【発明の詳細な説明】[Detailed description of the invention]
本発明は電子写真プロセスにおいて使用される
電子写真用感光体に関する。更に詳しく言えば、
本発明は光導電層中にスクエアリウム顔料を含有
する電子写真用感光体に関するものである。
従来、電子写真用感光体として、無定形セレ
ン、セレン合金、硫化カドミウム、酸化亜鉛等の
無機系感光材料やポリビニルカルバゾール及びポ
リビニルカルバゾール誘導体に代表される有機系
感光材料が広く知られている。
無定形セレン或いはセレン合金は電子写真用感
光体として極めて優れた特性を有し、実用に供さ
れていることは周知の通りである。しかし、その
製造においては蒸着という煩雑な工程を経ねばな
らず、又製造された蒸着膜は可撓性がないという
欠点がある。酸化亜鉛を用いる場合には、酸化亜
鉛を樹脂中に分散させた分散系感光材料として用
いるが、このような感光材料は機械的強度に難点
があり、そのままでは反復使用に耐え得ない。
有機光導電材料として広く知られているポリビ
ニルカルバゾールは透明性、皮膜形成性、可撓性
などの点で優れている利点があるものの、ポリビ
ニルカルバゾール自身は可視光域に感度を持たな
いためにそのままでは実用に供することができ
ず、従つて種々の増感方法が考案されてはいる。
ところが色素増感剤を用いてポリビニルカルバゾ
ールを分光増感した場合には分光感度域は可視光
域にまで拡張されるものの、なお電子写真用感光
体として十分な感度は得られず光疲労が甚しいと
いう欠点を持つ。又、電子受容性化合物を用いて
化学増感した場合には電子写真用感光体として感
度的には十分な感光体が得られ、一部のものは実
用化されているがなお、機械的強度、寿命等に問
題点を残している。
有機分散系感光材料に関しても積極的に研究が
なされた数多くの報告があるにも拘らず、電子写
真感光体として優れた電気特性と充分な感度を有
する感光体は末だ得られてはいない。現在、分散
系感光材料としてフタロシアニンが優れた電子写
真特性を示すという報告もあるが、その分光感度
は長波長域に片寄り、従つて赤色再現性に劣ると
いう欠点を有している。
本発明の目的は現在するいずれの電子写真プロ
セスにおいても使用可能であり、かつ可視領域か
ら近赤外領域に亘つて分光感度を有する極めて高
感度な光導電材料を提供することにある。
本発明の他の目的は無機系感光材料にない可撓
性を有し、ポリビニルカルバゾール−トリニトロ
フルオレノン系有機感光材料の欠陥である低耐摩
耗性、機械的強度不足を改良し、更には可視領域
から近赤外領域の広い範囲においてほぼ平坦な分
光感度を有する極めて高感度でかつ耐摩耗性等の
機械的強度に優れた電子写真用感光体を提供する
ことである。
本発明者等は従来の無機系感光材料、有機系感
光材料、有機分散系感光材料の諸欠点を改良し、
優れた電子写真特性と可撓性とを兼備し、更に可
視領域から近赤外領域の広い範囲にわたり高い感
度を有する光導電材料を得べく鋭意研究の結果、
特定のスクエアリウム顔料が極めてすぐれた特性
を有することを見い出し本発明を完成した。
本発明に用いられるスクエアリウム顔料は下記
一般式()及び式()で示される。
〔式中、Rはヒドロキシエチル基、環状アルキル
基、アリール基又はベンジル基を表す。〕
本発明の電子写真用感光体は前記()又は
()で示されるスクエアリウム顔料を含有する
感光層を有することを特徴とする。
一般式()のスクエアリウム顔料は式()
で示される3,4−ジヒドロキシ−3−シクロブ
テン−1,2−ジオンと一般式()
(式中、Rは前記と同じ意味を表わす。)
で示されるアニリン誘導体とを反応させることに
よつて得られ、また式のスクエアリウム顔料は
前記式()で示される3,4−ジヒドロキシ−
3−シクロブテン−1,2−ジオンと式()
で示される4−フエニルモルホリンとを反応させ
ることによつて得られる。
一般式()で示されるスクエアリウム顔料は
多層構造を有する電子写真用感光体に使用するこ
とができる。すなわち電荷発生層及び電荷輸送層
から成る二層構造の感光層を含む電子写真用感光
体において、スクエアリウム顔料を含有した電荷
発生層ならびに公知の電化輸送層、例えばポリビ
ニルジベンゾチオフエン、ポリビニルピレン、ポ
リビニルアントラセン、ポリビニルカルバゾール
のような光導電性ポリマー、又はトリアリルピラ
ゾリン、トリフエニルメタン、オキサジアゾー
ル、テトラフエニルベンジジン、トリニトロフル
オレノン等をバインダー樹脂中に含有したものか
らなる層をもうけることにより感光体の帯電性の
改善、残留電位の低減、更に機械的強度の改良な
どを達成することができる。
本発明の二層構造の電子写真用感光体の構成に
ついて説明すると、第1図及び第2図に示すよう
に導電性支持体1上にスクエアリウム顔料を含有
した電荷発生層2と電荷輸送物質を含有した電荷
輸送層3との積層体より成る感光層4を設ける。
電荷発生層はスクエアリウム顔料単独で用いて
も良いが、バインダー樹脂と併用して形成するこ
ともできる。顔料のバインダー樹脂に対する比率
は10重量%〜90重量%、好ましくは10重量%〜50
重量%である。
バインダー樹脂を併用せずにスクエアリウム顔
料単独で電荷発生層を形成する方法としては溶剤
塗布及び真空蒸着法がある。
電荷発生層の膜厚は0.1〜3μ好ましくは0.2〜1μ
である。
バインダー中に分散させる際には顔料を粉砕し
て用いるが、粉砕方法はAPEX MILL(商品名、
市販元;コトブキ・マター株式会社)、ボールミ
ル、RED DEVIL(商品名、市販元;東京光電株
式会社)などにより公知方法を用いることができ
る。
電荷発生層のバインダーとしては、それ自身が
光導電性を有していても光導電性を有していなく
ても良い。光導電性を有するバインダーとしては
ポリビニルカルバゾール、ポリビニルカルバゾー
ル誘導体、ポリビニルナフタレン、ポリビニルア
ントラセン、ポリビニルピレン等の光導電性ポリ
マー、又はその他の電荷輸送能を有する有機マト
リツクス材料などがある。
又、バインダーとして光導電性を有さない公知
の絶縁性樹脂をも使用することができる。公知絶
縁性樹脂としては、ポリスチレン、ポリエステ
ル、ポリビニルトルエン、ポリビニルアニソー
ル、ポリクロロスチレン、ポリビニルブチラー
ル、ポリビニルアセテート、ポリビニルブチルメ
タクリレート、コポリスチレン−ブタジエン、ポ
リサルホン、コポリスチレン−メチルメタクリレ
ート、ポリカーボネートなどが使用できる。
この際、得られる感光体の機械的強度を更に改
善する目的で一般の高分子材料と同様に可塑剤を
用いることができる。可塑剤としては、例えば塩
素化パラフイン、塩素化ビフエニル、ホスフエー
ト系可塑剤、フタレート系可塑剤などを用いるこ
とができ、バインダーに対して0〜10%重量添加
され感光体の感度や電気特性の低下を伴うことな
くその機械的強度を更に改善することが可能であ
る。
スクエアリウム顔料を分散させたバインダーは
導電性支持体上に塗布される。塗布方法は浸漬
法、スプレー法、バーコーター法、アプリケータ
法等の方法があるが、いずれの方法によつても良
好な感光層を形成させることができる。
又導電性支持体としては、金属や導電処理を施
した紙、高分子フイルム、ネサガラスなどが使用
できる。
本発明の電子写真用感光体は、通常の複写機の
みならず、半導体レーザープリンター、インテリ
ジエントコピアなどに広く用いることができる。
次に本発明の電子写真用感光体を実施例により
説明する。
実施例 1
()式でRがC2H4OHを表わすスクエアリウ
ム顔料(1)を塩化メチレン、鋼球と共に12時間粉砕
