JPH035412B2 - - Google Patents

Info

Publication number
JPH035412B2
JPH035412B2 JP57049004A JP4900482A JPH035412B2 JP H035412 B2 JPH035412 B2 JP H035412B2 JP 57049004 A JP57049004 A JP 57049004A JP 4900482 A JP4900482 A JP 4900482A JP H035412 B2 JPH035412 B2 JP H035412B2
Authority
JP
Japan
Prior art keywords
formula
chloride
group
dialkoxyphenylene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57049004A
Other languages
Japanese (ja)
Other versions
JPS58167615A (en
Inventor
Taku Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4900482A priority Critical patent/JPS58167615A/en
Priority to DE3248399A priority patent/DE3248399C2/en
Priority to US06/453,837 priority patent/US4404354A/en
Publication of JPS58167615A publication Critical patent/JPS58167615A/en
Publication of JPH035412B2 publication Critical patent/JPH035412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、ベンれン環䞊に炭玠数の異なる二぀
のアルコキシ基を有するポリゞアルコキシプ
ニレンおよびその補造方法に関する。 䞻鎖䞭に盎鎖状に連なるプニレン基を有する
ポリプニレン系のポリマヌは耐熱性にすぐれお
いるずころから、埓来より宇宙航空甚あるいぱ
ンゞニアリングプラスチツクスずしお、金属代替
材料ずしお期埅されおおり、たた今日では、ドヌ
ピング等の凊理によ぀お導電性ポリマヌずしお泚
目されおいるものである。しかし䞀般にポリプ
ニレン系のポリマヌは、その䞍融解性および䞍溶
解性のため、成圢加工甚の材料ずしおは䞍満足で
あ぀た。䟋えば、ポリプニレン
The present invention relates to a poly(dialkoxyphenylene) having two alkoxy groups having different numbers of carbon atoms on a benzene ring, and a method for producing the same. Polyphenylene polymers, which have linear phenylene groups in their main chains, have excellent heat resistance and have long been expected to be used as metal substitute materials for aerospace applications or engineering plastics. It is attracting attention as a conductive polymer through treatments such as doping. However, polyphenylene polymers have generally been unsatisfactory as materials for molding processing due to their infusibility and insolubility. For example, polyphenylene

【匏】は、分解枩床が550℃ず良い 耐熱性をも぀ものの、䞍融䞍溶であり、加工性に
乏しいので、ポリマヌの特長が生かされず、加工
法ずしおは、わずかに粉末治金的手法が提案され
おいるにすぎない。 本発明は耐熱性にすぐれた新しいポリプニレ
ン系材料を探玢した結果、耐熱性ず加工性にすぐ
れたポリゞアルコキシプニレンを補造する
