JPH0354436A - Turbidimeter - Google Patents

Turbidimeter

Info

Publication number
JPH0354436A
JPH0354436A JP1191111A JP19111189A JPH0354436A JP H0354436 A JPH0354436 A JP H0354436A JP 1191111 A JP1191111 A JP 1191111A JP 19111189 A JP19111189 A JP 19111189A JP H0354436 A JPH0354436 A JP H0354436A
Authority
JP
Japan
Prior art keywords
light
polarizing
section
turbidity
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191111A
Other languages
Japanese (ja)
Inventor
Hirofumi Miura
三浦 宏文
Ryuzo Kano
龍三 加納
Hideyuki Miki
三木 英之
Yoshiaki Nobuchi
野渕 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1191111A priority Critical patent/JPH0354436A/en
Publication of JPH0354436A publication Critical patent/JPH0354436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate dispersion in sensitivities among photodetector elements and to make it possible to manufacture a turbidimeter at a low cost by performing the measurement by the parallel polarizing planes and the measurement by the orthgonally intersecting polarizing planes with one photodetector element. CONSTITUTION:Both polarizing plates 10 and 11 are set so that, e.g. the vibrating planes of passing light rays are in parallel. When a light source 6 emits light rays, only the light having a certain vibrating plane which is allowed by the polarizing plate 10 on the light emitting side among said light rays is inputted into a liquid sample 2. The light is scattered in correspondence with the turbidity of the sample 2. The light from the sample 2 is inputted into the polarizing plate 11 on the light receiving side. The light having the vibrating component that is in parallel with the vibrating plane reaches a photodetector element 12. The intensity of said light is measured. Then, a polarizing part is driven with a motor 16 so that the vibrating planes of the polarizing plate 10 and the polarizing plate 11 are orthogonally intersected. Measurement is performed by the element 12. Then the ratio between two kinds of the measured values obtained with the element 12 is computed. Thus, the turbidity can be obtained. Therefore, dispersion in sensitivities among the elements can be eliminated, and the turbidimeter can be manufactured at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、濁度計、特に、測定対象に対して偏光解消法
を用いて濁度を計測するための濁度計に関する. 〔従来の技術〕 河川、工業用水、工場排水、上下水道等における濁度を
測定するために、偏光解消法を用いた濁度計が用いられ
る. 従来の偏光解消法を用いた濁度計は、発光部と、発光部
側の偏光部と、受光部と、受光部側の偏光部とを有して
いる.偏光解消法による濁度を計測するため、この濁度
計では、受光部として2個の光導電セルが用いられてい
る.一方の光導電セルは、ある振動面を持つ光の強度を
計測し、他方の光導電セルはそれと垂直方向の振動面を
持つ光の強度を計測する.そして、両光導電セルによっ
て測定された光の強度の比をとることにより偏光解消度
を計算し、それに基づいて濁度を求める。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbidity meter, and particularly to a turbidity meter for measuring turbidity of a measurement object using a depolarization method. [Prior art] Turbidity meters that use a depolarization method are used to measure turbidity in rivers, industrial water, factory wastewater, water and sewage systems, etc. A turbidimeter using the conventional depolarization method has a light emitting section, a polarizing section on the light emitting section side, a light receiving section, and a polarizing section on the light receiving section side. In order to measure turbidity using the depolarization method, this turbidity meter uses two photoconductive cells as the light receiving section. One photoconductive cell measures the intensity of light with a certain vibration plane, and the other photoconductive cell measures the intensity of light with a vibration plane perpendicular to it. Then, the degree of depolarization is calculated by taking the ratio of the light intensities measured by both photoconductive cells, and the turbidity is determined based on the ratio.

