JPH0354404B2 - - Google Patents

Info

Publication number
JPH0354404B2
JPH0354404B2 JP3972883A JP3972883A JPH0354404B2 JP H0354404 B2 JPH0354404 B2 JP H0354404B2 JP 3972883 A JP3972883 A JP 3972883A JP 3972883 A JP3972883 A JP 3972883A JP H0354404 B2 JPH0354404 B2 JP H0354404B2
Authority
JP
Japan
Prior art keywords
layer
aluminum
wire
acsr
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3972883A
Other languages
Japanese (ja)
Other versions
JPS59165306A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3972883A priority Critical patent/JPS59165306A/en
Publication of JPS59165306A publication Critical patent/JPS59165306A/en
Publication of JPH0354404B2 publication Critical patent/JPH0354404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 本発明は送電の際の通電損失を大巾に改善して
なる鋼心アルミ撚線(以下ACSRという)に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel core aluminum stranded wire (hereinafter referred to as ACSR) which has greatly improved conduction loss during power transmission.

今日の送電業界をみるに、電源地の立地条件が
ますますきびしくなり需要地までの送電が長距離
化しつつある。
Looking at today's power transmission industry, the location requirements for power sources are becoming increasingly strict, and power transmission to demand areas is becoming longer and longer distances.

これによつて送電中に発生する通電損失はゆる
がせにできないものがあり、経済事情ばかりでな
く省エネルギーの立場からも問題であつて、超高
圧化など各種方策が実用されてはいるもののなお
悩み多い課題である。
As a result, the current loss that occurs during power transmission cannot be ignored, and this is a problem not only from an economic standpoint but also from an energy conservation standpoint, and although various measures such as ultra-high voltage have been put into practice, it is still a problem. There are many issues.

ACSRを用いた架空送電線における通電損失の
主な原因は一つはアルミ導体自体に起因する抵抗
損失であり、もう一つは鋼心が存在するための電
磁作用に基づく鉄損である。前者については導体
の導電率を高くしてやればよいことになるが、機
械的強度を併せ考えた場合に現在のEC級アルミ
がもはや限度であり、仮に強度を度外視して高純
度化したとしても導電率を1%上昇させるのが
精々である。相対的に導体の抵抗を下げるために
は、導体の断面積を大きくしてやればよいことに
なるが、そうすれば電線の外径が増大し、重量が
大となる上風圧荷重が大きくなり、鉄塔の強度を
増大しなければならないという新たな悩みが生ず
る。また、鉄損については、テンシヨンメンバー
として鋼心を使用しているACSRの特質上なんと
も厄介な問題である。
The main causes of conduction loss in overhead transmission lines using ACSR are resistance loss due to the aluminum conductor itself, and iron loss due to electromagnetic effects due to the presence of the steel core. For the former, it would be better to increase the conductivity of the conductor, but when considering mechanical strength as well, the current EC grade aluminum is already at its limit, and even if strength is ignored and the purity is increased, the conductivity will still be high. At best, the rate can be increased by 1%. In order to relatively lower the resistance of the conductor, it would be better to increase the cross-sectional area of the conductor, but this would increase the outer diameter of the wire, increase the weight, and increase the wind pressure load, which would cause the steel tower to become heavier. A new problem arises in that the strength of the power must be increased. In addition, iron loss is a very troublesome problem due to the nature of ACSR, which uses a steel core as a tension member.

本発明は、上記の如き諸事情下にあつて、発想
の転換をもつてし、大巾に通電損失の低減を図り
得るとともに、従来の付属品や工具あるいは工法
をそつくりそのまま適用可能になるACSRを提供
すべくなされたものである。
Under the above-mentioned circumstances, the present invention enables a change in the way of thinking and significantly reduces current loss, and can be applied as is by making conventional accessories, tools, or construction methods. It was created to provide ACSR.

以下に実施例に基いて順次説明する。 The following is a sequential explanation based on examples.