こずに成功した。 眮換基をもたないポリプニレンは、近幎、ド
ヌピング等により有機化合物ずしおは極めお高い
導電性が付䞎されうるこずが報告されおいるが、
本発明による高分子化合物もたた、いずれもアル
コキシ眮換基の存圚により芳銙環䞊の電子密床が
向䞊するので、同様なドヌピングにより、高い導
電性が付䞎されうるものである。 本発明によ぀お提案されるポリゞアルコキシ
プニレンは、䞀般匏(2)で瀺されるパラゞルア
ルコキシベンれンの重合により補造するこずがで
きる。原料ずなるパラゞアルコキシベンれンは、
䟋えば䞀方のアルコキシ基がメトキシ基である堎
合、パラメトキシアルコキシベンれンは、重合犁
止剀ずしお䜿甚されるハむドロキノンモノメチル
゚ヌテルの氎酞基を、炭化氎玠系、゚ヌテル系、
ケトン系などの溶媒䞭で、炭酞アルカリ、氎酞化
アルカリ等の塩基を脱酞剀ずしお、ゞアルキル硫
酞、パラトル゚ンスルホン酞アルキル、臭化アル
キル、沃化アルキル、塩化アルキル等のアルキル
化剀によ぀おアルキル化するこずにより、容易
に、か぀安䟡に補造するこずができる。 この、メトキシアルコキシベンれンの補造法
は、ゞアルコキシベンれンをハむドロキノンより
補造する方法ず類䌌しおいるが、原料ずなるハむ
ドロキノンモノメチル゚ヌテルがハむドロキノン
ず比范しお、塩基性条件においお安定であるた
め、メトキシアルコキシベンれンは収率、玔床ず
も良奜な状態で埗るこずができるので、これを原
料ずする高分子化合物の補造は、工業䞊極めお有
利である。 ゞアルコキシベンれンの重合は、公知のポリフ
゚ニレンの補造法によ぀おも可胜ではあるが、こ
の方法では収率が䜎く、しかも觊媒に基因するハ
ロゲン原子が䞻鎖の芳銙栞に導入される、或いは
反応䞭および凊理工皋䞭でアルコキシ基のアルキ
ル基の脱離によるヒドロキシル基ぞの倉化がおこ
るなどの原因から生成したポリマヌの耐熱性が悪
く、到底成圢加工甚の高分子材料ずしお実甚可胜
な補品は埗られない。本発明者は、これらの欠点
を改良すべく鋭意研究の結果、本発明に蚘す重合
方法を芋出し、新しい有甚な高分子材料の提䟛を
可胜ずしたものである。 本発明方法においおは、䞀般匏(2)で瀺されるゞ
アルコキシベンれンは、䞍掻性溶媒䞭、ルむス酞
及び酞化剀の存圚䞋に枛圧䞋に重合される。 本発明方法に甚いられるルむス酞は、カチオン
重合あるいは配䜍重合に甚いられるものがいずれ
も奜適に甚いられる。 このようなルむス酞ずしおは、無氎塩化アルミ
ニりム、無氎塩化第二鉄、無氎塩化チタン、
無氎塩化第二錫、無氎塩化モリブデン、無氎塩化
タングステン、無氎塩化アンチモン、フツ
化ホり玠およびフツ化ホり玠゚ヌテラヌトなどが
䜿甚されるが、無氎塩化アルミニりム、無氎塩化
第二鉄が特に奜たしい。たた前蚘金属塩化物に察
応する金属臭化物等他のハロゲン化物の䜿甚も有
効である。 本発明の高分子化合物の生成反応は酞化的に進
行するずころから、ルむス酞に加え酞化剀を共存
させるこずが必芁である。酞化剀ずしおは高原子
䟡の遷移金属化合物、䟋えば塩化第二銅無氎お
よび含氎、塩化第二鉄、塩化第二錫、塩化モリ
ブデン、塩化タングステンなどの塩化物あるいは
これらに察応する他のハロゲン化物、二酞化マン
ガン、二酞化鉛、酞化第二錫などの酞化物、さら
に過マンガン酞塩等のオキ゜酞塩およびクロラニ
ル、ベンゟキノン、ナフトキノン等の有機酞化
剀、過酢酞、過安息銙酞、メタクロル過安息酞銙
酞等の有機過酞類たたは過酞化氎玠などが甚いら
れるが、䞭でも無氎あるいは含氎塩化第二銅、塩
化第二鉄などが奜適である。これらの酞化剀のう
ち、塩化第二銅などのように反応溶媒ぞの溶解床
が䜎く、充分な効果を発揮しないものを甚いるず
きには、空気䞭の酞玠の助けをかりる、あるいは
助觊媒を䜿甚するこずが効果的である。 このようにしお甚いられる酞化助觊媒ずしお
は、酢酞コバルト、安息銙酞コバルト
、シナり酞コバルトの劂き、コバルト
のカルボン酞塩や、コバルトアセチ
ルアセナヌトのようなコバルトの錯化合物
が有効であるが、マンガン、クロム
等の類䌌化合物もたた有効である。このような助
觊媒を䜿甚するこずにより、本発明の目的ずする
ポリゞアルコキシプニレン類は、極めお収
率よく補造される。 本発明方法においお甚いられる䞍掻性溶媒は、
通垞のフリヌデルクラフツ反応に甚いられるもの
で、ルむス酞類、アリヌルカチオンに䞍掻性な有
機溶媒がいずれも䜿甚可胜であるが、特にニトロ
メタン、ニトロプロパン等のニトロアルカン類、
ニトロベンれン等の芳銙族ニトロ化合物、−ゞ
クロロベンれンなどが奜適である。 䞊蚘のルむス酞、酞化剀、酞化助觊媒及び溶媒
