a pumping light source with a high output is expensive.
さらに励起光のわずかな発振波長変化によって、増幅器
の利得が変動するというaIj題も実用システムを桶築
する上で重大な問題であった。これは希土類元素を添加
した光ファイバの励起光による吸収の波長特性が極めて
シャープなためであった.したがって、励起光源の波長
の高安定化が必要となるが、極めて効果で装置.回路椙
成も複雑になるという問題点があった.
本発明の目的は、前記した従来技術の問題点を解決し、
小形、低損失1高利得.低コストで信頼性のある増幅器
を提供することにある.[課題を解決するための手段]
本発明の希土類元素添加ガラス導波路増幅器は、上記目
的を達或するために、信号光の伝搬する希土類元素添加
ガラス導波路の入力開より励起光を結合させ、該導波路
の出力側より該励起光を抽出する楕戒のガラス導波路増
幅器において、該励起光源に注入同期型半導体レーザー
を用いた構成・としたものである.
この場合、好ましくは、希土類元素添加ガラス導波路へ
の励起光の結合及び該導波路からの励起光の抽出を、リ
ング共a器,方向性結合器等の共振器に上って行う.更
に好ましくは、励起光伝搬経路をフィードバックループ
構或とする。また、注入同期型半導体レーザーには増幅
器機能付きのらのを用い且つ基準の波長安定化半導体レ
ーザー光源の出力光の波長に同期化させる。Furthermore, the aIj problem in which the gain of the amplifier fluctuates due to a slight change in the oscillation wavelength of the pumping light has also been a serious problem in building a practical system. This is because the wavelength characteristics of the absorption of excitation light in optical fibers doped with rare earth elements are extremely sharp. Therefore, it is necessary to highly stabilize the wavelength of the excitation light source, but this is extremely effective. The problem was that the circuit construction was also complicated. The purpose of the present invention is to solve the problems of the prior art described above,
Small size, low loss, high gain. Our goal is to provide low-cost and reliable amplifiers. [Means for Solving the Problems] In order to achieve the above object, the rare earth element-doped glass waveguide amplifier of the present invention combines pumping light from the input opening of the rare earth element-doped glass waveguide through which signal light propagates. , an elliptical glass waveguide amplifier that extracts the pumping light from the output side of the waveguide, in which an injection-locked semiconductor laser is used as the pumping light source. In this case, preferably, the coupling of the excitation light to the rare earth element-doped glass waveguide and the extraction of the excitation light from the waveguide are performed through a resonator such as a ring resonator or a directional coupler. More preferably, the excitation light propagation path has a feedback loop structure. In addition, a laser beam with an amplifier function is used for the injection-locked semiconductor laser, and is synchronized with the wavelength of the output light of the standard wavelength-stabilized semiconductor laser light source.
本発明の希土類元素添加ガラス導波路増幅器はプレーナ
411造のガラス導波路で構或されるが、希上類元素添
加ガラス導波路と励起光の結合及び抽出用共振器を光フ
ァイバ梢造のもので栴成することもできる。Although the rare earth element-doped glass waveguide amplifier of the present invention is constructed of a planar 411-structured glass waveguide, the rare-earth element-doped glass waveguide and the resonator for coupling and extraction of excitation light may be constructed of an optical fiber structure. It can also be created with
[作 用]
希土類元素を添加したガラス導波路内に信号光を伝搬さ
せると共に、該導波路の入力側に共振器を設けて注入同
期型半導体レーザーの出力光を、励起光として該導波路
内に結合させ、かつ該導波路の出力n旧こも共振器を設
けて該励起光を取り出して、該注入同期型半導体レーザ
ーの入力部へ入力させることによって、該励起光の波長
の安定化及び出力光の増大を図り、高利得.高安定の増
輻器が実現される。また、上記構成をブレーナ構造のガ
ラス導波路で横成することによって、小形化及び低損失
化が達成される.さらに、グレーナ椙遣のガラス導波路
は半導体プロセスを応用することによって容易に実現可
能となるので、低コスト化及び高信頼化も期待できる。[Function] Signal light is propagated in a glass waveguide doped with rare earth elements, and a resonator is provided on the input side of the waveguide, and the output light of the injection-locked semiconductor laser is used as excitation light within the waveguide. The wavelength of the pumping light can be stabilized and the output can be achieved by coupling the output of the waveguide to a conventional resonator, extracting the pumping light, and inputting it to the input section of the injection-locked semiconductor laser. High gain by increasing light. A highly stable intensifier is realized. Further, by forming the above structure using a glass waveguide having a Brener structure, miniaturization and low loss can be achieved. Furthermore, since the Grainer-based glass waveguide can be easily realized by applying a semiconductor process, lower costs and higher reliability can be expected.