発明者らは、解決すべき主眼点としてまず、電
線の外径を変えることなく実質的に導体の通電時
における抵抗の低減をはかり、それによつて、鉄
塔の強化を必要としない低損失型のACSRを入手
することに着目した。そして、そのためには導体
の形状を円形断面から扇形断面に変えアルミの占
積率を増大させることで達成可能であることを見
出した。
The main points to be solved by the inventors are to first substantially reduce the resistance when the conductor is energized without changing the outer diameter of the wire, and thereby create a low-loss type that does not require reinforcement of the steel tower. We focused on obtaining ACSR. They discovered that this can be achieved by changing the shape of the conductor from a circular cross section to a fan-shaped cross section and increasing the space factor of aluminum.

すなわち、従来の円形断面の素線を用いた場合
のアルミの占積率は75%程度であるが、これを扇
形導体にすると85〜95%の占積率とすることが可
能である。この占積率の増大は、電線の外径を増
大せしめることなく達成できるから風圧荷重の増
大はなく、しかも通電時の有効断面積は占積率の
増加した分だけ増加することになり、それだけ抵
抗損は低減せられる結果となる。
That is, the space factor of aluminum when using a conventional wire with a circular cross section is about 75%, but when it is made into a fan-shaped conductor, it is possible to achieve a space factor of 85 to 95%. This increase in the space factor can be achieved without increasing the outer diameter of the wire, so there is no increase in wind pressure load, and the effective cross-sectional area when energized increases by the amount of the increase in the space factor. Resistance losses are reduced as a result.

しかし、占積率を増大することのみに着目し、
抵抗損をより一層低減せしめるべくアルミ素線の
すべてをすなわち最外層素線までをも扇形導体と
するといろいろの派生的問題が生ずることも判明
した。
However, focusing only on increasing the space factor,
It has also been found that if all the aluminum strands, including even the outermost strands, are made into fan-shaped conductors in order to further reduce resistance loss, various problems arise.

すなわちすべてが扇形導体で構成されたACSR
の場合にはもはや従来の付属品が使用できずその
ために特別設計された付属品を必要とするように
なる上、架線時の工具なども従来汎用されていた
ものを利用できず特別誂いとする必要があり、架
線工法までも特殊なものに変えなければならない
ことも判明し甚だ不都合を生ずることがわかつ
た。そして、このような問題点は最外層素線を従
来通り円形断面のものにすることで完全に解消可
能となることも判明した。従つて本発明に係る
ACSRは最外層素線は円形断面をもつて構成しそ
れ以外の各層におけるアルミ素線を扇形断面をも
つて構成したことに第1の特徴がある。
In other words, ACSR is composed entirely of sector-shaped conductors.
In this case, conventional accessories can no longer be used and specially designed accessories are required, and tools used for overhead lines cannot be used and must be specially made. It was also discovered that the overhead line construction method had to be changed to a special one, which would cause serious inconvenience. It has also been found that such problems can be completely solved by making the outermost layer strands have a circular cross section as before. Therefore, according to the present invention
The first feature of ACSR is that the outermost layer of wire has a circular cross section, and the aluminum wires in the other layers have fan-shaped cross sections.

しかして、第2の特徴は上記のように構成して
なるアルミ撚線の撚合わせ層を互いに撚り方向の
異なる偶数層をもつて構成し、扇形断面の素線の
半径方向巾をX1、その占積率をR1とし、最外層
の円形断面素線の直径をX2、その場合の占積率
をR2とし、それぞれが (X1/X2)≒(R2/R1) となるように構成し、前記鉄損を画期的に低減せ
しめたことにある。
The second feature is that the twisted layers of the aluminum stranded wires configured as described above are composed of an even number of layers with different twisting directions, and the radial width of the strands of fan-shaped cross section is X 1 , The space factor is R 1 , the diameter of the circular cross-section wire of the outermost layer is X 2 , the space factor in that case is R 2 , and each is ( X 1 / The present invention is configured so that the above-mentioned iron loss is dramatically reduced.