する。粉砕後ポリエステル樹脂(商品名、バイロ
ン200、市販元;東洋紡績株式会社)に30重量%
添加混合した。混合はアルミニウムプレート上に
乾燥後の膜厚が約0.5μとなる様、アプリケータに
よつて塗布して電荷発生量を形成した。この上に
1−フエニル−3−〔p−ジエチルアミノスチリ
ル〕−5−〔p−ジエチルアミノフエニル〕−ピラ
ゾリンをポリカーボネート樹脂(商品名、パンラ
イト、市販元;帝人化成株式会社)中に50重量%
添加混合した電荷輸送層を膜厚約15μとなる様ア
プリケータによつて塗布した。
次にこの感光体の感光層面に川口電気製静電複
写紙試験装置により−6KVのコロナ放電を2秒
間行なつて負帯電させた後、2秒間暗所に放置
し、その時の表面電位V0を測定し、ついで照度
10ルツクスのタングステン・ハロゲンランプを感
光層に照射し、その表面電位がV0の1/2になるま
での時間(秒)を求めて半減露光量E1/2を求め
た。その結果、V0=710V、E1/2=5.0ルツク
ス・秒であつた。
実施例 2〜3
()式でRがベンジル基であるスクエアリウ
ム顔料及び()のスクエアリウム顔料(各々
(2)、(3)とする。)を用いた以外は実施例1と同様
な方法で感光体を作成し電気特性を測定した。そ
の結果を表1に示す。
比較例 1
式()のスクエアリウム顔料(4)を用いた以外
は実施例1と同様な方法で感光体を作成し、電気
特性を測定した。その結果を表1に示す。
式()
The present invention relates to an electrophotographic photoreceptor used in an electrophotographic process. To be more specific,
The present invention relates to an electrophotographic photoreceptor containing a squarium pigment in a photoconductive layer. Conventionally, inorganic photosensitive materials such as amorphous selenium, selenium alloys, cadmium sulfide, and zinc oxide, and organic photosensitive materials typified by polyvinyl carbazole and polyvinyl carbazole derivatives are widely known as electrophotographic photoreceptors. It is well known that amorphous selenium or selenium alloys have extremely excellent properties as electrophotographic photoreceptors and are used in practical applications. However, its production requires a complicated step of vapor deposition, and the produced vapor-deposited film has the drawback of not being flexible. When zinc oxide is used, it is used as a dispersed photosensitive material in which zinc oxide is dispersed in a resin, but such a photosensitive material has a drawback in mechanical strength and cannot withstand repeated use as it is. Polyvinylcarbazole, which is widely known as an organic photoconductive material, has excellent advantages in terms of transparency, film-forming properties, and flexibility, but polyvinylcarbazole itself has no sensitivity in the visible light range, so it cannot be used as is. Therefore, various sensitization methods have been devised.
However, when polyvinylcarbazole is spectrally sensitized using a dye sensitizer, the spectral sensitivity range is extended to the visible light range, but it still cannot achieve sufficient sensitivity as a photoreceptor for electrophotography and suffers from severe photofatigue. It has the disadvantage of being In addition, when chemically sensitized using an electron-accepting compound, a photoreceptor with sufficient sensitivity as an electrophotographic photoreceptor can be obtained, and some of them have been put into practical use. However, there are still problems in terms of lifespan, etc. Although there have been many reports on active research into organic dispersion photosensitive materials, no photoreceptor having excellent electrical properties and sufficient sensitivity as an electrophotographic photoreceptor has yet been obtained. At present, there are reports that phthalocyanine exhibits excellent electrophotographic properties as a dispersed light-sensitive material, but it has the disadvantage that its spectral sensitivity is biased towards the long wavelength range, and therefore its red color reproducibility is poor. An object of the present invention is to provide an extremely sensitive photoconductive material that can