(SUSPHNDED SOLIDS MONITOR
:American−Standard) 〔発明が解決しようとする課題〕 前記従来の濁度計では,光導電セルを2個使用する必要
がある。ところが、光導電セルには感度のばらつきがあ
るため、両者間の感度を調節する必要が生じる。しかも
、それらの受光素子の感度は温度に依存するため、温度
係数が同一の受光素子を選定したり、受光素子の温度補
正を行う必要が生じる。このような調整を行わなければ
、受光素子の感度のばらつきのため、正確な濁度を求め
ることができない。
(SUSPHNDED SOLIDS MONITOR
(American-Standard) [Problems to be Solved by the Invention] In the conventional turbidity meter, it is necessary to use two photoconductive cells. However, since photoconductive cells have variations in sensitivity, it is necessary to adjust the sensitivity between the two. Furthermore, since the sensitivity of these light receiving elements depends on temperature, it is necessary to select light receiving elements with the same temperature coefficient or to perform temperature correction on the light receiving elements. Without such adjustment, accurate turbidity cannot be determined due to variations in sensitivity of the light receiving elements.

本発明の目的は、受光素子の感度のばらつきの調整が不
要となり、低コストで製造できる濁度計を提供すること
にある。
An object of the present invention is to provide a turbidity meter that does not require adjustment of variations in sensitivity of light-receiving elements and can be manufactured at low cost.

〔課題を解決するための手段] 本発明に係る濁度計は、測定対象に対して偏光解消法を
用いて濁度を計測するための濁度計である。
[Means for Solving the Problems] A turbidity meter according to the present invention is a turbidity meter for measuring turbidity of a measurement target using a depolarization method.

この濁度計は、測定対象に光を照射するための発光部と
、測定対象と発光部との間に配置された発光側偏光部と
、測定対象からの光を受ける受光部と、受光部と測定対
象との間に配置された受光側偏光部と、通過光の振動方
向を変更するために、発光側偏光部と受光側偏光部との
少なくとも一方を駆動する駆動部とを備えている. 〔作用] まず、両偏光部を、たとえば通過光の振動面が平行とな
るようにセットする。発光部を発光させると、その光の
うち発光側偏光部が許容するある振動面を有する光のみ
が測定対象に入射し、測定対象の濁度に応じて散乱する
。測定対象からの光は受光側偏光部に入射し、前記振動
面と平行な振動戒分の光が受光部に到達するので、その
強度を計測する。
This turbidity meter consists of a light-emitting part for irradiating light onto the measurement target, a light-emitting side polarizing part placed between the measurement target and the light-emitting part, a light-receiving part that receives light from the measurement target, and a light-receiving part. and a light-receiving side polarizing section disposed between the light-emitting side polarizing section and the measurement target, and a driving section that drives at least one of the light-emitting side polarizing section and the light-receiving side polarizing section in order to change the vibration direction of the passing light. .. [Operation] First, both polarizing sections are set so that, for example, the vibration planes of the passing light are parallel to each other. When the light emitting section emits light, only the light having a certain vibration plane allowed by the light emitting side polarizing section enters the measurement object and is scattered according to the turbidity of the measurement object. The light from the object to be measured enters the light-receiving side polarizing section, and since the light whose vibration is parallel to the vibration plane reaches the light-receiving section, its intensity is measured.

次に、発光側偏光部と受光側偏光部との振動面が直交す
るように、駆動部によって偏光部を駆動する。そして、
上述と同様に受光部による計測を行う。
Next, the polarizing section is driven by the driving section so that the vibration planes of the light emitting side polarizing section and the light receiving side polarizing section are perpendicular to each other. and,
Measurement is performed using the light receiving section in the same manner as described above.

受光部で得られた2種類の計測値の比を計算すれば、濁
度を求めることができる。この場合には、駆動部によっ
て発光側偏光部と受光側偏光部との間の振動面の関係を
変更することができるので、一つの受光部によって平行
な偏光面による計測及び直交する偏光面による計測を行
うことができる。
Turbidity can be determined by calculating the ratio of two types of measured values obtained by the light receiving section. In this case, the relationship between the vibration planes between the light-emitting side polarizer and the light-receiver side polarizer can be changed by the drive unit, so one light-receiver can measure measurements using parallel polarization planes and measurements using orthogonal polarization planes. Measurements can be taken.