これを図面に従つて説明すれば、第1図はアル
ミ撚線層を4層(2層あるいは6層の如き偶数層
であればよい)とした本発明に係るACSRの断面
図であつて、1は鋼心、2は扇形素線3は円形素
線であり、第1〜3層までが図に示すように扇形
断面よりなり、最外層の第4層が円形断面よりな
るように構成せられてなる。
To explain this according to the drawings, FIG. 1 is a cross-sectional view of an ACSR according to the present invention having four twisted aluminum wire layers (an even number of layers such as two or six layers is sufficient). 1 is a steel core, 2 is a fan-shaped strand 3 is a circular strand, and the first to third layers have a fan-shaped cross section as shown in the figure, and the fourth layer, which is the outermost layer, has a circular cross section. I'm going to be beaten.

第2図は第1図における各層での素線の寸法関
係を示した説明図であり、第1〜3層までは半径
方向においてX1の長さを有し、第4層はX2の長
さを有してなることを示すものである。
FIG. 2 is an explanatory diagram showing the dimensional relationship of the strands in each layer in FIG. 1. The first to third layers have a length of X 1 in the radial direction, and the fourth layer has a length of X 2. This indicates that it has a certain length.

第1図の如く構成してなるACSRに電流を流し
た場合に各層において磁界が発生する。第1層に
おける磁界をH1、第2、3および4層における
磁界をそれぞれH2、H3、H4とする。
When a current is passed through an ACSR configured as shown in FIG. 1, a magnetic field is generated in each layer. Let H 1 be the magnetic field in the first layer, and H 2 , H 3 and H 4 be the magnetic fields in the second, third and fourth layers, respectively.

この場合、ACSRの撚り合わせ方向は各層ごと
に逆方向すなわち第1層がS方向であれば第2層
がZ方向、第3層が再びS方向というように逆転
しつつ撚り合わされているから各磁界には相殺現
象がおこり、ACSR全体の磁界をHとすると、 H=H1−H2+H3−H4 …(1) となる。
In this case, the direction in which the ACSR is twisted is reversed for each layer, i.e., if the first layer is in the S direction, the second layer is in the Z direction, and the third layer is in the S direction again. A cancellation phenomenon occurs in the magnetic field, and if the magnetic field of the entire ACSR is H, then H=H 1 −H 2 +H 3 −H 4 (1).

各層の磁界の強さHi(i=1〜4)は次式によ
り与えられる。
The magnetic field strength Hi (i=1 to 4) of each layer is given by the following equation.

Hi=(K・π・Di・χi・Ii・αi)/(Di/2) =2πK・χi・Ii・αi …(2) K:定数 Di:アルミ各層の中心部の径(mm) χi:アルミ各層の半径方向の巾(mm) Ii:アルミ各層の電流密度(A/mm2) αi:アルミ各層のアルミ占積率 いま、第1〜3層はすべて同じ扇形導体を用い
ているからその占積率はいずれも等しく、第4層
のみが異なることとなるから、これをR1および
R2で表わす。
Hi=(K・π・Di・χi・Ii・αi)/(Di/2) =2πK・χi・Ii・αi …(2) K: Constant Di: Diameter of center of each aluminum layer (mm) χi: Radial width of each aluminum layer (mm) Ii: Current density of each aluminum layer (A/mm 2 ) αi: Aluminum space factor of each aluminum layer Since the first to third layers all use the same sector-shaped conductor, Since the space factors are all the same and only the fourth layer differs, this can be expressed as R 1 and
It is expressed as R2 .