[実施例]
第■図及び第2図に本発明の希土類元素添加ガラス導波
路増幅器の実施例を示す。これは埋込みガラス導波路で
構成されており、このガラス導波路の途中に基準の波長
安定化半導体レーザー3lの光に同期され波長の安定化
された注入同期型半導体レーザー7を挿入したものとな
っている.第1図は導波路増幅器の側面を、第2図はそ
のI[−■断面を示す6
先ず導′$l.F#1の構成から説明する.基板l(た
とえばSi ,Si 02ガラス,S102に屈折率制
御用添加物を含んだガラス、Ga As ,In P,
サファイヤなど}の上に、バッファ層2(屈折率nb)
が形成されている.このバッファ層2には、Si02あ
るいはSi02にP,B,Ti ,Ge ,AJ,Zn
などの屈折率制御添加物を少なくとも一種含んだもの、
などが用いられる.このバッファ層2の上に光信号を伝
搬させるガイド、すなわちコア3.4、リング共振器5
.6が形成されている.この実施例ではコア3.4は互
いに平行に、リング共振器5.6はそれらコア3.4間
に位置するように形成されている。これらのガイド3〜
6は断面が略矩形状のもQ)で、その屈折率n IVは
バッファ)C42の屈折率nbに対し、nv >nbの
ように設定されている。[Example] Figures 1 and 2 show examples of the rare earth element-doped glass waveguide amplifier of the present invention. This consists of a buried glass waveguide, and an injection-locked semiconductor laser 7 whose wavelength is stabilized by being synchronized with the light of the standard wavelength-stabilized semiconductor laser 3l is inserted in the middle of this glass waveguide. ing. FIG. 1 shows a side view of the waveguide amplifier, and FIG. 2 shows its I[-■ cross section. Let's start with the configuration of F#1. Substrate l (for example, Si 2 , Si 02 glass, glass containing a refractive index controlling additive in S 102 , Ga As , In P,
buffer layer 2 (refractive index nb) on top of sapphire etc.
is formed. This buffer layer 2 includes Si02 or Si02 with P, B, Ti, Ge, AJ, Zn.
containing at least one refractive index controlling additive such as
etc. are used. A guide for propagating the optical signal on this buffer layer 2, that is, a core 3.4, a ring resonator 5
.. 6 is formed. In this embodiment, the cores 3.4 are formed parallel to each other and the ring resonator 5.6 is located between the cores 3.4. These guides 3~
6 has a substantially rectangular cross section, and its refractive index nIV is set such that nv > nb with respect to the refractive index nb of the buffer) C42.
上記コア3は、活性物質として希土類元素(1・:r,
Nd,Ho,Yb,Ce,Sra,T’lP「など)が
少なくとも一種含まれたs102系ガラス(Si 02
、あるいは前記屈折率制御用713加物を少なくとも
一種含んだSi 02 )からなる。The core 3 contains rare earth elements (1.:r,
S102 glass (Si 02
, or Si 02 ) containing at least one type of the refractive index controlling additive 713.
コア3内に添加すべき上記希土類元素は、コア3内をf
云撤させる信号光りの波長λst″螢光特性をもつよう
な元素が選ばれる。例えば、波長λSとして、波長1.
53μl帯が用いられると、希土類元素としてはEr,
あるいはE rとYbを共に添加したものなどを適用す
ることができる。The rare earth element to be added into the core 3 is
An element is selected that has fluorescent properties at the wavelength λst of the signal light to be removed.For example, as the wavelength λS, the wavelength 1.
When the 53 μl band is used, the rare earth elements include Er,
Alternatively, a material in which both Er and Yb are added can be used.
コア4,リング共振器5,6には上記S102系ガラス
、あるいはコア3と同様のガラスを用いることができる
。For the core 4 and the ring resonators 5 and 6, the above S102 glass or the same glass as the core 3 can be used.
