JPH0354374Y2 - - Google Patents

Info

Publication number
JPH0354374Y2
JPH0354374Y2 JP2866086U JP2866086U JPH0354374Y2 JP H0354374 Y2 JPH0354374 Y2 JP H0354374Y2 JP 2866086 U JP2866086 U JP 2866086U JP 2866086 U JP2866086 U JP 2866086U JP H0354374 Y2 JPH0354374 Y2 JP H0354374Y2
Authority
JP
Japan
Prior art keywords
cooling
condenser
main motor
pressure
cooling passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2866086U
Other languages
Japanese (ja)
Other versions
JPS62171860U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2866086U priority Critical patent/JPH0354374Y2/ja
Publication of JPS62171860U publication Critical patent/JPS62171860U/ja
Application granted granted Critical
Publication of JPH0354374Y2 publication Critical patent/JPH0354374Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、密閉型ターボ冷凍機に関し、特にそ
の主電動機の冷却装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a hermetic centrifugal refrigerator, and particularly to a cooling device for a main motor thereof.

(従来の技術) 従来、密閉型ターボ冷凍機における主電動機の
冷却装置として、第3図に示すものが知られてい
る(日本冷凍協会発行「ターボ冷凍機とその取扱
い」第74〜75頁参照)。これは凝縮器3の最低部
から蒸発器4を経由して主電動機2に至る冷却通
路6を設け、凝縮器3と蒸発器4との間の冷却通
路6に冷却ポンプ6aを配設したものである。常
態下では、凝縮圧力と蒸発圧力との差圧で凝縮液
を主電動機2へ送給してコイル等の冷却を行う。
また、冬期等の冷却水温度が低く凝縮圧力が低下
する状況下では、蒸発圧力との差圧が十分に得ら
れず凝縮液の送給量が不足するため、冷却ポンプ
6aを作動させて凝縮液の不足を補つている。図
中、符号1は圧縮機、5は主回路である。
(Prior Art) Conventionally, as a cooling device for the main motor of a hermetic centrifugal chiller, the one shown in Fig. 3 is known (see pages 74-75 of "Centrifugal chillers and their handling" published by the Japan Refrigeration Association). ). A cooling passage 6 is provided from the lowest part of the condenser 3 to the main motor 2 via the evaporator 4, and a cooling pump 6a is provided in the cooling passage 6 between the condenser 3 and the evaporator 4. It is. Under normal conditions, the condensate is supplied to the main motor 2 using the differential pressure between the condensation pressure and the evaporation pressure to cool the coil and the like.
In addition, under conditions such as winter when the cooling water temperature is low and the condensing pressure is low, a sufficient differential pressure with the evaporation pressure cannot be obtained and the amount of condensate supplied is insufficient, so the cooling pump 6a is operated to condense. It makes up for the lack of fluid. In the figure, numeral 1 is a compressor, and 5 is a main circuit.

また、冷却ポンプを用いることなく、凝縮圧そ
のものを変化させて、蒸発圧力との差圧の必要量
を確保するものもある。つまり、これでは、凝縮
器における冷却水量の制御を行つて、冷却水温度
が低い場合でも必要とする凝縮圧を確保できるよ
うにしている。
There are also systems that change the condensing pressure itself without using a cooling pump to ensure the required amount of differential pressure with the evaporation pressure. That is, in this case, the amount of cooling water in the condenser is controlled so that the necessary condensation pressure can be ensured even when the temperature of the cooling water is low.

(考案が解決しようとする問題点) 上記のように、冷却ポンプ6aを用いて凝縮圧
不足を補うものでは、冷却ポンプ6aやこれに付
随する配管部材等が余分に必要なため、構造が複
雑化しやすい。また、冷却ポンプ6aの故障によ
つて、主電動機2のコイルが焼損したり、その軸
受が焼付くなどの重大な事故を誘起するおそれが
あり、信頼性に欠ける。
(Problems to be solved by the invention) As mentioned above, in the case where the cooling pump 6a is used to compensate for the lack of condensing pressure, the structure is complicated because the cooling pump 6a and accompanying piping members are required. easy to change. Furthermore, failure of the cooling pump 6a may cause serious accidents such as burning out of the coil of the main motor 2 or seizure of its bearings, resulting in a lack of reliability.

