JPH0354151B2 - - Google Patents

Info

Publication number
JPH0354151B2
JPH0354151B2 JP57031774A JP3177482A JPH0354151B2 JP H0354151 B2 JPH0354151 B2 JP H0354151B2 JP 57031774 A JP57031774 A JP 57031774A JP 3177482 A JP3177482 A JP 3177482A JP H0354151 B2 JPH0354151 B2 JP H0354151B2
Authority
JP
Japan
Prior art keywords
weight
parts
chloride hexahydrate
calcium chloride
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57031774A
Other languages
Japanese (ja)
Other versions
JPS58149979A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3177482A priority Critical patent/JPS58149979A/en
Publication of JPS58149979A publication Critical patent/JPS58149979A/en
Publication of JPH0354151B2 publication Critical patent/JPH0354151B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、融解潜熱を利用する事によつて蓄
熱する蓄熱材に関するものである。 従来から塩化カルシウム6水塩は融解潜熱が
42Kcal/Kgと大きく、又その融点も20℃である
ために例えばヒートポンプ、ソーラーコレクター
等と組合せた加熱系の極めて好適ない蓄熱材とし
て注目されている。 しかし、塩化カルシウム6水塩は融液を冷却し
た際に融点よりも著しく低い温度まで過冷却され
る特性をもつている。しかも、この過冷却現象は
放熱を行う場合、相変化時の融解潜熱を放出せず
に液として温度が低下するため蓄熱材としては致
命的な欠点となる。過冷却現象を防止する手段と
しては、過冷却融液に同一結晶固体の種晶を投入
すれば過冷却を防止出来る事は、よく知られた事
実である。しかし、再度加熱されると種晶は融解
するので実用性がない。又、塩化カルシウム6水
塩の過冷却現象を防止するに有効な添加剤、塩化
ストロンチウム6H2Oが先行発明の特開昭53−
19183号公報に提案されているが、特に良好な安
定性が要求される場合、添加量は5重量部乃至20
重量部と多量に添加する必要がある。しかも融解
潜熱は35Kcal/Kg以下になつてしまう欠点があ
る。上述したように、塩化カルシウム6水塩の過
冷却現象に対する防止策には問題点が多く、現在
でも研究段階であり、実用化されるに至つていな
い。本発明は、このような現象に鑑みてなされた
もので、その目的は、塩化カルシウム6水塩と同
等なコストで、過冷却を防止し、融解潜熱をより
有効に利用出来、しかも凝固−融解の繰返しに対
して十分な能力を保持する蓄熱剤を提供する事に
ある。 上記目的は、塩化カルシウム6水塩に二酸化ス
トロンチウム及び二酸化ストロンチウム8水塩の
少なくとも一種を0.001重量部乃至10重量部を添
加する事によつて容易に達成される。 本発明の主要部は、塩化カルシウム6水塩の過
冷却防止剤として二酸化ストロンチウム及び二酸
化ストロンチウム8水塩の少なくとも一種類を用
いるようにする事にある。 この防止剤の選定は、無数にある化合物の中か
ら厳選に厳選を重ねて選択されたもので、その特
色は従来エピタキシヤルの観点から選定されて、
塩化カルシウム6水塩の核剤として最も優れてい
ると考えられているハロゲン化ストロンチウム6
水塩を用いた場合とその趣きを事にする。 即ち、本発明の防止剤は極めて少量の添加、例
えば塩化カルシウム6水塩100重量部に対して
0.001重量部でその防止効果を発揮し、逆に10重
量部を越えて多い場合には、重量当りの潜熱が低
下してしまう現象が見られる。 従つて本発明でいう蓄熱材組成では、二酸化ス
トロンチウム及び二酸化ストロンチウム8水塩の
少なくとも一種類を0.001〜10重量部、更に効果
的には0.005〜5.0重量部選ぶ事が望ましい。 このように調整された本発明の蓄熱材組成物は
塩化カルシウム6水塩の融解潜熱をより効果的に
維持し、利用する事を可能にするばかりでなく、
繰返し融解、凝固に対しても過冷却防止効果は衰
えず相分離も生じないという利点がある。 以下、実施例、比較列によつてその内容を明ら
かにする。 実施例、比較例1 塩化カルシウム6水塩100重量部に対してSrO2
を各々0.001、0.05、0.1、1.0、5.0、10.0重量部含
有した試料を調整し、その各々に順次、試料番号
1、2、3、4、5、6と付した。又、塩化カル
シウム6水塩100重量部に対してSrO2・8H2Oを
0.1重量部含有した試料を調整し、その各々に試
料番号7と付した。比較のために、塩化カルシウ
ム6水塩のみを試料番号A、塩化カリシウム6水
塩に対して塩化ストロンチウム6水塩を各々0.1、
1、5、10重量部含有した試料を調整し、その
各々は順次、試料番号B、C、D、Eとした。 上記の各々の試料を内径60mm、高さ170mmの円
筒プラスチツク容器に入れ、熱電対を挿入し密封
した。その後、これらの容器を50℃の恒温水槽に
入れ、完全に融解させて150℃の恒温水槽に入れ
て放熱を行ない、試料の温度を記録した。各々の
試料に対して過冷却の温度と凝固温度の測定値を
下記の表に示す。又、過冷却防止効果が有効であ
ると考えられる各々の試料番号1、2、3、4、
5、6、7、B、C、D、E、Fの蓄熱材組成物
の融解潜熱を差動熱量計(DSC)を用いて測定
した。その結果も下記の表に示す。
The present invention relates to a heat storage material that stores heat by utilizing latent heat of fusion. Traditionally, calcium chloride hexahydrate has a latent heat of fusion.
Because it has a large temperature of 42 Kcal/Kg and a melting point of 20°C, it is attracting attention as an extremely unsuitable heat storage material for heating systems combined with heat pumps, solar collectors, etc. However, calcium chloride hexahydrate has the property of being supercooled to a temperature significantly lower than its melting point when the melt is cooled. Moreover, this supercooling phenomenon is a fatal drawback as a heat storage material because when heat is dissipated, the temperature decreases as a liquid without releasing the latent heat of fusion during phase change. It is a well-known fact that supercooling can be prevented by adding seed crystals of the same crystalline solid to the supercooled melt. However, the seed crystals melt when heated again, so this is not practical. In addition, strontium chloride 6H 2 O, an additive effective for preventing the supercooling phenomenon of calcium chloride hexahydrate salt, has been disclosed in Japanese Patent Application Laid-Open No. 1983-1990, which has an earlier invention.
Although it is proposed in Japanese Patent No. 19183, when particularly good stability is required, the amount added is 5 parts by weight to 20 parts by weight.