は、特に限定されるこずなしに皮々のくみあわせ
で䜿甚されうるが、特に奜適な䟋ずしおは、ニト
ロベンれン䞭での無氎塩化アルミニりム、塩化第
二銅およびコバルト系助觊媒の䜿甚、あるいはニ
トロアルカン類䞭での塩化第二鉄の䜿甚などがあ
げられる。 反応に䜿甚される溶媒量は、ゞアルコキシベン
れン重量郚に察し通垞〜20重量郚であるが、
この溶媒量はゞアルコキシベンれンの溶媒に察す
る溶解床及び経枈的理由によ぀お倉曎されうる。 本発明においお䜿甚されるルむス酞の量は、ゞ
アルコキシベンれンモルに察し、〜モルで
あるが、䜿甚されるルむス酞の溶媒に察する溶解
床あるいは掻性によ぀おも倉化する。たずえば塩
化アルミニりムを䜿甚する堎合は、アルコキシベ
ンれンず等モルで良い収率を䞎えるが、塩化チタ
ンや塩化第二鉄を䜿甚する時は、〜2.5モルず
い぀た過剰量が望たしい。 たた、酞化剀は、分子のゞアルコキシベンれ
ンがポリマヌ鎖䞭に導入されるずき、氎玠原子
぀がHClずな぀お倱われるため、少なくずも圓
量の酞化剀が必芁ずされる。すなわち、塩化第二
鉄や塩化第二銅を䜿甚する時は、モルのゞアル
コキシベンれンに察し、モルの酞化剀が必芁で
あるが、塩化第二銅のように溶媒に難溶な酞化剀
を䜿甚する時や、溶媒に易溶な塩化第二鉄を甚い
る堎合であ぀おも、より短時間で反応を完結した
い堎合などは、適圓量増量させるこずも有効であ
る。この増量分は、䞻ずしお操䜜䞊の理由あるい
は経枈的な理由においお決定されるが、䞀般的に
は、圓量たで増量させおもよい。しかしなが
ら、この酞化剀の増量が奜たしくない堎合には、
ゞアルコキシベンれンモルに察しお200か
ら10ずい぀たわずかな量の助觊媒の䜿甚によ
぀お、これを回避するこずもできる。すなわちル
むス酞に塩化アルミニりム、酞化剀に塩化第二銅
を遞んだ系では、助觊媒を䜿甚しない堎合の収率
が20〜30であるのに察し、助觊媒、䟋えばコバ
ルトアセチルアセトナヌトをゞアルコキシ
ベンれンモルに察し、20モルを䜿甚した堎
合、収率は50〜60に増加する。この助觊媒の䜿
甚は、わずかな量で飛躍的に収率が増倧する利点
もあるが、反面、重合反応過皋においお、アルコ
キシ基からのアルキル基の脱離によるプノヌル
性氎酞基の生成をひきおこすこずがわか぀た。こ
の副次反応は赀倖スペクトルにおいおわずかに認
められるにすぎず、熱的、電気的あるいは機械的
性質は助觊媒を䜿甚しないものず比范しおなんら
劣るものではないが、このポリマヌを䜿甚する埮
量のプノヌル性氎酞基の存圚が障碍ずなる堎合
には、ポリマヌ単離埌、ゞアルキル硫酞、ハロゲ
ン化アルキル、パラトル゚ンスルホン酞アルキル
等のアルキル化剀により容易にプノヌル性氎酞
基をもたないポリゞアルコキシプニレンに
誘導するこずが可胜である。本発明の重合反応に
おいお奜たしい反応条件は、発生する塩化氎玠は
系倖ぞ陀去しうるように圧力を10mmHgずい぀た
枛圧状態にするこずである。反応時の系内圧力が
垞圧に近づくに぀れお、觊媒に由来するハロゲン
原子の芳銙環䞊ぞの眮換導入や、アルコキシ基か
らのアルキル基の脱離がおこりやすくなるが、10
mmHgより䜎くしおも、効果が特に倉らない。操
䜜䞊の問題から通垞10mmHgから40mmHg皋床が適
圓である。 反応枩床は、−30℃から100゜たでの間ずするこ
ずができるが、反応枩床の䞊昇は、觊媒に由来す
るハロゲンの芳銙環䞊ぞの眮換導入や、アルキル
基の脱離をひきおこすので有利ではなく、䞀方あ
たりに䜎枩で反応をおこなうず、ゞアルコキシベ
ンれンの溶媒ぞの溶解床が䜎䞋しお反応速床が遅
くなるため有利ではない。したが぀お奜たしくは
0゜から40゜、特に宀枩付近で反応を行なうこずが
操䜜䞊最も有利である。 反応時間は、ゞアルコキシベンれンの皮類によ
぀お倉化するが、反応の完結は、もはや塩化氎玠
ガスの発生が認められなくな぀た時ず考えられ、
それに芁する時間は、30分から時間である。長
時間にわた぀お反応を継続するこずも可胜である
が、特に有利ずなるわけではない。 このように埗られるポリゞアルコキシプニ
レンは、ポリプニレン系高分子に特有な耐熱
性を損なうこずなく、衚−に瀺す劂き融点を有
しおおり、加工性にすぐれおいる。融点は、アル
コキシ基を圢成する盎鎖アルキル郚の鎖長により
特有の倀を瀺す。たた、アルコキシ基䞭の盎鎖ア
ルキル基の鎖長を長くするこずにより、汎甚有機
溶媒、䟋えばトル゚ン、ゞメチルホルムアミド等
にも可溶ずなり、キダスト法による成膜が可胜ず
なる。これらの特長はいずれも埓来のポリプニ
レン系高分子化合物にみられないものであり、本
発明により提䟛されるポリゞアルコキシプニ