α1=α2=α3=R1 α4=R2 同様にしてχiについてX1およびX2で表わすと、 χ1=χ2=χ3=X1 χ4=X2 各層の電流密度についても同じとみることがで
きるから、 I1=I2=I3=I4=I これらを(1)および(2)式に代入してまとめると、 H=2πK・I(R1X1−R1X1 +R1X1−R2X2) …(3) (3)式により中心の磁界が零となる条件を求める
と、 R1X1−R1X1+R1X1−R2X2=0 故にそれぞれ消去され(奇数層ではこの消去が
できないから除外されるのである) R1X1=R2X2 …(4) 従つてACSRのアルミ撚線層を偶数層に構成し
最外層と内側層のアルミの占積層を異ならしめ、
それぞれの素線の半径方向の巾の比をその占積率
の逆数に等しくして (X1/X2)=(R2
R1) …(5) となるように構成してやることで鉄損が最少とな
ることがわかる。
α 1 = α 2 = α 3 = R 1 α 4 = R 2Similarly, if χi is expressed by X 1 and X 2 , χ 1 = χ 2 = χ 3 = X 1 χ 4 = X 2 Current density of each layer can be considered to be the same, so I 1 = I 2 = I 3 = I 4 = I Substituting these into equations (1) and (2) and summarizing, we get H = 2πK・I (R 1 −R 1 X 1 + R 1 X 1 −R 2 _ R 2 _ _ _ _ The aluminum layer of the outermost layer and the inner layer are different,
Setting the ratio of the radial width of each wire to the reciprocal of its space factor, (X 1 /X 2 ) = (R 2 /
R 1 ) ...(5) It can be seen that the iron loss is minimized by configuring it as follows.

これを前記本発明の第1の特徴と併せ構成する
ことにより抵抗損と鉄損とを最少限にとどめ得る
高度に低損失型のACSRを入手することが可能と
なる。
By combining this with the first feature of the present invention, it becomes possible to obtain a highly low-loss ACSR that can minimize resistance loss and iron loss.

このように、本発明の鋼心アルミ撚線は、第1
に、鋼心外周のアルミ撚線層の最外層を断面円形
の素線、それ以外の各層を扇形断面の素線で構成
して、従来の付属品や工具或いは工法がその侭適
用でき且つアルミ導体の抵抗損失が低減(断面積
を増大)できるようにし、第2に、上記アルミ撚
線層を各層毎に撚り方向の異なる偶数の層とする
ことで各層の磁界を相殺せしめ、特に最外層円形
素線と内層扇形素線の径及び占積率が上式の関係
となるように構成して鉄損を最少限にするように
した点に特徴がある。
In this way, the steel core aluminum stranded wire of the present invention
The outermost layer of the aluminum stranded wire layer on the outer periphery of the steel core is composed of wires with a circular cross section, and the other layers are composed of wires with a fan-shaped cross section, so that conventional accessories, tools, and construction methods can be applied, and aluminum can be used. The resistance loss of the conductor can be reduced (increase the cross-sectional area), and secondly, by making the aluminum stranded wire layer an even number of layers with different twist directions for each layer, the magnetic field of each layer can be canceled out, especially the outermost layer. The feature is that the diameters and space factors of the circular strands and the inner fan-shaped strands are configured to have the relationship shown in the above equation, thereby minimizing iron loss.

従つて、厳密に言えば、上記の通り、 (X1/X2)=(R2/R1) であることが必要となるわけであるが、この考え
を実施に移す場合、工業的にピタリと数式に一致
させることは、むしろ不可能と言つても過言では
ない。
Therefore, strictly speaking, as mentioned above, it is necessary that (X 1 /X 2 ) = (R 2 /R 1 ), but when this idea is put into practice, It is no exaggeration to say that it is impossible to exactly match the formula.

現実には、この理論値に近い値とすることで本
発明を実現させる他のないものであるが、通常各
分野で用いられている10%程度の差を、許容され
る本発明の技術的範囲と定めることとしたい。
(電線分野では、公称値と現実値が相違している
のが通常なので、この程度が許容されないと設計
が難しい) 換言すれば、本発明の技術的範囲としては、上
記数式は次のようになる。
In reality, there is no other way to realize the present invention by setting a value close to this theoretical value. I would like to define it as a range.
(In the field of electric wires, it is normal for nominal values and actual values to differ, so it is difficult to design unless this degree is allowed.) In other words, as far as the technical scope of the present invention is concerned, the above formula can be expressed as follows: Become.