一方、冷却水量の制御を行つて凝縮圧不足を補
うものでは、動力消費に無駄があり、省エネルギ
ーを図るうえで不利である。
On the other hand, controlling the amount of cooling water to compensate for the lack of condensing pressure wastes power and is disadvantageous in terms of energy conservation.

(考案の目的) この考案は、上記の点に鑑みてなされたもので
あつて、より簡単な構造で主電動機冷却用の凝縮
液の必要量を確実に得られるようにすることを目
的とする。
(Purpose of the invention) This invention was made in view of the above points, and the purpose is to ensure that the necessary amount of condensate for cooling the traction motor can be obtained with a simpler structure. .

(問題点を解決するための手段) ところで、凝縮器3から主電動機2へ凝縮液を
送給するについては、両者3,2間のヘツド差
Phと、凝縮器3と蒸発器4との圧力の差圧Paと
の大小によつて、送給の可否および量の過不足が
決まつてしまう。つまりヘツド差Phと差圧Paと
は、Ph<Paの関係式を満足しなければ十分な量
の凝縮液を送給できず、従来はこの差圧Paを高
めることで先の関係式を満足させていた。
(Means for solving the problem) By the way, in order to feed the condensate from the condenser 3 to the main motor 2, the head difference between the two
The size of Ph and the differential pressure Pa between the condenser 3 and the evaporator 4 determines whether or not feeding is possible and whether the amount is excessive or insufficient. In other words, if the head difference Ph and the differential pressure Pa do not satisfy the relational expression Ph < Pa, a sufficient amount of condensate cannot be delivered, and conventionally, by increasing this differential pressure Pa, the above relational expression is satisfied. I was letting it happen.

本考案は、ヘツド差Phに着眼したものであつ
て、これを小さくできるようにして、気温の低下
等によつて差圧Paが小さくなる場合でも、主電
動機2の冷却に必要な凝縮液量が十分に得られる
ようにするものである。
The present invention focuses on the head difference Ph, and by making it possible to reduce this, even when the differential pressure Pa decreases due to a drop in temperature, etc., the amount of condensed liquid required to cool the main motor 2 is This is to ensure that a sufficient amount of

具体的には、第1図に示すように、凝縮器3の
冷媒室3aの可及的高位置に凝縮液を集める仕切
壁7を配置して冷却用液溜室8を区画し、この液
溜室8から冷却通路6を導出して、主電動機2に
対するヘツド差Phを小さくできるものとする。
Specifically, as shown in FIG. 1, a cooling liquid storage chamber 8 is partitioned by disposing a partition wall 7 that collects the condensed liquid at the highest possible position of the refrigerant chamber 3a of the condenser 3, and this liquid The cooling passage 6 is led out from the storage chamber 8 so that the head difference Ph with respect to the main motor 2 can be made small.

(作用) このことにより、本考案では、凝縮器3におけ
る高位置から冷却通路6を導出するので、従来の
凝縮器3の最低部から冷却通路6を導出していた
ものに比べて、導出高さ位置の差に相当する分だ
けヘツド差Phを小さくすることができる。従つ
て、凝縮圧力と蒸発圧力との差圧Paが小さくな
る冬期等においても、十分な量の冷却用の凝縮液
を主電動機2に送給することができる。
(Function) As a result, in the present invention, since the cooling passage 6 is led out from a high position in the condenser 3, the lead-out height is higher than in the conventional case where the cooling passage 6 is led out from the lowest part of the condenser 3. The head difference Ph can be reduced by an amount corresponding to the difference in position. Therefore, even in winter when the differential pressure Pa between the condensing pressure and the evaporation pressure is small, a sufficient amount of cooling condensate can be supplied to the main motor 2.