レンは極めお有甚な高分子材料ずいえる。 以䞋、実斜䟋により本発明を説明する。 実斜䟋  あらかじめ無氎塩化第二鉄19.4を溶解したニ
トロメタン50ml䞭に、ニトロメタン50mlに溶解し
た−メトキシ゚トキシベンれン6.3を、反応
噚䞭の内圧が20〜40mmHg、内枩が20゜〜35℃に保
たれるよう泚意深く滎䞋する。終了埌時間、そ
のたたの状態においたのち、内容物をメタノヌル
500ml䞭にあけ、時間、宀枩でかくはんする。
䞍溶物を取し、これを3Nå¡©é…ž300mlで回、加
熱かくはん䞋で掗浄し、その埌氎500mlで掗浄す
る。次いで真空也燥噚で100℃で時間也燥しお、
淡耐色粉末ずしおポリメトキシ゚トキシプニ
レン3.96を埗る。融点、熱重量分析TGA
結果、粘床枬定結果および元玠分析結果を衚に瀺
す。たたこのポリマヌの赀倖吞収スペクトル
IRチダヌトを図−に瀺す。 実斜䟋  無氎塩化アルミニりム13.4、無氎塩化第二銅
13.5、コバルトアセチルアセトナヌト
1.28をニトロベンれン50ml䞭でよくかくはん
し、ここに50mlのニトロベンれンに溶かしたメト
キシ゚トキシベンれン15.2を、枛圧䞋、内圧が
20〜35mmHg、内枩が20〜35゜ずなるように調節し
ながら滎䞋する。終了埌時間そのたたの状態に
おき、内容物をメタノヌル500mlにあけ、時間
宀枩でかくはんする。䞍溶物を取した埌、これ
を3Nå¡©é…ž300mlで回、加熱かくはん䞋で掗浄
し、぀づいお氎500mlで掗浄する。真空也燥噚䞭
で100℃で時間枛圧也燥し、淡耐色粉末ずしお
ポリメトキシ゚トキシプニレン3.64を埗
る。融点、TGA分析結果、粘床枬定結果および
元玠分析結果を衚に瀺す。このポリマヌのIRチ
ダヌトを図−に瀺す。このチダヌトは3400cm-1
付近に氎酞基に垰属する吞収をわずかに認める他
は、実斜䟋のものずほずんど䞀臎した。 実斜䟋  −メトキシ゚トキシベンれン6.3のかわり
に−メトキシプロポキシベンれン6.8を甚い
る他は実斜䟋ず同様に反応を行ない、淡耐色ポ
リマヌ5.82を埗る。融点、TGA分析結果、粘
床枬定結果および元玠分析結果を衚に瀺す。ポリ
マヌのIRチダヌトを図−に瀺す。 実斜䟋  −メトキシ゚トキシベンれン6.3のかわり
に−メトキシブトキシベンれン7.4を甚いる
他は実斜䟋ず同様に反応を行い、淡耐色ポリマ
ヌ5.0を埗る。融点、TGA分析結果、粘床枬定
結果および元玠分析結果を衚−に瀺す。たたこ
のポリマヌのIRチダヌトは図−に瀺す。 実斜䟋乃至で埗られたポリマヌの性状をた
ずめお衚瀺する。衚䞭の各項目に぀いお以䞋に説
明する。 融点融点枬定噚で枬定したたたの倀であり補正
は行぀おいない。 TGA分析結果玄mgの詊料をずり、空気䞭で
℃minの昇枩速床で枬定した。重量枛
少枩床を䞊段に、50重量枛少枩床を䞋段に瀺
す。 元玠分析結果いずれの詊料からも塩玠原子は怜
出されなか぀た。䞊段に芳枬倀、䞋段 内
に蚈算倀を瀺す。 極限粘床詊料を濃床0.1から0.6100
mlの範囲で濃硫酞に溶解し、埗られるηsp
の曲線を→に倖挿するこずにより極限粘
床〔η〕を求めた。
[Formula] has good heat resistance with a decomposition temperature of 550℃, but it is infusible and insoluble and has poor processability, so the characteristics of the polymer cannot be utilized, and powder metallurgy methods are slightly required as a processing method. It is only suggested. As a result of searching for a new polyphenylene material with excellent heat resistance, the present invention succeeded in producing poly(dialkoxyphenylene) with excellent heat resistance and processability. It has recently been reported that unsubstituted polyphenylene can be given extremely high conductivity as an organic compound through doping, etc.