したがって、受光素子間の感度のばらつきは問題になら
なくなり、安価に濁度計を製造することが可能となる。
Therefore, variations in sensitivity between light-receiving elements are no longer a problem, and the turbidity meter can be manufactured at low cost.

〔実施例〕〔Example〕

本発明の一実施例の概略を第1図に示す.第1図におい
て、濁度計は、測定槽l内に溜められた液体試料2に光
を照射するための発光ユニット3と、液体試料2からの
光を受ける受光ユニット4とを主として有している。そ
して、これらのユニットは、第3図に示すようなマイク
ロコンピュータ5に接続され、制御されるようになって
いる。
An outline of one embodiment of the present invention is shown in Fig. 1. In FIG. 1, the turbidity meter mainly includes a light emitting unit 3 for irradiating light onto a liquid sample 2 stored in a measurement tank l, and a light receiving unit 4 for receiving light from the liquid sample 2. There is. These units are connected to and controlled by a microcomputer 5 as shown in FIG.

発光ユニット3は、ランプから構成される光源6と、光
a6からの光を集光するための集光レンズ7と、集光レ
ンズ7の前方に順に配置されたコリメートレンズ8.色
ガラスフィルター9.偏光4k I Oとを備えている
。偏光板10は、たとえば第t図の紙面と平行な振動面
を有する光のみを通過させるようになっている。偏光板
IOを通過した光は、液体試料2の上面から斜めに液体
試料2内に照射する。
The light emitting unit 3 includes a light source 6 composed of a lamp, a condensing lens 7 for condensing light from the light a6, and a collimating lens 8 disposed in this order in front of the condensing lens 7. Colored glass filter9. It is equipped with polarized 4K IO. The polarizing plate 10 is configured to allow only light having a vibration plane parallel to the plane of the paper in FIG. t to pass through, for example. The light that has passed through the polarizing plate IO is irradiated into the liquid sample 2 obliquely from the top surface of the liquid sample 2 .

受光ユニシト4は、液体試料2側に配置された偏光板1
lと、その後方に配置された受光素子12とを主として
有している。偏光板11と液体試料2との間には、外部
からの光を遮断するための筒体13が配置されている。
The light receiving unit 4 includes a polarizing plate 1 placed on the liquid sample 2 side.
1 and a light receiving element 12 arranged behind it. A cylinder 13 is arranged between the polarizing plate 11 and the liquid sample 2 to block light from the outside.

偏光板IIは、円板l4の中心部に形威された孔内に嵌
め込まれている。円板14は図示しない支持部によって
回転自在に支持されている。偏光板l1の外方側におい
て、円板l4には筒状のギア15が設けられている。ギ
ア15には、ステッピングモータ160回転軸がギアl
7を介して連結されている。第2図に示すように、円板
l4の外周部には、円板14の中心を中心として直角方
向に配置された平行位置検出センサl8と垂直位置検出
センサ19とが設けられている。両センサ1B,19は
光電センサであり、それらの受光部及び発光部(図示せ
ず)は円板14を介して互いに対向する位置に配置され
ている。一方、円仮l4の外周部には、同一直径方向に
1対のスリット20が配置されている。このスリット2
0がセンサ18,19に一敗したときに、センサ18,
19では光が通過し、それによって円板14の回転位置
が検出される。
Polarizing plate II is fitted into a hole formed in the center of disk l4. The disk 14 is rotatably supported by a support portion (not shown). A cylindrical gear 15 is provided on the disk l4 on the outer side of the polarizing plate l1. The rotating shaft of the stepping motor 160 is connected to the gear 15.
They are connected via 7. As shown in FIG. 2, a parallel position detection sensor l8 and a vertical position detection sensor 19 are provided on the outer periphery of the disc l4, which are arranged perpendicularly to the center of the disc 14. Both sensors 1B and 19 are photoelectric sensors, and their light receiving sections and light emitting sections (not shown) are arranged at positions facing each other with a disc 14 in between. On the other hand, a pair of slits 20 are arranged in the same diametrical direction on the outer periphery of the circle l4. This slit 2
When 0 loses to sensors 18 and 19, sensors 18 and 19
At 19, light passes through which the rotational position of the disk 14 is detected.