0.9(R2/R1)≦(X1/X2)≦1.1(R2/R1) …(6) 言うまでもなく、理論的理想値は(5)式であり、
この(6)式の範囲に臨界的意義は存在しないが、工
業的に(5)式の実現が不可能である以上、それに近
い範囲を定め、本発明の目的とする効果をほぼ達
成する手段として工業的レベルで実現可能な範囲
を特定せざるを得ないと考えるのである。
0.9(R 2 /R 1 )≦(X 1 /X 2 )≦1.1(R 2 /R 1 )…(6) Needless to say, the theoretical ideal value is equation (5),
Although there is no critical significance in the range of formula (6), since it is impossible to realize formula (5) industrially, a range close to it is determined as a means of achieving almost the intended effect of the present invention. Therefore, we believe that we have no choice but to identify the range that can be realized at an industrial level.

次に本発明について具体的数値に基いて説明す
る。
Next, the present invention will be explained based on specific numerical values.

4層構造よりなる本発明に係るACSRについて
R1=0.88の扇形断面導体を、またR2=0.75の円形
断面導体を用いることを考える。(4)式から 0.88X1=0.75X2 …(7) いま電線の外径をD、鋼心の外径をD0とすれ
ば、アルミ撚線部分の巾は(D−D0)/2であ
る。従つて、 (D−D0)/2=3X1+X2 …(8) (7)および(8)式からX1およびX2を求めると次の
ようになる。
Regarding the ACSR according to the present invention, which has a four-layer structure
Consider using a fan-shaped cross-section conductor with R 1 =0.88 and a circular cross-section conductor with R 2 =0.75. From formula (4), 0.88X 1 = 0.75X 2 ...(7) Now, if the outer diameter of the wire is D and the outer diameter of the steel core is D 0 , the width of the aluminum stranded wire portion is (D - D 0 )/ It is 2. Therefore, (D-D 0 )/2=3X 1 +X 2 (8) When calculating X 1 and X 2 from equations (7) and (8), the following results are obtained.

X1=0.11981×(D−D0) X2=0.14057×(D−D0) …(9) (9)式を満足するとき鉄損は零になることがわか
る。
X 1 =0.11981×(D−D 0 ) X 2 =0.14057×(D−D 0 ) (9) It can be seen that when formula (9) is satisfied, the iron loss becomes zero.

ここで、810(1)ACSRについて検討するに、そ
の公称値において、 D0=9.6mm、D=38.4mm であるから(9)式より X1=3.47mm、X2=4.0mm が求まり、この構成としたときに鉄損は零とな
る。
Now, considering 810(1) ACSR, its nominal values are D 0 = 9.6 mm and D = 38.4 mm, so from equation (9), X 1 = 3.47 mm and X 2 = 4.0 mm are found. With this configuration, iron loss becomes zero.

X1とX2が上記よりなる本発明に係るACSRの
アルミの断面積Aを求めると、 A=(π/4)〔{(D2−(D−2X22} ×0.75+{(D2−2X22−D0 2} ×0.88〕=899.2mm2 従来の公称810mm2ACSRのアルミ断面積は814mm2
程度であるから本発明に係るACSRの場合アルミ
断面積において10.4%程度増加したことになり、
アルミ導体の導電率およびACSRの撚り込み率を
同じと考えれば、本発明に係るACSRの場合電気
抵抗が10.4%程度低減したことになる。
When calculating the cross-sectional area A of aluminum of ACSR according to the present invention where X 1 and D 2 −2 _ _ _ _ _
Therefore, in the case of ACSR according to the present invention, the aluminum cross-sectional area increased by about 10.4%,
Assuming that the conductivity of the aluminum conductor and the twist rate of the ACSR are the same, the electrical resistance of the ACSR according to the present invention is reduced by about 10.4%.

以上詳細に説明した通り本発明に係るACSRは
付属品や工具あるいは架線工法などは従来のもの
をそつくり使用することができ、しかも通電時の
損失を画期的に低減し得たものであつて、その産
業上に及ぼす効果はけだし甚大である。
As explained in detail above, the ACSR according to the present invention can be used by modifying conventional accessories, tools, overhead wire construction methods, etc., and can dramatically reduce loss during energization. Therefore, its effect on industry is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るACSRの一実施例を示す
断面図、第2図はその寸法関係を示す説明図であ
る。 1:鋼心、2:扇形断面アルミ線、3:円形断
面アルミ線。
FIG. 1 is a sectional view showing an embodiment of the ACSR according to the present invention, and FIG. 2 is an explanatory view showing the dimensional relationship thereof. 1: Steel core, 2: Fan-shaped cross-section aluminum wire, 3: Circular-section aluminum wire.