In the polymer compounds according to the present invention, the electron density on the aromatic ring is improved due to the presence of an alkoxy substituent, so high conductivity can be imparted by similar doping. The poly(dialkoxyphenylene) proposed by the present invention can be produced by polymerizing paradylalkoxybenzene represented by general formula (2). The raw material paradialkoxybenzene is
For example, when one of the alkoxy groups is a methoxy group, para-methoxyalkoxybenzene can be used to convert the hydroxyl group of hydroquinone monomethyl ether used as a polymerization inhibitor into hydrocarbon-based, ether-based,
In a ketone-based solvent, using a base such as alkali carbonate or alkali hydroxide as a deoxidizing agent, and using an alkylating agent such as dialkyl sulfuric acid, alkyl paratoluenesulfonate, alkyl bromide, alkyl iodide, or alkyl chloride. By alkylation, it can be produced easily and at low cost. This method for producing methoxyalkoxybenzene is similar to the method for producing dialkoxybenzene from hydroquinone, but since the raw material hydroquinone monomethyl ether is more stable under basic conditions than hydroquinone, methoxyalkoxybenzene Since benzene can be obtained with good yield and purity, the production of polymer compounds using benzene as a raw material is extremely advantageous industrially. Polymerization of dialkoxybenzene is also possible by a known method for producing polyphenylene, but this method has a low yield, and moreover, the halogen atom due to the catalyst is introduced into the aromatic nucleus of the main chain, or the reaction The heat resistance of the polymer produced is poor due to factors such as the change of alkoxy groups into hydroxyl groups due to the elimination of alkyl groups during processing and processing, and it is impossible to create a product that can be used as a polymeric material for molding. I can't. As a result of intensive research aimed at improving these drawbacks, the present inventor discovered the polymerization method described in the present invention, making it possible to provide a new and useful polymeric material. In the method of the present invention, dialkoxybenzene represented by general formula (2) is polymerized in an inert solvent in the presence of a Lewis acid and an oxidizing agent under reduced pressure. As the Lewis acid used in the method of the present invention, any one used in cationic polymerization or coordination polymerization can be suitably used. Such Lewis acids include anhydrous aluminum chloride, anhydrous ferric chloride, anhydrous titanium chloride (N),
Anhydrous stannic chloride, anhydrous molybdenum chloride, anhydrous tungsten chloride, anhydrous antimony (V) chloride, boron fluoride, boron fluoride etherate, and the like are used, and anhydrous aluminum chloride and anhydrous ferric chloride are particularly preferred. It is also effective to use other halides such as metal bromides corresponding to the metal chlorides. Since the production reaction of the polymer compound of the present invention proceeds in an oxidative manner, it is necessary to coexist an oxidizing agent in addition to the Lewis acid. Oxidizing agents include high valence transition metal compounds, such as chlorides such as cupric chloride (anhydrous and hydrated), ferric chloride, tin chloride, molybdenum chloride, tungsten chloride, or other corresponding halogens. oxides such as manganese dioxide, lead dioxide, and stannic oxide, as well as oxoacid salts such as permanganate, organic oxidizing agents such as chloranil, benzoquinone, and naphthoquinone, peracetic acid, perbenzoic acid, and methachloroperbenzoic acid. Organic peracids such as aromatic acid or hydrogen peroxide are used, and among them, anhydrous or hydrated cupric chloride, ferric chloride, etc. are preferable. Among these oxidizing agents, when using oxidizing agents such as cupric chloride, which have low solubility in the reaction solvent and do not exhibit sufficient effects, it is recommended to use oxygen in the air or use a promoter. is effective. Oxidation cocatalysts used in this manner include carboxylic acid salts of cobalt (), such as cobalt () acetate, cobalt () benzoate, cobalt () oxalate, and cobalt () such as cobalt () acetylacenate. Complex compounds of () are effective, but manganese (), chromium ()
Similar compounds are also effective. By using such a co-catalyst, the poly(dialkoxyphenylene) which is the object of the present invention can be produced in extremely high yield. The inert solvent used in the method of the present invention is
Any organic solvent that is used in a normal Friedel-Crafts reaction and is inert to Lewis acids and aryl cations can be used, but in particular, nitroalkanes such as nitromethane and nitropropane,
Aromatic nitro compounds such as nitrobenzene, O-dichlorobenzene, etc. are suitable. The above Lewis acids, oxidizing agents, oxidation cocatalysts and solvents may be used in various combinations without particular limitation, but particularly preferred examples include anhydrous aluminum chloride, sulfuric acid chloride in nitrobenzene, etc. These include the use of copper and cobalt based promoters, or the use of ferric chloride in nitroalkanes. The amount of solvent used in the reaction is usually 1 to 20 parts by weight per 1 part by weight of dialkoxybenzene.