(実施例) 第1図はこの考案の第1実施例を示している。
第1図において密閉型ターボ冷凍機は、ターボ型
の圧縮機1とこれを回転駆動する主電動機2とを
一体に構成し、圧縮機1で加圧圧縮した冷媒ガス
を凝縮器3で凝縮液化して蒸発器4に送給し、蒸
発器4で気化してガス化した冷媒を再び圧縮機1
へ循環させる。5はそのための主回路である。
(Embodiment) FIG. 1 shows a first embodiment of this invention.
In FIG. 1, the hermetic centrifugal refrigerator is constructed by integrating a turbo-type compressor 1 and a main motor 2 that rotationally drives the compressor, and refrigerant gas compressed under pressure by the compressor 1 is condensed and liquefied in a condenser 3. The refrigerant that has been vaporized and gasified in the evaporator 4 is sent to the compressor 1 again.
circulate to. 5 is the main circuit for that purpose.

そして、前記凝縮液を利用して主電動機2の主
としてコイルを冷却するために、凝縮器3と主電
動機2との間に冷却通路6が設けられている。ま
た、凝縮器3内の冷媒室3aの可及的高位置に、
内側壁から横向きの仕切壁7を突設して冷却用液
溜室8を区画し、この液溜室8の内底から前記冷
却通路6を導出している。図示していないが、仕
切壁7は、冷媒室3a内の構造物、例えばウオー
タボツクスの仕切板や隣接する冷却管の間の空間
を利用して取り付けられている。送給圧力を得る
ために、冷却通路6の一部を蒸発器4内に通し、
ここで低圧部9が形成されるようにしている。
A cooling passage 6 is provided between the condenser 3 and the main motor 2 in order to cool mainly the coils of the main motor 2 using the condensed liquid. In addition, at the highest possible position of the refrigerant chamber 3a in the condenser 3,
A horizontal partition wall 7 is provided protruding from the inner wall to define a cooling liquid storage chamber 8, and the cooling passage 6 is led out from the inner bottom of the liquid storage chamber 8. Although not shown, the partition wall 7 is attached to a structure within the refrigerant chamber 3a, such as a partition plate of a water box or a space between adjacent cooling pipes. In order to obtain the feed pressure, a part of the cooling passage 6 is passed through the evaporator 4,
A low pressure section 9 is formed here.

前記冷却通路6を介して主電動機2に送給され
た冷却用の凝縮液は、主電動機2のエンドベルか
らケース内に噴霧され、ロータおよびステータの
コイル等を冷却した後、ケース内底部から導出し
た還流通路10を介して蒸発器4へ戻される。
The cooling condensate supplied to the main motor 2 through the cooling passage 6 is sprayed into the case from the end bell of the main motor 2, cools the rotor and stator coils, etc., and then is led out from the inner bottom of the case. It is returned to the evaporator 4 via the reflux passage 10.

以上のように冷却通路6を構成すると、冷却用液
溜室8と主電動機2のヘツド差Phを小さくする
ことができるので、凝縮圧力と蒸発圧力との差圧
Paが小さい場合でも、十分な量の冷却用凝縮液
を確実に送給することができる。
By configuring the cooling passage 6 as described above, the head difference Ph between the cooling liquid storage chamber 8 and the main motor 2 can be reduced, so the differential pressure between the condensing pressure and the evaporation pressure can be reduced.
Even when Pa is small, a sufficient amount of cooling condensate can be reliably delivered.