測定槽lは、外槽1aと内槽1bとを有している。両槽
1a,lbはともに上端が開口状態にある。内槽1bの
底面には液体試料導入口ICが設けられており、外槽1
aの底面には液体試料導出口1dが設けられている。
The measurement tank 1 has an outer tank 1a and an inner tank 1b. Both tanks 1a and lb are open at their upper ends. A liquid sample inlet IC is provided at the bottom of the inner tank 1b, and a liquid sample inlet IC is provided at the bottom of the inner tank 1b.
A liquid sample outlet 1d is provided on the bottom surface of a.

第3図に示すように、マイクロコンピュータ5は、CP
U3 0、RAM3 1、ROM3 2等から構威され
ている。マイクロコンピュータ5のI/Oボート33に
は、上述の受光素子12、平行位置検出センサl8、垂
直位置検出センサ19及びその他の入力部が接続されて
いる。また、I/Oボート33には、光源6、モータ1
6に加えて、演算結果を表示するためのCRTやLED
等からなる表示部34及びその他の出力部が接続されて
いる。
As shown in FIG. 3, the microcomputer 5 has a CP
It is configured from U30, RAM31, ROM32, etc. The I/O boat 33 of the microcomputer 5 is connected to the above-mentioned light receiving element 12, parallel position detection sensor 18, vertical position detection sensor 19, and other input sections. The I/O boat 33 also includes a light source 6 and a motor 1.
In addition to 6, CRT and LED for displaying calculation results
A display section 34 and other output sections are connected thereto.

次に、上述のマイクロコンピュータ5により制御される
濁度計の動作を説明する. 液体試料2は、導入口ICから内槽1b内に入り、そこ
から溢れ出て導出口1dから外部に導出される。
Next, the operation of the turbidity meter controlled by the above-mentioned microcomputer 5 will be explained. The liquid sample 2 enters the inner tank 1b through the inlet IC, overflows from there, and is led out to the outside through the outlet 1d.

一方、光源6からの光は、集光レンズ7、コリメートレ
ンズ8を通って平行光束になる。この光は、色ガラスフ
ィルター9及び偏光板10を通り、たとえば第1図の紙
面と平行な振動成分のみの光となって液体試料2に入射
する。
On the other hand, the light from the light source 6 passes through a condensing lens 7 and a collimating lens 8 to become a parallel beam of light. This light passes through a colored glass filter 9 and a polarizing plate 10, and enters the liquid sample 2 as light having only vibrational components parallel to the paper plane of FIG. 1, for example.

ここで、円板l4の姿勢が第2図に示す姿勢であり、こ
のときの偏光板11の振動面は偏光板10の振動面と直
角であるとすると、試料2により散乱された光のうち第
1図の紙面と直角な振動成分のみが偏光板11を通って
受光素子12に入射する。この場合の受光素子l2に生
じる電位を第4図の■1とする。この電位■,は、第3
図のマイクロコンピュータ5にディジタル信号として入
力され記憶される。なお、入射光は偏光板10で制限さ
れた振動成分しか有さないので、液体試料2の濁度がO
であれば液体試料2からの光は当該振動威分のみを有す
る。一方、試料2中に濁度があれば、粒子が等方性でな
いことにより、当該振動威分の他にそれと垂直な振動戒
分も生じる。すなわち、これによって偏光解消が起こる
Here, assuming that the attitude of the disk l4 is the attitude shown in FIG. Only vibration components perpendicular to the plane of FIG. 1 pass through the polarizing plate 11 and enter the light receiving element 12. The potential generated in the light-receiving element l2 in this case is assumed to be 1 in FIG. This potential ■, is the third
The signal is input as a digital signal to the microcomputer 5 shown in the figure and is stored. Note that since the incident light has only vibrational components limited by the polarizing plate 10, the turbidity of the liquid sample 2 is
If so, the light from the liquid sample 2 has only the vibrational power. On the other hand, if there is turbidity in the sample 2, since the particles are not isotropic, in addition to the vibrational force, a vibrational force perpendicular to the vibrational force is also generated. That is, this causes depolarization.