This amount of solvent can be varied depending on the solubility of the dialkoxybenzene in the solvent and economic considerations. The amount of Lewis acid used in the present invention is 1 to 5 mol per 1 mol of dialkoxybenzene, but it also varies depending on the solubility or activity of the Lewis acid used in the solvent. For example, when aluminum chloride is used, a good yield can be obtained with equimolar amounts of alkoxybenzene, but when titanium chloride or ferric chloride is used, an excess amount of 2 to 2.5 moles is desirable. In addition, when one molecule of dialkoxybenzene is introduced into the polymer chain, the oxidizing agent
At least 2 equivalents of oxidizing agent are required, as oxidizing agent is lost to HCl. In other words, when using ferric chloride or cupric chloride, 2 moles of oxidizing agent are required per 1 mole of dialkoxybenzene, but oxidizing agents that are poorly soluble in solvents such as cupric chloride Even when using ferric chloride, which is easily soluble in a solvent, it is effective to increase the amount appropriately when it is desired to complete the reaction in a shorter time. The amount to be increased is determined primarily for operational or economic reasons, but generally it may be increased up to 5 equivalents. However, if increasing the amount of oxidizing agent is not desirable,
This can also be avoided by using a small amount of cocatalyst, such as 1/200 to 1/10 per mole of dialkoxybenzene. In other words, in a system in which aluminum chloride is selected as the Lewis acid and cupric chloride is selected as the oxidizing agent, the yield is 20 to 30% when no cocatalyst is used. When 1/20 mole of is used per mole of dialkoxybenzene, the yield increases to 50-60%. The use of this cocatalyst has the advantage of dramatically increasing the yield with a small amount; however, on the other hand, it may cause the formation of phenolic hydroxyl groups due to the elimination of alkyl groups from alkoxy groups during the polymerization reaction process. I understand. This side reaction is only slightly observed in the infrared spectrum, and the thermal, electrical, or mechanical properties are not inferior in any way to those without cocatalysts; If the presence of phenolic hydroxyl groups in the poly(dialkoxy) group poses a problem, after isolation of the polymer, the poly(dialkoxy phenylene). Preferred reaction conditions for the polymerization reaction of the present invention are to reduce the pressure to 10 mmHg so that the generated hydrogen chloride can be removed from the system. As the internal pressure during the reaction approaches normal pressure, substitution introduction of halogen atoms derived from the catalyst onto aromatic rings and elimination of alkyl groups from alkoxy groups become more likely to occur.
Even if it is lower than mmHg, the effect does not change significantly. Due to operational issues, a range of 10 mmHg to 40 mmHg is usually appropriate. The reaction temperature can be between -30°C and 100°C, but increasing the reaction temperature is not advantageous because it causes substitution of halogen derived from the catalyst onto the aromatic ring and elimination of the alkyl group. On the other hand, if the reaction is carried out at too low a temperature, the solubility of dialkoxybenzene in the solvent will decrease and the reaction rate will become slow, which is not advantageous. Therefore preferably
It is most advantageous in terms of operation to carry out the reaction at an angle of 0° to 40°, particularly around room temperature. The reaction time varies depending on the type of dialkoxybenzene, but the reaction is considered to be completed when hydrogen chloride gas is no longer generated.
The time required for this is 30 minutes to 2 hours. It is possible to continue the reaction for a long time, but this is not particularly advantageous. The poly(dialkoxyphenylene) thus obtained has a melting point as shown in Table 1 without impairing the heat resistance characteristic of polyphenylene polymers, and has excellent processability. The melting point shows a specific value depending on the chain length of the linear alkyl moiety forming the alkoxy group. Furthermore, by increasing the chain length of the straight-chain alkyl group in the alkoxy group, it becomes soluble in general-purpose organic solvents such as toluene, dimethylformamide, etc., and film formation by the casting method becomes possible. All of these features are not found in conventional polyphenylene-based polymer compounds, and the poly(dialkoxyphenylene) provided by the present invention can be said to be an extremely useful polymer material. The present invention will be explained below with reference to Examples. Example 1 6.3 g of P-methoxyethoxybenzene dissolved in 50 ml of nitromethane was added to 50 ml of nitromethane in which 19.4 g of anhydrous ferric chloride had been dissolved in advance, and the internal pressure in the reactor was 20 to 40 mmHg and the internal temperature was 20 to 35 mmHg. Drop carefully to maintain temperature. After leaving it for 1 hour, drain the contents with methanol.
Pour into 500ml and stir at room temperature for 1 hour.
The insoluble matter is taken out and washed three times with 300 ml of 3N hydrochloric acid under heating and stirring, and then washed with 500 ml of water. Then, it was dried in a vacuum dryer at 100℃ for 6 hours.