(別実施例) 第2図は別の実施例を示している。これでは、
冷却用凝縮液の供給量を調整できるようにする点
が上記の実施例と異なる。つまり、冷却用液溜室
8と蒸発器4との間の冷却通路6からバイパス通
路12を分岐し、これを凝縮器3と蒸発器4とを
接続する液通路5aに接続するとともに、このバ
イパス通路12の中途部および冷却通路6の前記
バイパス通路12分岐部と蒸発器4との間の2個
所に、それぞれ電磁弁13,14を介設する。両
電磁弁13,14は、主電動機2に付設されてコ
イル温度を検出する温度センサー(図示せず)の
検知信号に応じて開閉制御され、とくに、凝縮圧
力と蒸発圧力との差圧Paが大きいとき、過度に
冷却用の凝縮液が主電動機2へ送給されるのを防
止して、動力消費のロスを解消する。
(Another Embodiment) FIG. 2 shows another embodiment. In this case,
This embodiment differs from the above embodiment in that the supply amount of cooling condensate can be adjusted. That is, a bypass passage 12 is branched from the cooling passage 6 between the cooling liquid storage chamber 8 and the evaporator 4, and this is connected to the liquid passage 5a connecting the condenser 3 and the evaporator 4, and this bypass Electromagnetic valves 13 and 14 are interposed at two locations, one in the middle of the passage 12 and the other between the bypass passage 12 branch of the cooling passage 6 and the evaporator 4, respectively. Both electromagnetic valves 13 and 14 are controlled to open and close according to detection signals from a temperature sensor (not shown) attached to the main motor 2 that detects the coil temperature. When the amount is large, excessive cooling condensate is prevented from being fed to the main motor 2, thereby eliminating power consumption loss.

なお、第2図で説明した実施例では、2個の電
磁弁13,14で流量調整ないしは流量の制限を
行うものとしたが、必ずしもその必要はなく、例
えば一個の絞り弁で流量制御を行うようにするこ
ともできる。
In the embodiment described in FIG. 2, the two solenoid valves 13 and 14 are used to adjust or limit the flow rate, but this is not necessarily necessary; for example, the flow rate may be controlled using one throttle valve. You can also do it like this.

(考案の効果) 以上説明したように、この考案では、凝縮器3
における冷却通路6の導出部位を、高い位置に設
けた冷却用液溜室8に設定して、主電動機2に冷
却用の凝縮液を送給するのに必要なヘツド差Ph
を小さくしたので、凝縮器3における冷却水温度
が低くて高い凝縮圧が得られない場合でも、主電
動機2を冷却するのに必要かつ十分な量の凝縮液
を主電動機2に確実に送給することができる。ま
た、凝縮液を送給するについて、専用の冷却ポン
プを用いることなく、凝縮圧と蒸発圧との差圧だ
けで送給できるものとしたので、冷却のための構
造を簡単にすることができるうえ、冷却ポンプ等
の機能部材がないためその故障を心配する必要が
なく、高い信頼性が得られる点で有利である。さ
らに、凝縮器3における冷却水量の制御を行つ
て、冷却用凝縮液を送給するのに必要な凝縮圧を
得るものに比べて、動力消費に無駄がなく、省エ
ネルギーを図るうえで有利である。
(Effect of the invention) As explained above, in this invention, the condenser 3
The outlet portion of the cooling passage 6 is set to the cooling liquid storage chamber 8 provided at a high position, and the head difference Ph necessary for supplying the cooling condensate to the main motor 2 is set.
is made small, so even if the cooling water temperature in the condenser 3 is low and a high condensation pressure cannot be obtained, the necessary and sufficient amount of condensate to cool the traction motor 2 can be reliably supplied to the traction motor 2. can do. In addition, since the condensate can be fed using only the differential pressure between the condensing pressure and the evaporation pressure without using a dedicated cooling pump, the cooling structure can be simplified. Moreover, since there is no functional component such as a cooling pump, there is no need to worry about its failure, and it is advantageous in that high reliability can be obtained. Furthermore, compared to a system in which the amount of cooling water in the condenser 3 is controlled to obtain the condensing pressure necessary to feed the cooling condensate, there is no waste in power consumption and it is advantageous in terms of energy conservation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第1実施例を示すターボ冷凍
機の概念図である。第2図は本考案の第2実施例
を示す第1図と同等の概念図である。第3図は従
来例を示すターボ冷凍機の概念図である。 1……圧縮機、2……主電動機、3……凝縮
器、4……蒸発器、6……冷却通路、8……冷却
用液溜室、Ph……ヘツド差。
FIG. 1 is a conceptual diagram of a centrifugal refrigerator showing a first embodiment of the present invention. FIG. 2 is a conceptual diagram equivalent to FIG. 1 showing a second embodiment of the present invention. FIG. 3 is a conceptual diagram of a conventional turbo chiller. 1... Compressor, 2... Main electric motor, 3... Condenser, 4... Evaporator, 6... Cooling passage, 8... Cooling liquid storage chamber, Ph... Head difference.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 凝縮器3から導出され、蒸発器4内を経由して
主電動機2に至る冷却通路6を備えており、凝縮
圧力と蒸発圧力との差圧Paで冷却用の凝縮液を
前記冷却通路6を介して主電動機2へ送給する密
閉型ターボ冷凍機において、凝縮器3の冷媒室3
aの可及的高位置に凝縮液を受止める冷却用液溜
室8を区画し、この液溜室8から前記冷却通路6
が導出されていることを特徴とする密閉型ターボ
冷凍機。
The cooling passage 6 is led out from the condenser 3, passes through the evaporator 4, and reaches the main motor 2, and the condensed liquid for cooling is passed through the cooling passage 6 by the differential pressure Pa between the condensing pressure and the evaporation pressure. In a hermetic turbo chiller, the refrigerant is supplied to the main motor 2 via the refrigerant chamber 3 of the condenser 3.
A cooling liquid reservoir chamber 8 for receiving the condensed liquid is defined at the highest possible position of a, and the cooling passage 6 is connected from this liquid reservoir chamber 8 to the cooling passage 6.
A hermetic centrifugal chiller characterized by being derived from.
JP2866086U 1986-02-28 1986-02-28 Expired JPH0354374Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2866086U JPH0354374Y2 (en) 1986-02-28 1986-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2866086U JPH0354374Y2 (en) 1986-02-28 1986-02-28