上記バッファ層2及びコア3.4を含め全体がクラッド
8で被覆されており、このクラッド8はその屈折率nc
がnWよりも低くなるように選ばれ、前記sroz系ガ
ラスで構成される.リング共振器5及び6は、注入同期
型半導体レーザー7の発振波長λpに共振するように設
計されており、コア4(3)内を伝搬している波長λp
の光信号を、コア3(4)内へ選択的に結合させるR能
をもっている.波長λSの光信号に対しては共振しない
ように梢成されている,注入同期型半導体レーザー7は
励起用光源であり、方向性結合器20を介して注入され
る基準の波長安定化半導体レーザー31の出力光の波長
に同期され、出力光の波長の安定化が図れる。この注入
同期型半導体レーザー7の出力光はコア4内に矢印11
のごとく入力され、リング共H器5を介してコア3内を
矢印12のごとく伝搬される,そしてリング共振器6を
介してコア4内を矢印l3のごとく伝搬し、注入同期型
半導体レーザー7に入力される.
上記のようなフィードバックルーグを構成させると、
(1)発振器波長λpの安定化が可能となる、(2)注
入同期型半導(ホ)レーザー7に増幅R能をもたせるこ
とができ、より高出力の励起光出力を収り出すことが可
能となる、
(3)結果として、安定で高利得なガラス導波路増幅器
が実現打能となる、
などの特徴を期待することができる.そして、増幅器全
体を小形化することができる.
また、既に明らがなように、フ゛レーナ梢造を用いてい
るので、本ガラス導波路増幅器は、ガラス膜の形成、ガ
ラス膜のバターニング〈フォトリングラフィ及びドライ
エッチングプロセス)、カラス膜形成及び切断・研磨な
どの半導体1ロセスにより作成することができ、量産化
による大幅な低コスI・化を期待できる.
さらに、信号光及び励起光伝送用導波路3,Iij11
起光『云送用導波路4.リング共振器5及び6、方向性
結合器20、注入同期型半導体レーザー7は、これをマ
スク精度で配置させることができるので、各部品間を低
tfl失で結合させることができ、また信頼性も向上さ
せることができる.なお、注入間期型半導体レーザー7
の入出力部とコア4との結合には、レンズ、屈折率整合
剤などを用いて、高結合効率を図るようにしてもよい。The entire area including the buffer layer 2 and core 3.4 is covered with a cladding 8, which has a refractive index nc
is selected so that nW is lower than nW, and is made of the sroz glass. The ring resonators 5 and 6 are designed to resonate at the oscillation wavelength λp of the injection-locked semiconductor laser 7, and the ring resonators 5 and 6 are designed to resonate at the oscillation wavelength λp propagating within the core 4 (3).
It has the R ability to selectively couple the optical signal of the core 3 (4) into the core 3 (4). The injection-locked semiconductor laser 7, which is arranged so as not to resonate with the optical signal of the wavelength λS, is a pumping light source and serves as a reference wavelength-stabilized semiconductor laser injected via the directional coupler 20. The wavelength of the output light is synchronized with the wavelength of the output light of No. 31, and the wavelength of the output light can be stabilized. The output light of this injection-locked semiconductor laser 7 is directed into the core 4 by an arrow 11.
It is inputted as shown in FIG. is input into . By configuring the feedback loop as described above, (1) the oscillator wavelength λp can be stabilized, (2) the injection-locked semiconductor (e) laser 7 can have amplification R capability, and higher We can expect the following characteristics: (3) As a result, a stable and high-gain glass waveguide amplifier will be realized. In addition, the entire amplifier can be made smaller. Furthermore, as is already clear, since a finner structure is used, this glass waveguide amplifier is capable of forming a glass film, buttering the glass film (photolithography and dry etching process), forming a glass film, and It can be manufactured through a single semiconductor process such as cutting and polishing, and can be expected to significantly reduce cost through mass production. Furthermore, the signal light and excitation light transmission waveguide 3, Iij11
Light transmission waveguide 4. The ring resonators 5 and 6, the directional coupler 20, and the injection-locked semiconductor laser 7 can be arranged with mask precision, so each component can be coupled with low TFL loss, and reliability is improved. can also be improved. In addition, the inter-injection semiconductor laser 7
A lens, a refractive index matching agent, or the like may be used to couple the input/output part of the core 4 with the core 4 in order to achieve high coupling efficiency.