Claims (1)

【特許請求の範囲】 1 鋼心の外周にアルミ線を各層ごとに撚り方向
を異ならせて偶数層撚り合わせ、最外層以外の各
層の各アルミ素線を扇形断面に構成してその半径
方向の巾をX1かつ各層のアルミ占積率をR1とし、
最外層の素線を円形断面に構成してその直径を
X2かつそのアルミ占積率をR2とし、 0.9(R2/R1)≦(X1/X2)≦1.1(R2/R1) となるように構成してなる通電損失のすくない鋼
心アルミ撚線。
[Claims] 1. An even number of layers of aluminum wire are twisted around the outer periphery of a steel core with different twisting directions for each layer, and each aluminum wire in each layer other than the outermost layer is configured to have a fan-shaped cross section. Let the width be X 1 and the aluminum space factor of each layer be R 1 ,
The outermost layer of wire is configured to have a circular cross section, and its diameter is
X 2 and its aluminum space factor is R 2 , and is configured so that 0.9 (R 2 / R 1 ) ≦ ( X 1 / Steel core aluminum stranded wire.
JP3972883A 1983-03-10 1983-03-10 Steel core aluminum twisted wire with less energizing loss Granted JPS59165306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3972883A JPS59165306A (en) 1983-03-10 1983-03-10 Steel core aluminum twisted wire with less energizing loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3972883A JPS59165306A (en) 1983-03-10 1983-03-10 Steel core aluminum twisted wire with less energizing loss

Publications (2)

Publication Number Publication Date
JPS59165306A JPS59165306A (en) 1984-09-18
JPH0354404B2 true JPH0354404B2 (en) 1991-08-20

Family

ID=12561034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3972883A Granted JPS59165306A (en) 1983-03-10 1983-03-10 Steel core aluminum twisted wire with less energizing loss

Country Status (1)

Country Link
JP (1) JPS59165306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037323A1 (en) 2005-09-28 2007-04-05 The Kansai Electric Power Co., Inc. Method for measuring temperature of semiconductor device and apparatus for measuring temperature of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037323A1 (en) 2005-09-28 2007-04-05 The Kansai Electric Power Co., Inc. Method for measuring temperature of semiconductor device and apparatus for measuring temperature of semiconductor device

Also Published As

Publication number Publication date
JPS59165306A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
US4657342A (en) Flexible power cable with profiled core and support member
KR100874605B1 (en) Dc superconducting cable
JPH0258726B2 (en)
US3261908A (en) Composite aluminum electrical conductor cable
KR20010006028A (en) Multi-wire sz and helical stranded conductor and method of forming same
US4431860A (en) Multistranded component conductor continuously transposed cable
KR100602291B1 (en) Gap-type overhead transmission line & manufacturing thereof
JPH0354404B2 (en)
US4982497A (en) Process for manufacture of a superconductor
JPH0620523A (en) Conductor for power cable
CN218602122U (en) Composite conductor cable mechanism
CN220962884U (en) High-conductivity aluminum-clad steel-cored aluminum stranded wire
JPH0377607B2 (en)
CN211929137U (en) Corrosion-resistant aluminum alloy cable
CN210167129U (en) Dilatation formula air wire
JPS6310849B2 (en)
JPH08124434A (en) Superconductor
JPS6310848B2 (en)
JPH0785735A (en) Forced-cooling superconductor
JPS6046495B2 (en) Manufacturing method of high heat-resistant aluminum electric wire
JPH08124433A (en) Superconducting element wire and superconducting stranded cable
JPS6048847B2 (en) superconducting conductor
JP2001325837A (en) Superconducting cable
JPS62180910A (en) Superconductor
SU1417043A1 (en) Coaxial communication cable