be used in any of the current electrophotographic processes and has spectral sensitivity from the visible region to the near-infrared region. Another object of the present invention is to have flexibility that inorganic photosensitive materials do not have, to improve low abrasion resistance and insufficient mechanical strength, which are defects of polyvinylcarbazole-trinitrofluorenone organic photosensitive materials, and to improve visible An object of the present invention is to provide an electrophotographic photoreceptor which has extremely high sensitivity, has substantially flat spectral sensitivity over a wide range from the near infrared region to the near infrared region, and has excellent mechanical strength such as abrasion resistance. The present inventors have improved various drawbacks of conventional inorganic photosensitive materials, organic photosensitive materials, and organic dispersion photosensitive materials,
As a result of intensive research to obtain a photoconductive material that has both excellent electrophotographic properties and flexibility, and also has high sensitivity over a wide range from the visible region to the near-infrared region,
The present invention was completed by discovering that a specific squarium pigment has extremely excellent properties. The squarium pigment used in the present invention is represented by the following general formula () and formula (). [In the formula, R represents a hydroxyethyl group, a cyclic alkyl group, an aryl group, or a benzyl group. ] The electrophotographic photoreceptor of the present invention is characterized by having a photosensitive layer containing the squareium pigment represented by () or () above. Squarium pigment with the general formula () is the formula () 3,4-dihydroxy-3-cyclobutene-1,2-dione represented by the general formula () (In the formula, R represents the same meaning as above.) The squarium pigment of the formula is obtained by reacting the aniline derivative represented by the formula (2) with the 3,4-dihydroxy-
3-Cyclobutene-1,2-dione and formula () It can be obtained by reacting with 4-phenylmorpholine represented by: The squarium pigment represented by the general formula () can be used in an electrophotographic photoreceptor having a multilayer structure. That is, in an electrophotographic photoreceptor including a photosensitive layer with a two-layer structure consisting of a charge generation layer and a charge transport layer, a charge generation layer containing a squarium pigment and a known charge transport layer such as polyvinyldibenzothiophene, polyvinylpyrene, Providing a layer consisting of a photoconductive polymer such as polyvinylanthracene, polyvinylcarbazole, or a binder resin containing triallylpyrazoline, triphenylmethane, oxadiazole, tetraphenylbenzidine, trinitrofluorenone, etc. This makes it possible to improve the chargeability of the photoreceptor, reduce the residual potential, and further improve the mechanical strength. The structure of the electrophotographic photoreceptor having a two-layer structure of the present invention will be described. As shown in FIGS. 1 and 2, a charge generation layer 2 containing a squarium pigment and a charge transport material are formed on a conductive support 1. A photosensitive layer 4 made of a laminate with a charge transport layer 3 containing . The charge generation layer may be formed by using the squarium pigment alone, but it can also be formed by using it in combination with a binder resin. The ratio of pigment to binder resin is 10% to 90% by weight, preferably 10% to 50% by weight