次に、モータl6により円板l4を90゜回転させる。Next, the disk l4 is rotated by 90 degrees by the motor l6.

これによって、偏光板l1の振動面は偏光Fi.10の
振動面と平行になる。この場合には、試料2により散乱
された光のうち紙面と平行な振動威分のみが、偏光板1
1を通って受光素子12に入射する。このときの受光素
子12に入射する電位第4図に示すようにV2とする。
As a result, the vibration plane of the polarizing plate l1 becomes polarized light Fi. It becomes parallel to the vibration plane of 10. In this case, of the light scattered by the sample 2, only the vibration component parallel to the plane of the paper is transmitted to the polarizing plate 1.
1 and enters the light receiving element 12. At this time, the potential incident on the light receiving element 12 is set to V2 as shown in FIG.

この電位■2は、マイクロコンピュータ5にディジタル
信号として入力され記憶される。
This potential (2) is input to the microcomputer 5 as a digital signal and stored.

ここでは、円板14を連続的に回転させ、スリット20
とセンサ18,19との対応位置のタイミングを検出し
、そのときの受光素子12からの電位をマイクロコンピ
ュータ5に記憶する。円板l4を90゜ずつ間欠的に回
転させ、これによって、偏光板1lの振動面を第1図の
紙面と平行あるいは紙面と直角方向に正確に一致させる
構成としてもよい。
Here, the disk 14 is continuously rotated and the slit 20
The timing of the corresponding positions of the sensors 18 and 19 is detected, and the potential from the light receiving element 12 at that time is stored in the microcomputer 5. The disc l4 may be rotated intermittently by 90 degrees, thereby making the vibration plane of the polarizing plate 1l accurately aligned parallel to or perpendicular to the plane of the paper in FIG.

受光素子12に入射した第1図の紙面と平行な振動或分
の光の強さと、垂直な振動戊分の光の強さとに関するデ
ータは、偏光板11の偏光面を90゜ずつずらすことに
よって所定回数計測され、そのデータはマイクロコンピ
ュータ5に記憶される。それらのデータからそれぞれ平
均値が計算され、それらの平均値が第1図の紙面に垂直
な振動威分の光の強さ■と紙面に平行な振動成分の光の
強さJとされる。そして、偏光解消度が、I/Jで与え
られる。
Data regarding the intensity of a certain portion of the light that oscillates parallel to the plane of the paper in FIG. The measurement is performed a predetermined number of times, and the data is stored in the microcomputer 5. Average values are calculated from each of these data, and these average values are used as the light intensity (■) of the vibration component perpendicular to the plane of the paper in FIG. 1 and the light intensity J of the vibration component parallel to the plane of the paper in FIG. The degree of depolarization is then given by I/J.

濁度が大きくなれば、一度散乱された光が次の粒子で再
び散乱される回数が増えて偏光解消度が大きくなり、つ
いには1となる。したがって、偏光解消度を測定するこ
とによって濁度を求めることができる。
As the turbidity increases, the number of times that light that has been scattered once is scattered again by the next particle increases, and the degree of depolarization increases, eventually reaching 1. Therefore, turbidity can be determined by measuring the degree of depolarization.