3.96 g of poly(methoxyethoxyphenylene) is obtained as a light brown powder. Melting point, thermogravimetric analysis (TGA)
The results, viscosity measurement results and elemental analysis results are shown in the table. Figure 1 shows the infrared absorption spectrum (IR chart) of this polymer. Example 2 13.4 g of anhydrous aluminum chloride, anhydrous cupric chloride
13.5g, cobalt() acetylacetonate
Stir 1.28g well in 50ml of nitrobenzene, then add 15.2g of methoxyethoxybenzene dissolved in 50ml of nitrobenzene under reduced pressure until the internal pressure
Drop while adjusting so that the internal temperature is 20-35mmHg and 20-35°. After finishing, leave as it is for 1 hour, pour the contents into 500 ml of methanol, and stir at room temperature for 1 hour. After removing the insoluble matter, it is washed three times with 300 ml of 3N hydrochloric acid under heating and stirring, and then washed with 500 ml of water. Dry under reduced pressure in a vacuum dryer at 100° C. for 6 hours to obtain 3.64 g of poly(methoxyethoxyphenylene) as a light brown powder. The melting point, TGA analysis results, viscosity measurement results, and elemental analysis results are shown in the table. Figure 2 shows the IR chart of this polymer. This chart is 3400cm -1
The result was almost identical to that of Example 1, except for a slight absorption attributed to hydroxyl groups in the vicinity. Example 3 The reaction was carried out in the same manner as in Example 1 except that 6.8 g of P-methoxypropoxybenzene was used instead of 6.3 g of P-methoxyethoxybenzene to obtain 5.82 g of a light brown polymer. The melting point, TGA analysis results, viscosity measurement results, and elemental analysis results are shown in the table. Figure 3 shows the IR chart of the polymer. Example 4 The reaction was carried out in the same manner as in Example 1, except that 7.4 g of P-methoxybutoxybenzene was used instead of 6.3 g of P-methoxyethoxybenzene, to obtain 5.0 g of a light brown polymer. Table 1 shows the melting point, TGA analysis results, viscosity measurement results, and elemental analysis results. The IR chart of this polymer is shown in Figure 4. The properties of the polymers obtained in Examples 1 to 4 are summarized. Each item in the table will be explained below. Melting point: The value is as measured by a melting point measuring device and has not been corrected. TGA analysis results: Approximately 5 mg of sample was taken and measured in air at a heating rate of 1°C/min. The 5% weight loss temperature is shown in the upper row, and the 50% weight loss temperature is shown in the lower row. Elemental analysis results: No chlorine atoms were detected in any of the samples. Observed values are shown in the upper row, and calculated values are shown in parentheses in the lower row. Intrinsic viscosity: Sample concentration (C) 0.1 to 0.6 (g/100
ml) in concentrated sulfuric acid, the resulting ηsp/
The intrinsic viscosity [η] was determined by extrapolating the curve c to C→0.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図及びははそれぞれ実斜䟋
及びにおいお埗られた本発明のポリマヌ
の赀倖吞収スペクトルを瀺す。
1, 2, 3 and 4 are Example 1, respectively.
2 shows the infrared absorption spectra of the polymers of the present invention obtained in Sections 2, 3, and 4.

Claims (1)

【特蚱請求の範囲】  実質的に匏 匏䞭及びR′は互に異なる炭玠数乃至
のアルキル基をあらわす。 を繰り返し単䜍ずするポリゞアルコキシプニ
レン。  匏(1)のがメチル基、R′が゚チル基であり、
濃硫酞䞭の極限粘床〔η〕が0.08乃至1.00である
特蚱請求の範囲第項蚘茉の高分子化合物。  匏(1)のがメチル基、R′がノルマルプロピ
ル基であり、濃硫酞䞭の極限粘床〔η〕が0.08乃
至1.00である特蚱請求の範囲第項蚘茉の高分子
化合物。  匏(1)のがメチル基、R′がノルマルブチル
基であり、濃硫酞䞭の極限粘床〔η〕が0.08乃至
1.50である特蚱請求の範囲第項蚘茉の高分子化
合物。  䞀般匏 匏䞭及びR′は互に異なる炭玠数乃至
のアルキル基をあらわす。 で瀺されるゞアルコキシベンれンを䞍掻性溶媒
䞭、ルむス酞及び酞化剀の存圚䞋に、枛圧状態で
重合せしめるこずを特城ずするポリゞアルコキ
シプニレンの補造方法。  酞化助觊媒の共存䞋に重合を行う特蚱請求の
範囲第項蚘茉のポリゞアルコキシプニレ
ンの補造方法。
[Claims] 1. Substantially the formula (In the formula, R and R' are different numbers of carbon atoms from 1 to 5.