Weight%. Methods for forming a charge generation layer using a squarium pigment alone without using a binder resin include solvent coating and vacuum evaporation. The thickness of the charge generation layer is 0.1 to 3μ, preferably 0.2 to 1μ.
It is. When dispersing the pigment in the binder, the pigment is ground and used, and the grinding method is APEX MILL (trade name,
A publicly known method can be used, such as a ball mill or RED DEVIL (trade name, commercial source: Tokyo Kohden Co., Ltd.). The binder of the charge generation layer may or may not itself have photoconductivity. Examples of the photoconductive binder include photoconductive polymers such as polyvinylcarbazole, polyvinylcarbazole derivatives, polyvinylnaphthalene, polyvinylanthracene, and polyvinylpyrene, and other organic matrix materials having charge transport ability. Furthermore, known insulating resins that do not have photoconductivity can also be used as the binder. As the known insulating resin, polystyrene, polyester, polyvinyltoluene, polyvinylanisole, polychlorostyrene, polyvinyl butyral, polyvinyl acetate, polyvinyl butyl methacrylate, copolystyrene-butadiene, polysulfone, copolystyrene-methyl methacrylate, polycarbonate, etc. can be used. At this time, in order to further improve the mechanical strength of the resulting photoreceptor, a plasticizer can be used in the same manner as in general polymeric materials. As the plasticizer, for example, chlorinated paraffin, chlorinated biphenyl, phosphate plasticizer, phthalate plasticizer, etc. can be used, and when added by weight of 0 to 10% to the binder, it reduces the sensitivity and electrical properties of the photoreceptor. It is possible to further improve its mechanical strength without A binder with squarium pigment dispersed therein is applied onto a conductive support. Coating methods include dipping, spraying, bar coater, and applicator methods, and a good photosensitive layer can be formed by any of these methods. Further, as the conductive support, metal, paper treated with conductivity, polymer film, Nesa glass, etc. can be used. The electrophotographic photoreceptor of the present invention can be widely used not only in ordinary copying machines but also in semiconductor laser printers, intelligent copiers, and the like. Next, the electrophotographic photoreceptor of the present invention will be explained with reference to Examples. Example 1 Squarium pigment (1) in the formula () in which R represents C 2 H 4 OH is ground together with methylene chloride and a steel ball for 12 hours. 30% by weight in polyester resin (product name: Byron 200, commercial source: Toyobo Co., Ltd.) after crushing
Add and mix. The mixture was applied onto an aluminum plate using an applicator so that the film thickness after drying was approximately 0.5 μm to form a charge generation amount. On top of this, 50% by weight of 1-phenyl-3-[p-diethylaminostyryl]-5-[p-diethylaminophenyl]-pyrazoline was added to polycarbonate resin (trade name, Panlite, commercial source: Teijin Kasei Ltd.).