第3図及び第4図は本発明の希土類元素添加ガラス導波
路増幅器の別の実跪例を示したものである.これは第2
図のリング共振器5及び6の代わりに、方向性結合器1
4及び15を用いて励起光l1をコア3に結合させ、ま
たコア3内を伝搬している励起光をコア4に収り出させ
るようにしたものである.
この実施例の場合も、コア3内を伝搬している信号光り
については、コア4に結合しない。信号光9は、第1図
の場合と同様に、コア3内を伝搬するにつれて増幅され
、信号出力光10として取り出される.すなわち、コア
3内に方向性結合器14を通して励起光が結合され、そ
の励起光12がコア3内を伝搬するにつれて希土類元素
に吸収されてエネルギー単位を上げる.これにより、反
転分布が生じ、誘導放出により信号光9が増幅される.
この増幅度はコア3の導波路長,励起光の出力値、希土
類元素の添加濃度に依存している。Figures 3 and 4 show another practical example of the rare earth element-doped glass waveguide amplifier of the present invention. This is the second
In place of the ring resonators 5 and 6 in the figure, a directional coupler 1
4 and 15 are used to couple the excitation light l1 to the core 3, and also cause the excitation light propagating within the core 3 to enter the core 4. Also in this embodiment, the signal light propagating within the core 3 is not coupled to the core 4. As in the case of FIG. 1, the signal light 9 is amplified as it propagates within the core 3 and is taken out as a signal output light 10. That is, excitation light is coupled into the core 3 through the directional coupler 14, and as the excitation light 12 propagates within the core 3, it is absorbed by the rare earth element and increases the energy unit. This causes population inversion, and the signal light 9 is amplified by stimulated emission.
This amplification degree depends on the waveguide length of the core 3, the output value of the excitation light, and the doping concentration of the rare earth element.
本発明の場合、希土類元素の添加濃度を高くし、かつ励
起光出力値を大きくすることによって、小形.高利得な
増幅器を実現するものである.しがち注入同期型半導体
レーザー7は、安定な基準の半導体レーザー31の波長
に同期化させたり、また上記のようにフィードバックル
ーグを楕成することにより、さらに注入同期型増幅器と
組合せることにより、より安定で、大出力を得やすいの
で、高利得で、かつ利得変動の極めて少ない希土類添加
ガラス導波路増幅器を実現することができる.第5図は
本発明の希土類元素添加ガラス導波路増幅器の別の実施
例を示したものである.これはガラス導波路として、プ
レーナ祁1造のものの代わりに、光ファイバ構造のもの
を用いて梢威した場合の実施例である。In the case of the present invention, by increasing the doping concentration of rare earth elements and increasing the excitation light output value, it is possible to achieve a small size. This realizes a high-gain amplifier. The injection-locked semiconductor laser 7 can be synchronized with the wavelength of the stable reference semiconductor laser 31, or by forming the feedback loop as described above, or by combining it with an injection-locked amplifier. Since it is more stable and easy to obtain large output, it is possible to realize a rare earth-doped glass waveguide amplifier with high gain and extremely little gain fluctuation. FIG. 5 shows another embodiment of the rare earth element-doped glass waveguide amplifier of the present invention. This is an example in which an optical fiber structure is used as the glass waveguide instead of a planar one.
すなわち、信号光り及び励起光l2の伝搬用導波路とし
て、光ファイバのコアに希土類元素を添加した光ファイ
バ16を用い、励起光結合用及び収り出し用の方向性結
合器として光ファイバ形方向性結合器17及び18を用
い、そして励起光11及び13の伝搬用導波路として、
光ファイバ19を用いたものである.また基準の波長安
定化半導体レーザー31の出力光は、光ファイバ型方向
性結合器29を通して注入型半導体レーザー7に入力さ
れている.この光ファイバを用いた構成では小形化,低
損失化などはむずかしいが、高利得化を図ることが可能
となる.
本発明は上記実膝例に限定されない.