It is necessary to add a large amount (parts by weight). Moreover, it has the disadvantage that the latent heat of fusion is less than 35Kcal/Kg. As mentioned above, there are many problems in preventing the supercooling phenomenon of calcium chloride hexahydrate, and it is still in the research stage and has not yet been put into practical use. The present invention was made in view of this phenomenon, and its purpose is to prevent supercooling, make more effective use of the latent heat of fusion, and reduce the solidification-melting process at the same cost as calcium chloride hexahydrate. The object of the present invention is to provide a heat storage agent that maintains sufficient capacity for repeated use. The above object can be easily achieved by adding 0.001 parts by weight to 10 parts by weight of at least one of strontium dioxide and strontium dioxide octahydrate to calcium chloride hexahydrate. The main part of the present invention is to use at least one of strontium dioxide and strontium dioxide octahydrate as a supercooling inhibitor for calcium chloride hexahydrate. This inhibitor was selected through careful selection from among countless compounds, and its characteristics were conventionally selected from an epitaxial perspective.
Strontium 6 halide is considered to be the best nucleating agent for calcium chloride hexahydrate.
Let's talk about the use of water salt and its taste. That is, the inhibitor of the present invention is added in a very small amount, for example, per 100 parts by weight of calcium chloride hexahydrate.
A prevention effect of 0.001 parts by weight is exhibited, and conversely, if the amount exceeds 10 parts by weight, a phenomenon is observed in which the latent heat per unit weight decreases. Therefore, in the heat storage material composition according to the present invention, it is desirable to select at least one of strontium dioxide and strontium dioxide octahydrate in an amount of 0.001 to 10 parts by weight, more preferably 0.005 to 5.0 parts by weight. The heat storage material composition of the present invention prepared in this way not only makes it possible to more effectively maintain and utilize the latent heat of fusion of calcium chloride hexahydrate, but also
It has the advantage that the supercooling prevention effect does not deteriorate even after repeated melting and solidification, and phase separation does not occur. The content will be clarified below with examples and comparison columns. Examples, Comparative Example 1 SrO 2 based on 100 parts by weight of calcium chloride hexahydrate
Samples were prepared containing 0.001, 0.05, 0.1, 1.0, 5.0, and 10.0 parts by weight, respectively, and were assigned sample numbers 1, 2, 3, 4, 5, and 6 in order. Additionally, SrO 2 8H 2 O was added to 100 parts by weight of calcium chloride hexahydrate.
Samples containing 0.1 part by weight were prepared, and each sample was designated as sample number 7. For comparison, only calcium chloride hexahydrate was used as sample number A, and strontium chloride hexahydrate was used at 0.1 and 0.1, respectively, for calcium chloride hexahydrate.
Samples containing 1, 5, and 10 parts by weight were prepared, and each was designated as sample number B, C, D, and E in sequence. Each of the above samples was placed in a cylindrical plastic container with an inner diameter of 60 mm and a height of 170 mm, a thermocouple was inserted, and the container was sealed. Thereafter, these containers were placed in a constant temperature water bath at 50°C, and after being completely melted, they were placed in a constant temperature water bath at 150°C to radiate heat, and the temperature of the sample was recorded. The measured supercooling temperature and solidification temperature for each sample are shown in the table below. In addition, each sample number 1, 2, 3, 4, which is considered to have an effective supercooling prevention effect.
The latent heat of fusion of the heat storage material compositions No. 5, 6, 7, B, C, D, E, and F was measured using a differential calorimeter (DSC). The results are also shown in the table below.