このように、上述の実施例では、円仮l4を回転させる
ことによって、偏光板11の振動面を変更するので、受
光ユニット4は1個の受光素子12のみで足りることに
なる。したがって、受光ユニット4における受光素子1
2を複数設ける必要がなくなり、受光素子間で感度の調
整を行う必要がなくなる. 〔他の実施例〕 (a)上述の実施例では、受光ユニット4側の偏光板1
1を回転させたが、発光ユニット3側の偏光板10を回
転させることにより本発明を同様に実施することができ
る. 中)偏光板10.11に代えて偏光プリズムを用いても
よい。
In this way, in the above-described embodiment, the vibration plane of the polarizing plate 11 is changed by rotating the circle 14, so that the light receiving unit 4 only needs one light receiving element 12. Therefore, the light receiving element 1 in the light receiving unit 4
There is no need to provide multiple light receiving elements, and there is no need to adjust the sensitivity between the light receiving elements. [Other embodiments] (a) In the above embodiment, the polarizing plate 1 on the light receiving unit 4 side
1, the present invention can be implemented in the same manner by rotating the polarizing plate 10 on the light emitting unit 3 side. Middle) A polarizing prism may be used in place of the polarizing plates 10 and 11.

(C)測定槽lとしては種々の形態のものが使用できる
.たとえば、測定用の槽として特別の経路を設けず、液
体処理系内に適宜濁度計を配置することも可能である。
(C) Various types of measurement tanks can be used. For example, it is also possible to appropriately arrange a turbidity meter within the liquid treatment system without providing a special path as a measurement tank.

たとえば、第5図に示すように、液体試料2が通過する
透明なパイプ40の外側に濁度計を配置し、バイブ40
を介してその中の液体試料2の濁度を計測することも可
能である。
For example, as shown in FIG. 5, a turbidity meter is placed outside a transparent pipe 40 through which the liquid sample 2 passes, and a vibrator 40
It is also possible to measure the turbidity of the liquid sample 2 therein via.

〔発明の効果〕〔Effect of the invention〕

本発明に係る濁度計によれば、発光部側偏光部と受光部
側偏光部との少なくとも一方を駆動部で駆動するように
したので、1個の受光部で足りるようになり、受光部間
の感度の調整が不要になる.したがって、本発明によれ
ば、構戒が爾素化し、安価に濁度計を製造することが可
能になる。
According to the turbidity meter according to the present invention, at least one of the light-emitting section side polarizing section and the light-receiving section side polarizing section is driven by the drive section, so one light-receiving section is sufficient, and the light-receiving section There is no need to adjust the sensitivity between Therefore, according to the present invention, the construction is simplified and it becomes possible to manufacture a turbidity meter at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面概略図、第2図はそ
の円板部分の平面概略図、第3図はその制御部の概略ブ
ロック図、第4図は受光素子における発生電位の変化を
示すグラフ、第5図は他の実施例の縦断面概略図である
。 2・・・液体試料、6・・・光源、10・・・偏光板、
11・・・偏光板、12・・・受光素子、14・・・円
板、16・・・モータ。
Fig. 1 is a schematic vertical cross-sectional view of one embodiment of the present invention, Fig. 2 is a schematic plan view of the disk portion thereof, Fig. 3 is a schematic block diagram of the control section, and Fig. 4 is the potential generated in the light receiving element. FIG. 5 is a schematic vertical cross-sectional view of another embodiment. 2...Liquid sample, 6...Light source, 10...Polarizing plate,
DESCRIPTION OF SYMBOLS 11... Polarizing plate, 12... Light receiving element, 14... Disk, 16... Motor.