represents an alkyl group. ) is a repeating unit of poly(dialkoxyphenylene). 2 R in formula (1) is a methyl group, R' is an ethyl group,
The polymer compound according to claim 1, which has an intrinsic viscosity [η] of 0.08 to 1.00 in concentrated sulfuric acid. 3. The polymer compound according to claim 1, wherein R in formula (1) is a methyl group, R' is a normal propyl group, and the intrinsic viscosity [η] in concentrated sulfuric acid is 0.08 to 1.00. 4 In formula (1), R is a methyl group, R' is a n-butyl group, and the intrinsic viscosity [η] in concentrated sulfuric acid is 0.08 to
1.50, the polymer compound according to claim 1. 5 General formula (In the formula, R and R' are different numbers of carbon atoms from 1 to 5.
represents an alkyl group. 1. A method for producing poly(dialkoxyphenylene), which comprises polymerizing dialkoxybenzene represented by the following formula in an inert solvent in the presence of a Lewis acid and an oxidizing agent under reduced pressure. 6. The method for producing poly(dialkoxyphenylene) according to claim 5, wherein the polymerization is carried out in the coexistence of an oxidation promoter.
JP4900482A 1981-12-28 1982-03-29 Novel polyphenylene-based high polymer compound and its preparation Granted JPS58167615A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4900482A JPS58167615A (en) 1982-03-29 1982-03-29 Novel polyphenylene-based high polymer compound and its preparation
DE3248399A DE3248399C2 (en) 1981-12-28 1982-12-28 Polyphenylene polymers and processes for their preparation
US06/453,837 US4404354A (en) 1981-12-28 1982-12-28 Polyphenylene-type polymeric compound and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4900482A JPS58167615A (en) 1982-03-29 1982-03-29 Novel polyphenylene-based high polymer compound and its preparation

Publications (2)

Publication Number Publication Date
JPS58167615A JPS58167615A (en) 1983-10-03
JPH035412B2 true JPH035412B2 (en) 1991-01-25

Family

ID=12819025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4900482A Granted JPS58167615A (en) 1981-12-28 1982-03-29 Novel polyphenylene-based high polymer compound and its preparation

Country Status (1)

Country Link
JP (1) JPS58167615A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113221A (en) * 1981-12-28 1983-07-06 Dainippon Ink & Chem Inc Novel polyphenylene polymer
JPS58145726A (en) * 1982-02-25 1983-08-30 Dainippon Ink & Chem Inc Production of poly(dialkoxyphenylene)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113221A (en) * 1981-12-28 1983-07-06 Dainippon Ink & Chem Inc Novel polyphenylene polymer
JPS58145726A (en) * 1982-02-25 1983-08-30 Dainippon Ink & Chem Inc Production of poly(dialkoxyphenylene)

Also Published As

Publication number Publication date
JPS58167615A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
EP0124276B1 (en) Preparation of aromatic polymers
US4709007A (en) Preparation of aromatic polymers
JPH0460137B2 (en)
JPH035412B2 (en)
US4599452A (en) Chemical process
JP3736992B2 (en) (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether compound and fluorine-containing aryl ether ketone polymer
US4404354A (en) Polyphenylene-type polymeric compound and process for production thereof
US4434285A (en) Polyphenylene-type polymeric compound and process for production thereof
JP3738525B2 (en) Poly (phenylene) having ethylene oxide chain in side chain and method for producing the same
US4912195A (en) Preparation of aromatic polymers using a specified quantity of Lewis acid
JPS58145726A (en) Production of poly(dialkoxyphenylene)
JP3020006B2 (en) Method for producing polyarylene thioether
Freund et al. Perfluoroalkylated monomers and polymers
JPS62178B2 (en)
JPH0753681A (en) Carbazole compound and its oxidative polymerization product
JP3862318B2 (en) Process for producing poly-1,4-phenylene ether
EP0495350B1 (en) Process for the preparation of 4,4'-bis(4-chlorobenzoyl)benzophenone
JPS60101119A (en) Production of aromatic polyether-ketone
JP4377026B2 (en) Method for producing crystalline poly (2,5-disubstituted-1,4-phenylene oxide) and catalyst used therefor
JP3798848B2 (en) Process for producing poly-1,4-phenylene ether
JPS63317A (en) Production of aromatic poly(thio)ether-ketone
JP4042171B2 (en) Process for producing poly-1,4-phenylene ether
JP3758234B2 (en) Process for producing poly-1,4-phenylene ether
JP3729558B2 (en) Process for producing poly-1,4-phenylene ether
JP2970392B2 (en) Poly (hydrosilane) composition