【表】 表から次の事が明らかである。すなわち塩化カ
ルシウム6水塩のみの場合、過冷却による温度降
下は約20℃であるのに対し、本発明による蓄熱材
組成物の温度降下は約3℃以内である。従つて、
塩化カルシウム6水塩に二酸化ストロンチウム
0.001〜10重量部を添加する事により良好な過冷
却防止効果がある事がわかる。又、二酸化ストロ
ンチウム8水塩でも同様の効果がある事がわか
る。しかし、塩化ストロンチウム6水塩を添加し
た塩化カルシウム6水塩が本発明と同等な過冷却
防止効果を持つためには5重量部を越えて添加す
る必要があり、従つて単位重量当りの融解潜熱も
塩化ストロンチウムを加えた場合に比べて二酸化
ストロンチウムを加えた場合は融解潜熱を有効に
利用出来る蓄熱材組成物となる事がわかる。 実施例、比較例2 4;塩化カルシウム6水塩100重量部に二酸化ス
トロンチウムを1.0重量部添加したもの C;塩化カルシウム6水塩100重量部に塩化スト
ロンチウム6水塩を1.0重量部添加したもの F;塩化カルシウム6水塩100重量部に水酸化ス
トロンチウム8水塩を1.0重量部添加したもの の上記の3種類の蓄熱材組成物について各々150
回の凝固−融解を繰返し、150回目の冷却経時に
おける組成物の温度を測定、その結果を第1図に
各々曲線a,b,cとして示した。尚第1図は各
組成物の過冷却温度(◎印)、凝固温度(〓印)
の各位置及び温度変化の軌跡が一目で対比出来る
事を主点に表現してある。 第1図から下記の事がわかる。すなわち二酸化
ストロンチウムは、塩化ストロンチウム6水塩の
ように凝固点温度が変化する事もなく、水酸化ス
トロンチウム8水塩のように過冷却が著しく起こ
る事もなく、繰返しに耐え得る安定した蓄熱材組
成物である事がわかる。 本発明者の実験によると二酸化ストロンチウム
8水塩を添加した場合においても上記二酸化スト
ロンチウムと同様の効果が得られる事が観測され
ている。 本発明は、上述の構成を持つ事により、塩化カ
ルシウムとほぼ同等のコストで融解潜熱をより有
効に利用でき、しかも繰返し安定性の優れた蓄熱
材組成物を提供する事が達成される。又、本発明
の蓄熱材組成物を使用する事により、今後一段と
重要視される太陽熱の有効利用に貢献するもので
ある。
[Table] The following is clear from the table. That is, in the case of only calcium chloride hexahydrate, the temperature drop due to supercooling is about 20°C, whereas the temperature drop of the heat storage material composition according to the present invention is within about 3°C. Therefore,
Strontium dioxide in calcium chloride hexahydrate
It can be seen that adding 0.001 to 10 parts by weight provides a good supercooling prevention effect. Furthermore, it can be seen that strontium dioxide octahydrate has a similar effect. However, in order for calcium chloride hexahydrate added with strontium chloride hexahydrate to have the same supercooling prevention effect as the present invention, it is necessary to add more than 5 parts by weight, and therefore the latent heat of fusion per unit weight is It can also be seen that when strontium dioxide is added, the heat storage material composition can utilize the latent heat of fusion more effectively than when strontium chloride is added. Example, Comparative Example 2 4; 1.0 part by weight of strontium dioxide added to 100 parts by weight of calcium chloride hexahydrate C; 1.0 part by weight of strontium chloride hexahydrate added to 100 parts by weight of calcium chloride hexahydrate F 150 for each of the above three types of heat storage material compositions, in which 1.0 part by weight of strontium hydroxide octahydrate was added to 100 parts by weight of calcium chloride hexahydrate;
The temperature of the composition was measured after the 150th cooling after repeated solidification and melting times, and the results are shown in FIG. 1 as curves a, b, and c, respectively. In addition, Figure 1 shows the supercooling temperature (◎ mark) and solidification temperature (〓 mark) of each composition.
The main point is that each position and the trajectory of temperature change can be compared at a glance. The following can be seen from Figure 1. In other words, strontium dioxide does not change its freezing point temperature like strontium chloride hexahydrate, does not undergo significant supercooling like strontium hydroxide octahydrate, and is a stable heat storage material composition that can withstand repeated use. It turns out that it is. According to experiments conducted by the present inventor, it has been observed that the same effects as the above-mentioned strontium dioxide can be obtained even when strontium dioxide octahydrate is added. By having the above-described structure, the present invention can provide a heat storage material composition that can utilize the latent heat of fusion more effectively at a cost that is approximately the same as that of calcium chloride, and has excellent repeat stability. Furthermore, the use of the heat storage material composition of the present invention contributes to the effective utilization of solar heat, which will become more important in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、蓄熱材組成物の凝固過程における温
度曲線の実験図を示す。 曲線a……塩化カルシウム6水塩100重量部に
二酸化ストロンチウムを1.0重量部添加したもの
の温度曲線、b……塩化カルシウム6水塩100重
量部に塩化ストロンチウム6水塩を1.0重量部添
加したものの温度曲線、c……塩化カルシウム6
水塩100重量部に水酸化ストロンチウム8水塩を
1.0重量部添加したものの温度曲線、d……各組
成での理想温度曲線。
FIG. 1 shows an experimental diagram of a temperature curve during the solidification process of a heat storage material composition. Curve a... Temperature curve when 1.0 part by weight of strontium dioxide is added to 100 parts by weight of calcium chloride hexahydrate, b... Temperature curve when 1.0 part by weight of strontium chloride hexahydrate is added to 100 parts by weight of calcium chloride hexahydrate Curve, c... Calcium chloride 6
Add strontium hydroxide octahydrate to 100 parts by weight of water salt.
Temperature curve with 1.0 part by weight added, d...Ideal temperature curve for each composition.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化カルシウム6水塩100重量部に対して二
酸化ストロンチウム及び二酸化ストロンチウム8
水塩の少なくとも一種を0.001重量部乃至10重量
部を添加した事を特徴とする蓄熱材組成物。
1 Strontium dioxide and 8 parts of strontium dioxide per 100 parts by weight of calcium chloride hexahydrate
1. A heat storage material composition comprising 0.001 parts by weight to 10 parts by weight of at least one type of water salt.
JP3177482A 1982-03-02 1982-03-02 Thermal energy storage material composition Granted JPS58149979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177482A JPS58149979A (en) 1982-03-02 1982-03-02 Thermal energy storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177482A JPS58149979A (en) 1982-03-02 1982-03-02 Thermal energy storage material composition