Claims (1)

【特許請求の範囲】[Claims] (1)測定対象に対して偏光解消法を用いて濁度を計測
するための濁度計であって、 前記測定対象に光を照射するための発光部と、前記測定
対象と前記発光部との間に配置された発光側偏光部と、 前記測定対象からの光を受ける受光部と、 前記受光部と前記測定対象との間に配置された受光側偏
光部と、 通過光の振動方向を変更するために、前記発光側偏光部
と前記受光側偏光部の少なくとも一方を駆動する駆動部
と、 を備えた濁度計。
(1) A turbidity meter for measuring turbidity of a measurement target using a depolarization method, comprising: a light-emitting part for irradiating light to the measurement target; and a connection between the measurement target and the light-emission part. a light-emitting-side polarizing section disposed between the light-emitting side polarizer, a light-receiving section that receives light from the measurement object, and a light-receiving-side polarization section disposed between the light-receiving section and the measurement object; a driving section that drives at least one of the light-emitting side polarizing section and the light-receiving side polarizing section in order to change the turbidity meter.
JP1191111A 1989-07-24 1989-07-24 Turbidimeter Pending JPH0354436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191111A JPH0354436A (en) 1989-07-24 1989-07-24 Turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191111A JPH0354436A (en) 1989-07-24 1989-07-24 Turbidimeter

Publications (1)

Publication Number Publication Date
JPH0354436A true JPH0354436A (en) 1991-03-08

Family

ID=16269042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191111A Pending JPH0354436A (en) 1989-07-24 1989-07-24 Turbidimeter

Country Status (1)

Country Link
JP (1) JPH0354436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039497A1 (en) 2005-10-05 2007-04-12 Swan Analytische Instrumente Ag Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
CN105572051A (en) * 2015-12-17 2016-05-11 南京信息工程大学 Polarized water turbidity measurement device, system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511182A (en) * 1974-06-21 1976-01-07 Yamatake Honeywell Co Ltd KONDAKUEKINONODOSOKUTEISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511182A (en) * 1974-06-21 1976-01-07 Yamatake Honeywell Co Ltd KONDAKUEKINONODOSOKUTEISOCHI

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039497A1 (en) 2005-10-05 2007-04-12 Swan Analytische Instrumente Ag Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
US7658884B2 (en) 2005-10-05 2010-02-09 Swan Analytische Instrumente Ag Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
US9778179B2 (en) * 2005-10-05 2017-10-03 Swan Analytische Instrumente Ag Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
CN105572051A (en) * 2015-12-17 2016-05-11 南京信息工程大学 Polarized water turbidity measurement device, system and method

Similar Documents

Publication Publication Date Title
KR920012907A (en) Foreign Material Detection Device on Glass Plate
JPS58153145A (en) Method of measuring optical spinning and its polarizing device
JP4487198B2 (en) Turbidimeter
US3724952A (en) Method for polarimetric analysis
US3897152A (en) Laser doppler velocimeter
US3659946A (en) Automated light scattering photometer
JPH0354436A (en) Turbidimeter
US3013466A (en) Turbidity measuring instrument
US3427108A (en) Electro-optical apparatus for monitoring rotational movement of a body
US20060055927A1 (en) Turbidity sensor
US5028130A (en) Method of stress-optical force measurement and measurement device for performing the method
FI89412B (en) Foerfarande och polarimeter Foer maetning av vidning av polarisationsplanet i socker- eller annan loesning
RU2325630C1 (en) Method and device for measuring concentration of optically active substances in cloudy solutions
US3706497A (en) Method and apparatus for determining colorimetric concentrations
JP4074971B2 (en) Tilt-setting rotating laser device
SU1060948A1 (en) Device for checking cylinder lens
US3528750A (en) Radiation sensitive dual beam turbidimeter
JPS5817342A (en) Analyzer for amount of sugar
JPH05240782A (en) Oil concentration measuring device
RU2007694C1 (en) Polarimeter
RU1807347C (en) Hephelometer
SU855409A1 (en) Photometer
JP2541154B2 (en) Rotation angle sensor
SU807177A1 (en) Device for determining the content of fat and protein in milk and dairy products
JPS6339636Y2 (en)