まずプレーナ構造のガラス導波路として、埋め混み型以
外に、リッジ型,装荷型.盛上げ型などの従来よく知ら
れた導波路構造で実現させてもよい.基板1にSi02
ガラスを用いた場合にはバッファ層2は形成させなくて
もよい。That is, an optical fiber 16 whose core is doped with a rare earth element is used as a waveguide for propagating the signal light and pumping light l2, and the optical fiber shape direction is used as a directional coupler for coupling and extracting the pumping light. using the optical couplers 17 and 18, and as a waveguide for the propagation of the excitation lights 11 and 13,
This uses an optical fiber 19. Further, the output light of the reference wavelength-stabilized semiconductor laser 31 is input to the injection type semiconductor laser 7 through the optical fiber type directional coupler 29. Although it is difficult to achieve miniaturization and low loss with a configuration using this optical fiber, it is possible to achieve high gain. The present invention is not limited to the above actual knee example. First, as a glass waveguide with a planar structure, in addition to the buried type, there are ridge type and loaded type. It may also be realized using a conventionally well-known waveguide structure such as a raised type. Si02 on substrate 1
When glass is used, the buffer layer 2 does not need to be formed.
また、Si02ガラス基板に矩形状の清を掘り、その溝
にコア3及び4を形或してもよい.励起光を希土類元素
添加ガラス導波路に結合させたり、あるいは抽出したり
するための共振器としては、リング共fii器、方向性
結合器以外に、テーバ型方向性結合器、融着延仲型光フ
ァイバカプラ、パイコニ力ルテーパ型光ファイバカプラ
などを用いてもよい.
また、本発明は複数の伝送路の増幅用としても好適であ
る.すなわち、第6図に示すように、2つの后土類元素
添加コア3及び21内を伝搬する光信号を増幅させる場
合、一つの基準の波長安定化半樽体レーザー31の出力
光をY分岐結合器30で2つに分け、それぞれの注入同
期型半導体レーザー7及び25に入力させることにより
、半導体レーザー31の波長に同期引込みさせる.これ
により波長を安定化させ、かつフィードバックループを
それぞれ楕成させることにより、さらに波長安定化と大
出力化を図り、高利得増幅器を実現させるようにしたも
のである.
なお、第1図ないし第6図において、励起光は必ずしも
フィードバックループを綱或しなくてもよい,その理由
は、希土類元素添加コア3及び21が充分長い場合には
、フィードバックされてくるDjlJ起光量は充分に小
さいためである.[発明の効果]
以上のように、本発明によれば、まず注入同期型半導体
レーザーを励起光源として用いることにより、高利得の
希土類元素添加ガラス導波路増幅器を実現することがで
きる.また励起光伝搬用導波路をフィードバックルーグ
構成とすることにより、注入同期型半導体レーザーの高
出力化及び発振波長の安定化を図ることができ、高利得
で利得変動の少ない安定な増幅器を実現することができ
る.さらに、プレーナ構造のガラス導波路楕遣で増幅器
をm戒することにより、小形化、低損失化及び低コスト
化などを期待することができる.Alternatively, a rectangular hole may be dug in the Si02 glass substrate, and the cores 3 and 4 may be formed in the groove. As a resonator for coupling or extracting excitation light into a rare earth element-doped glass waveguide, in addition to a ring resonator and a directional coupler, there are also a Taber type directional coupler and a fused spread type resonator. Optical fiber couplers, piconic force taper type optical fiber couplers, etc. may also be used. The present invention is also suitable for amplifying multiple transmission lines. That is, as shown in FIG. 6, when amplifying the optical signal propagating within the two doped cores 3 and 21, the output light of one standard wavelength-stabilized half-barrel laser 31 is Y-branched. The wavelength of the semiconductor laser 31 is synchronized by dividing the wavelength into two by the coupler 30 and inputting the input to the respective injection-locked semiconductor lasers 7 and 25. This stabilizes the wavelength, and by making the feedback loops elliptical, it is possible to further stabilize the wavelength and increase output, thereby realizing a high-gain amplifier. In addition, in FIGS. 1 to 6, the excitation light does not necessarily have to form a feedback loop. The reason is that if the rare earth element-doped cores 3 and 21 are sufficiently long, the feedback loop of DjlJ This is because the amount of light is sufficiently small. [Effects of the Invention] As described above, according to the present invention, by first using an injection-locked semiconductor laser as a pumping light source, a high-gain rare earth element-doped glass waveguide amplifier can be realized. In addition, by using a feedback loop configuration for the pump light propagation waveguide, it is possible to increase the output of the injection-locked semiconductor laser and stabilize the oscillation wavelength, realizing a stable amplifier with high gain and little gain fluctuation. be able to. Furthermore, by using an elliptical glass waveguide with a planar structure to make the amplifier more compact, it is possible to expect smaller size, lower loss, and lower cost.