Publications (2)

Publication Number Publication Date
JPS58149979A JPS58149979A (en) 1983-09-06
JPH0354151B2 true JPH0354151B2 (en) 1991-08-19

Family

ID=12340394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177482A Granted JPS58149979A (en) 1982-03-02 1982-03-02 Thermal energy storage material composition

Country Status (1)

Country Link
JP (1) JPS58149979A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899695A (en) * 1981-12-09 1983-06-14 Hitachi Ltd Heat-accumulating material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899695A (en) * 1981-12-09 1983-06-14 Hitachi Ltd Heat-accumulating material

Also Published As

Publication number Publication date
JPS58149979A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
US4491172A (en) Energy storage apparatus
US4189394A (en) Heat storage material comprising calcium chloride-hexahydrate and a nucleating agent
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JPS6317313B2 (en)
US4447347A (en) Heat storage system
JPH0354151B2 (en)
US4595516A (en) Heat storage material
JPS59109578A (en) Heat storage material
JPS63137982A (en) Heat storage material composition
ES2213769T3 (en) REVERSIBLE COMPOSITIONS OF CHANGE OF HYDRATIONED MAGNESIUM CHLORIDE PHASE TO STORE ENERGY.
JPS5840379A (en) Heat storing composition
JPH0562158B2 (en)
EP0092199B1 (en) Heat storage material
JPS5845499A (en) Heat accumulating material
JPS6151079A (en) Thermal energy storage material
JPS617378A (en) Thermal energy storage material
JPS6224033B2 (en)
JPS645634B2 (en)
JPS5941667B2 (en) heat storage material
JPS6022031B2 (en) Heat storage agent composition
JPH0134475B2 (en)
JPS6111986B2 (en)
JPS60163988A (en) Thermal energy storage material
JPS6367838B2 (en)
JPS58127095A (en) Heat accumulating material