Publications (2)

Publication Number Publication Date
JPS62171860U JPS62171860U (en) 1987-10-31
JPH0354374Y2 true JPH0354374Y2 (en) 1991-11-29

Family

ID=30831835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2866086U Expired JPH0354374Y2 (en) 1986-02-28 1986-02-28

Country Status (1)

Country Link
JP (1) JPH0354374Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630627B2 (en) * 2016-05-02 2020-01-15 荏原冷熱システム株式会社 Turbo refrigerator

Also Published As

Publication number Publication date
JPS62171860U (en) 1987-10-31

Similar Documents

Publication Publication Date Title
US5038574A (en) Combined mechanical refrigeration and absorption refrigeration method and apparatus
AU606371B2 (en) Refrigeration system
US2411347A (en) Refrigerant vapor system
CN215951834U (en) Refrigeration cycle system and refrigeration plant
JPH0354374Y2 (en)
US5118071A (en) Electronically driven control valve
US2466863A (en) Refrigerant injector and surge drum arrangement
FI92432C (en) Compression cooling system with oil separator
US6457563B1 (en) Arrangement in a circulation lubrication system
JPH0317179Y2 (en)
US5867993A (en) Refrigerant reservoir and heat exchanger unit for a refrigerated counter system
JP2000088368A (en) Refrigerator
JPS5949850U (en) Air-cooled refrigeration equipment with supercooler
JPS5896955A (en) Oil return device for refrigerator
JPS54100552A (en) Air conditioner
JPS6130128Y2 (en)
JPS627979Y2 (en)
SU1622734A1 (en) Installation for cooling liquid
US2976699A (en) Refrigeration unit
RU2047058C1 (en) Cooling plant
JPS6144124Y2 (en)
RU2137058C1 (en) Method of control of pressure of air-cooled condenser of vapor compression refrigerating machine and pressure regulator
SU1657904A1 (en) Method of operation of refrigerating plant and refrigerating plant
JPH0247419Y2 (en)
JPS59115282U (en) Device for supplying refrigerant to the evaporator in a compression refrigerator