The added and mixed charge transport layer was applied using an applicator to a thickness of approximately 15 μm. Next, the surface of the photosensitive layer of this photoreceptor was negatively charged by applying -6KV corona discharge for 2 seconds using an electrostatic copying paper tester manufactured by Kawaguchi Electric, and then left in a dark place for 2 seconds, and the surface potential at that time was V 0 and then the illuminance
The photosensitive layer was irradiated with a 10 lux tungsten halogen lamp, and the time (seconds) required for the surface potential to become 1/2 of V 0 was determined to determine the half-reduction exposure amount E1/2. As a result, V 0 =710V and E1/2 =5.0 Lux·sec. Examples 2 to 3 Squarium pigments of the formula () in which R is a benzyl group and squarium pigments of () (each
(2) and (3). ) A photoreceptor was prepared in the same manner as in Example 1, except that the photoreceptor was used, and its electrical properties were measured. The results are shown in Table 1. Comparative Example 1 A photoreceptor was prepared in the same manner as in Example 1 except that the squarium pigment (4) of formula () was used, and its electrical properties were measured. The results are shown in Table 1. formula()
【表】
実施例 4〜6
本実施例の感光体は電荷発生層と電荷輸送層の
順序を逆にしたものである。すなわち実施例1〜
3で用いたスクエアリウム顔料(1)、(2)、(3)を使用
し、電荷発生層と電荷輸送層の順序を逆にした以
外は、同じ条件で感光体を作成し、電気特性を測
定した。その結果を表2に示す。
比較例 2
比較例1で用いたスクエアリウム顔料(4)を使用
し、電荷発生層と電荷輸送層の順序を逆にした以
外は同じ条件で感光体を作成し、電気特性を測定
した。その結果を表2に示す。[Table] Examples 4 to 6 In the photoreceptor of this example, the order of the charge generation layer and the charge transport layer was reversed. That is, Example 1~
A photoreceptor was prepared under the same conditions except that the squareium pigments (1), (2), and (3) used in 3 were used, and the order of the charge generation layer and charge transport layer was reversed, and the electrical properties were determined. It was measured. The results are shown in Table 2. Comparative Example 2 A photoreceptor was prepared using the squarium pigment (4) used in Comparative Example 1 under the same conditions except that the order of the charge generation layer and the charge transport layer was reversed, and the electrical properties were measured. The results are shown in Table 2.
【表】
表1及び表2から明らかなとおり、フツ素を含
有するスクエアリウム顔料(4)を用いた場合には光
感度はある程度満足出来るものの、初期帯電電位
が低くなる。これは、この感光体の暗減衰率が高
いことにより考えられる。[Table] As is clear from Tables 1 and 2, when the squarium pigment (4) containing fluorine is used, although the photosensitivity can be satisfied to some extent, the initial charging potential becomes low. This is thought to be due to the high dark decay rate of this photoreceptor.
【図面の簡単な説明】[Brief explanation of drawings]
第1図及び第2図は本発明電子写真用感光体の
構成例の断面図である。
図中符号:1……導電性支持体;2……電荷発
生層;3……電荷輸送層;4……感光層。
1 and 2 are cross-sectional views of an example of the structure of the electrophotographic photoreceptor of the present invention. Symbols in the figure: 1... Conductive support; 2... Charge generation layer; 3... Charge transport layer; 4... Photosensitive layer.