第1図から第6図は本発明の希土類元素添加ガラス導波
路増幅器の実施例を示したもので、第1図は第lの実施
例の側面図、第2図はそのn−II断面図、第3図は第
2の実施例の側面図、第4図はそのIV − IV断面
図、第5図は第3の実施例を示す図、第6図は第4の実
施例を示す図、第7図は従来の光ファイバ増幅器の概略
を示した図である.1 to 6 show examples of the rare earth element-doped glass waveguide amplifier of the present invention, FIG. 1 is a side view of the first embodiment, and FIG. 2 is its n-II sectional view. , FIG. 3 is a side view of the second embodiment, FIG. 4 is a cross-sectional view along IV-IV thereof, FIG. 5 is a diagram showing the third embodiment, and FIG. 6 is a diagram showing the fourth embodiment. , FIG. 7 is a diagram schematically showing a conventional optical fiber amplifier.
Claims (1)
力側より励起光を結合させ、該導波路の出力側より該励
起光を抽出する構成のガラス導波路増幅器において、該
励起光源に注入同期型半導体レーザーを用いたことを特
徴とする希土類元素添加ガラス導波路増幅器。 2、希土類元素添加ガラス導波路への励起光の結合及び
該導波路からの励起光の抽出を、リング共振器、方向性
結合器等の共振器によって行うことを特徴とする請求項
1記載の希土類元素添加ガラス導波路増幅器。 3、励起光伝搬経路をフィードバックループ構成とした
ことを特徴とする請求項2記載の希土類元素添加ガラス
導波路増幅器。 4、注入同期型半導体レーザーは増幅器機能付きのもの
を用い且つ基準の波長安定化半導体レーザー光源の出力
光に同期化させることを特徴とする請求項1、2又は3
記載の希土類元素添加ガラス導波路増幅器。 5、希土類元素添加ガラス導波路増幅器はプレーナ構造
のガラス導波路で構成されていることを特徴とする請求
項1、2、3又は4記載の希土類元素添加ガラス導波路
増幅器。 6、希土類元素添加ガラス導波路と励起光の結合及び抽
出用共振器が光ファイバ構造のもので構成されているこ
とを特徴とする請求項1、2、3又は4記載の希土類元
素添加ガラス導波路増幅器。[Claims] 1. In a glass waveguide amplifier configured to couple pumping light from the input side of a rare earth element-doped glass waveguide through which signal light propagates, and extract the pumping light from the output side of the waveguide, A rare earth element-doped glass waveguide amplifier characterized in that an injection-locked semiconductor laser is used as the excitation light source. 2. The method according to claim 1, wherein the coupling of the excitation light to the rare earth element-doped glass waveguide and the extraction of the excitation light from the waveguide are performed by a resonator such as a ring resonator or a directional coupler. Rare earth element doped glass waveguide amplifier. 3. The rare earth element-doped glass waveguide amplifier according to claim 2, wherein the excitation light propagation path has a feedback loop configuration. 4. Claim 1, 2 or 3, wherein the injection-locked semiconductor laser is one with an amplifier function and is synchronized with the output light of a reference wavelength-stabilized semiconductor laser light source.
The rare earth element-doped glass waveguide amplifier described above. 5. The rare earth element doped glass waveguide amplifier according to claim 1, 2, 3 or 4, wherein the rare earth element doped glass waveguide amplifier is constructed of a planar structure glass waveguide. 6. The rare earth element doped glass waveguide according to claim 1, 2, 3 or 4, wherein the rare earth element doped glass waveguide and the excitation light coupling and extraction resonator are constructed of an optical fiber structure. Wavepath amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18888789A JP2667255B2 (en) | 1989-07-24 | 1989-07-24 | Rare earth element doped glass waveguide amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18888789A JP2667255B2 (en) | 1989-07-24 | 1989-07-24 | Rare earth element doped glass waveguide amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0354529A true JPH0354529A (en) | 1991-03-08 |
JP2667255B2 JP2667255B2 (en) | 1997-10-27 |
Family
ID=16231621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18888789A Expired - Fee Related JP2667255B2 (en) | 1989-07-24 | 1989-07-24 | Rare earth element doped glass waveguide amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2667255B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH041614A (en) * | 1990-04-18 | 1992-01-07 | Mitsubishi Electric Corp | Optical amplifying device |
KR100416999B1 (en) * | 2001-10-12 | 2004-02-05 | 삼성전자주식회사 | Planar waveguide circuit type optical amplifier |
WO2005013442A3 (en) * | 2003-08-01 | 2005-03-24 | Massachusetts Inst Technology | Planar multiwavelength optical power supply on a silicon platform |
US6885689B2 (en) * | 2000-09-06 | 2005-04-26 | Lambda Crossing Ltd. | Multisegment integrated laser and a method for fabrication thereof |
US7773642B2 (en) | 2004-03-31 | 2010-08-10 | Nec Corporation | Tunable laser |
JP2011124547A (en) * | 2009-12-11 | 2011-06-23 | Korea Electronics Telecommun | Optical fiber laser |
JP2013520026A (en) * | 2010-02-17 | 2013-05-30 | エスピーアイ レーザーズ ユーケー リミテッド | Laser equipment |
US11495935B2 (en) | 2018-11-02 | 2022-11-08 | Denso Corporation | Optical filter, and laser light source and optical transceiver using the same |
-
1989
- 1989-07-24 JP JP18888789A patent/JP2667255B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH041614A (en) * | 1990-04-18 | 1992-01-07 | Mitsubishi Electric Corp | Optical amplifying device |
US6885689B2 (en) * | 2000-09-06 | 2005-04-26 | Lambda Crossing Ltd. | Multisegment integrated laser and a method for fabrication thereof |
KR100416999B1 (en) * | 2001-10-12 | 2004-02-05 | 삼성전자주식회사 | Planar waveguide circuit type optical amplifier |
WO2005013442A3 (en) * | 2003-08-01 | 2005-03-24 | Massachusetts Inst Technology | Planar multiwavelength optical power supply on a silicon platform |
US7336684B2 (en) | 2003-08-01 | 2008-02-26 | Massachusetts Institute Of Technology | Planar multiwavelength optical power supply on a silicon platform |
US7773642B2 (en) | 2004-03-31 | 2010-08-10 | Nec Corporation | Tunable laser |
JP2011124547A (en) * | 2009-12-11 | 2011-06-23 | Korea Electronics Telecommun | Optical fiber laser |
JP2013520026A (en) * | 2010-02-17 | 2013-05-30 | エスピーアイ レーザーズ ユーケー リミテッド | Laser equipment |
US11495935B2 (en) | 2018-11-02 | 2022-11-08 | Denso Corporation | Optical filter, and laser light source and optical transceiver using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2667255B2 (en) | 1997-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07120827B2 (en) | Multiple cavity optical device | |
US11509110B2 (en) | Broadband Ho-doped optical fiber amplifier | |
EP0457349B1 (en) | Fiber optic amplifier | |
US6487006B1 (en) | Simultaneous single mode and multi-mode propagation of signals in a double clad optical fiber | |
JPH0354529A (en) | Waveguide amplifier made of glass added with rare earth element | |
JP2747315B2 (en) | Glass waveguide amplifier for bidirectional transmission | |
RU2309500C2 (en) | Optical amplifier pumped at multiple wavelengths | |
JP2693662B2 (en) | Optical amplifier | |
US20070153364A1 (en) | Tunable fiber amplifier and laser using discrete fundamental-mode cutoff | |
US7106500B2 (en) | Raman amplifier system | |
JP4460298B2 (en) | Optical amplifier that pumps multiple wavelengths | |
JP2834867B2 (en) | Erbium-doped fiber amplifier | |
JP2842959B2 (en) | Optically pumped waveguide loop laser | |
US7027212B2 (en) | Waveguide optical amplifier | |
JP2801359B2 (en) | Erbium-doped fiber optical amplifier | |
JP2736158B2 (en) | Optical waveguide and optical amplifier | |
JPH03253823A (en) | Optical amplifier | |
JPH04188777A (en) | Optical fiber amplifier | |
JP2682870B2 (en) | Optical amplifier | |
JP3055235B2 (en) | Optical circuit manufacturing method | |
JP3086033B2 (en) | 1.3μm band optical amplifier | |
JPH09162468A (en) | Laser oscillator | |
JP2003149481A (en) | Optical amplifier-integrated waveguide | |
JPH0422927A (en) | Optical fiber amplifier | |
JP2532714B2 (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |