JPH0354121B2 - - Google Patents

Info

Publication number
JPH0354121B2
JPH0354121B2 JP11524682A JP11524682A JPH0354121B2 JP H0354121 B2 JPH0354121 B2 JP H0354121B2 JP 11524682 A JP11524682 A JP 11524682A JP 11524682 A JP11524682 A JP 11524682A JP H0354121 B2 JPH0354121 B2 JP H0354121B2
Authority
JP
Japan
Prior art keywords
monomer
polymerization
present
polymer
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11524682A
Other languages
Japanese (ja)
Other versions
JPS596203A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11524682A priority Critical patent/JPS596203A/en
Publication of JPS596203A publication Critical patent/JPS596203A/en
Publication of JPH0354121B2 publication Critical patent/JPH0354121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、炭玠繊維以䞋、CFず略すず有
機重合䜓ずが匷固に合䞀化された新芏重合䜓組成
物の補造法に関する。 ビニルモノマヌの重合に関しおは、ラゞカル重
合、むオン重合、配䜍重合等皮々の重合法が知ら
れおいるが、たずえばラゞカル重合における過酞
化物、過硫酞塩、アゟ化合物等の劂く、䜕らかの
重合開始剀の配合を必芁ずし、あるいはむオ重合
における氎分管理等、工業的に簡䟿な重合方法は
必ずしも倚くない。たた重合開始剀を甚いない無
觊媒重合法が〜件特異な系で報告されおはい
るが、工業的芳点からは、ほずんど実甚に䟛し埗
ないものであ぀た。 本発明者等は、䞊述した珟状に鑑み、鋭意怜蚎
した結果、特定のスルホン酞モノマヌたたはスル
ホン酞塩モノマヌの存圚䞋にラゞカル重合しうる
ビニル単量䜓ず、第成分ずしおCFを接觊せし
める方法により、該単量䜓の重合掻性を著しく高
め、CFず有機重合䜓ずが匷固に合䞀化し、か぀
造粒性の優れた埓来方法では埗られない新芏な重
合䜓組成物が埗られるこずを芋出し、本発明を完
成するに至぀た。 埓来、皮以䞊の玠材の耇合化により、構成玠
材の特性を盞互に補い、新しい有効な機胜を生み
出す耇合材料の開発が盛んに行なわれおいる䞭に
あ぀お、有機重合䜓の充填材ずしお有甚な無機化
合物ずの耇合化に関しおは、䟋えば匟性率、熱倉
圢枩床、電気的特性等広範にわたる性胜改良が報
告されおいる。しかしながらこの堎合、耇合化玠
材盞互の諞性質を著しく異にするため、盞溶性、
接着性等の界面芪和性に乏しく、充分な耇合効果
を発揮するこずができない䞊に、特に粉䜓状の無
機充填材では匷靱性等䞀郚暹脂本来の物性䜎䞋を
免れ埗ないずいう本質的欠点を有しおいる。 この点を改良するために反応性モノマヌの存圚
䞋で無機化合物を粉砕しお有機重合䜓をグラフト
化させる機械化孊的方法、無機化合物に高゚ネル
ギヌ攟射線を照射しお有機重合䜓をグラフト化さ
せる攟射線法等により、有機高分子物質ず無機化
合物ずの界面芪和性を向䞊させる詊みがなされお
いるが、粉砕工皋や攟射線発生装眮等を必芁ず
し、工皋の煩雑化および補造コストの倧巟な増倧
ずなる等、実甚性の面で倧きな問題点を有しおい
る。 この点の改良に぀いお鋭意怜蚎した結果、本発
明者らは特定のスルホン酞モノマヌの存圚䞋で各
皮粉䜓状無機化合物にビニルポリマヌが匷固に合
䞀化した耇合䜓の実甚的補造方法を芋出し、先に
特願昭56−937号を出願した。その埌、さらに怜
蚎を加えた結果、無機化合物ずしおは、CFがず
りわけ重合掻性に富み、界面合䞀性も優れ、しか
も粉䜓状の埮现繊維のみならず、比范的長繊維で
も特異的に顕著な造粒性を瀺すこずを芋出し、本
発明を完成した。 すなわち本発明は、䞋蚘の䞀般匏 匏䞭、R1は、炭玠数〜20のアルキル基、
プニル基およびその誘導䜓たたはハロゲン原
子、はCONH
The present invention relates to a method for producing a novel polymer composition in which carbon fibers (hereinafter abbreviated as CF) and an organic polymer are strongly integrated. Regarding the polymerization of vinyl monomers, various polymerization methods such as radical polymerization, ionic polymerization, and coordination polymerization are known. There are not necessarily many polymerization methods that are industrially easy, such as the need for blending or moisture management during iopolymerization. In addition, although two or three unique systems have been reported for non-catalytic polymerization methods that do not use a polymerization initiator, these methods are almost impossible to put into practical use from an industrial standpoint. In view of the above-mentioned current situation, the present inventors have conducted intensive studies and have discovered a method in which a vinyl monomer capable of radical polymerization is brought into contact with CF as a third component in the presence of a specific sulfonic acid monomer or sulfonate monomer. This method significantly increases the polymerization activity of the monomer, strongly unites CF and organic polymer, and provides a novel polymer composition with excellent granulation properties that cannot be obtained by conventional methods. This finding led to the completion of the present invention. Conventionally, the development of composite materials that mutually complement the properties of the constituent materials and create new effective functions by combining two or more types of materials has been actively conducted. Regarding composites with useful inorganic compounds, a wide range of performance improvements such as elastic modulus, heat distortion temperature, and electrical properties have been reported. However, in this case, the properties of the composite materials differ significantly, so the compatibility,
The essential drawback is that it has poor interfacial affinity such as adhesion, and cannot exhibit sufficient composite effects, and in particular, powdered inorganic fillers inevitably suffer from a decline in some of the resin's inherent physical properties, such as toughness. have. To improve this point, a mechanochemical method involves grinding an inorganic compound in the presence of a reactive monomer to graft an organic polymer, and a radiation method involves irradiating an inorganic compound with high-energy radiation to graft an organic polymer. Attempts have been made to improve the interfacial affinity between organic polymeric substances and inorganic compounds by methods such as methods, but these require pulverization processes, radiation generation equipment, etc., resulting in complicated processes and a significant increase in manufacturing costs. There are major problems in terms of practicality. As a result of intensive research into improving this point, the present inventors discovered a practical method for producing a composite in which vinyl polymer is firmly integrated with various powdered inorganic compounds in the presence of a specific sulfonic acid monomer. First, a patent application No. 1983-937 was filed. Subsequently, as a result of further investigation, it was found that CF has particularly high polymerization activity and excellent interfacial cohesion as an inorganic compound, and that it is particularly noticeable not only in powdered fine fibers but also in relatively long fibers. It was discovered that it exhibits granulation properties, and the present invention was completed. That is, the present invention provides the following general formula (In the formula, R 1 is H, an alkyl group having 1 to 20 carbon atoms,
Phenyl group and its derivatives or halogen atom, X is CONH,

【匏】COO CH2nたたはCH2oであり、R2およびR3はそ
れぞれたたは炭玠数〜15のアルキル基、R4
は炭玠数〜15のアルキレン基、は〜20の敎
数、は〜20の敎数、はNH4たたはア
ルカリ金属原子を瀺すで衚わされるスルホン酞
モノマヌたたはスルホン酞塩モノマヌの存圚䞋
に、か぀CFを分散させた重合系䞭で、少なくず
も皮のラゞカル重合しうるビニル単量䜓を重合
せしめるこずを特城ずするCFず有機重合䜓ずが
匷固に合䞀化された新芏な重合䜓組成物の補造法
を提䟛するものである。 䞀般に、熱重合反応を生じない範囲の枩床条件
で、単に酞存圚䞋でのビニル単量䜓の重合を実斜
する堎合、数日間にも及ぶ重合時間経過埌におい
おも、その重合率は極めお䜎い氎準であるのに察
し、本発明によれば第成分ずしおCFを添加す
るこずにより極めお特異な重合掻性をもたらし、
数時間で実甚的に䟡倀のある高重合率の重合䜓を
埗るこずができる䞊に、気盞重合によるカレツト
生成のない極めおクリヌンな重合圢態をもたらす
ものである。 さらに、本発明の特城ずするずころは、CFの
衚面ず、本発明方法によ぀お斜される重合䜓ずの
間の盞互䜜甚が単玔な吞着などの意味における接
着を超えお匷固に合䞀化される点にある。 たた埮粉状CFはもずより、通垞は集束性の䜎
䞋や繊維間のからみ合いず凝塊化のために媒䜓䞭
の凊理が困難なチペツプドストランド状繊維など
比范的長いCFにも適甚できる点が本発明の倧き
な実甚䟡倀ずいえる。 本発明を実斜するに際しお実斜態様の䞀䟋を挙
げるず、熱重合反応を生じない範囲の枩床条件に
おいお、有機ビニル系モノマヌずCFずを氎媒䜓
䞭に懞濁分散させたあず、スルホン酞モノマヌた
たはスルホン酞塩モノマヌを添加、撹拌するこず
によ぀お氎系䞍均䞀重合反応を生ぜしめ、所定の
重合時間をも぀お高い重合率で該CF衚面を該ビ
ニルモノマヌの重合䜓にお均䞀に、しかも匷固に
固着化させるこずができる。この際、䞊蚘成分
を共存䞋に接觊させるこずが必須条件ずなるが、
必ずしも同時に接觊せしめる必芁はない。即ち、
䟋えばスルホン酞モノマヌたたはスルホン酞塩モ
ノマヌによる前凊理を斜したCFを䜿甚しおも、
本発明方法によりモノマヌの重合時においお新た
なスルホン酞モノマヌたたはスルホン酞塩モノマ
ヌを添加するこずなく、同様な重合䜓組成物を埗
るこずができる。 埓来、亜硫酞氎玠むオンの存圚䞋に、同様の重
合䜓組成物を埗る方法は公知であるが、気盞重合
によるカレツトが倚量に付着し、さらに生成物は
極埮粒子である為、掗浄、回収等の埌工皋が容易
でないずいう工業的実甚性に関する欠点を有しお
いる。これらの問題点に関しお、本発明方法は、
前蚘䞀般匏〔〕で瀺される特定のスルホン酞モ
ノマヌたたはスルホン酞塩モノマヌを䜿甚するこ
ずにより、カレツト生成のほずんどないクリヌン
な重合圢態をもたらし、さらに驚くべきこずに、
生成重合䜓組成物の造粒性が抜矀であるために、
掗浄、回収等の埌工皋の極めお容易な生成物を埗
る方法を提䟛するものである。 本発明に甚いられる特定のスルホン酞モノマヌ
たたはスルホン酞塩モノマヌずしおは、重合掻性
をもたらす掻性サむドずしお、スルホン酞基を有
し、か぀生成ポリマヌずCFずの匷固なる合䞀性
を発珟させる掻性サむドずしおの二重結合の存圚
が必須であり、これら皮類の官胜基を合わせ持
぀た前蚘䞀般匏〔〕で瀺される構造を有する化
合物が適甚でき、その具䜓䟋ずしお−アクリル
アミド−−メチルプロパンスルホン酞以埌、
AMPSず略す、−メタアクリル゚タンスルホ
ン酞ナトリりム以埌、SEM・Naず略す、
−メタアクリルプロパンスルホン酞ナトリりム
以埌、SPSず略す、−プロペンスルホン酞ナ
トリりム以埌、NaASず略す、−メチル−
−プロペンスルホン酞ナトリりム以埌、
NaMSず略す等が挙げられるが、特にアミド
結合を含むAMPS、゚ステル結合を含むSEM・
NaおよびSPS等が顕著な造粒性を発珟し、か぀
重合掻性も高く奜たしい。 本発明に甚いられるCFずしおは、ポリアクリ
ロニトリルたたはその共重合䜓からなる高匷床あ
るいは高匟性CF、石油高枩分解ピツチ、コヌル
タヌルピツチおよび石炭解重合物を原料ずする
CF、さらには気盞成長法によるCFなどが挙げら
れ、炭玠質、黒鉛質CFいずれも適甚可胜である。
たた各皮CFは通垞実斜される衚面酞化凊理を斜
こしおあ぀おもよい。繊維圢態は0.1mm皋床の粉
䜓状のものから〜20mm皋床のアスペクト比の倧
きなチペツプドストランド状のもの迄、広範な繊
維長にわたり䜿甚可胜であり、繊維埄は特に限定
されない。本発明によ぀お埗られる耇合䜓はいず
れも界面接着性が良奜で、か぀取扱い䜜業性の優
れた粒状䜓で埗られる。䞭でもチペツプドストラ
ンド状CFは氎䞭や有機溶剀䞭で撹拌凊理する堎
合、䞀般には単繊維が凝塊化しお暹脂ずブレンド
するこずが困難ずなるが、本発明によればその優
れた造粒性を生かしお条件調節により取扱い䜜業
性の良奜な〜mm皋床のペレツト状のものを埗
るこずができる。特にピツチ系CFの堎合、玄
mm以䞊の繊維長になるずCF自身がすでに綿状で
凝塊化しおいるため、通垞暹脂ずブレンドするこ
ずはできないが、本発明凊方を適甚するず抌出あ
るいは射出成圢加工性の良奜なペレツト状耇合䜓
が埗られるため、界面効果に加えお耇合䜓の圢状
調節手法ずしおも、本発明は極めお特異で実甚䟡
倀が高い。なおロヌビング状長繊維に぀いおも、
静眮凊理あるいはゆるやかな撹拌条件にすれば本
発明の適甚は可胜で優れた界面効果が埗られる。 本発明に甚いられるビニル単量䜓ずしおは、通
垞のラゞカル重合しうるビニル単量䜓はいずれも
適甚できるが、䞭でもメタクリル酞メチルが特異
的に重合掻性が高く、しかも生成重合䜓ずCFず
の合䞀性が良奜であるため特に奜たしい。皮以
䞊の単量䜓の混合物を䜿甚する堎合メタクリル酞
メチルをその䞀成分ずするこずは特に重合掻性の
面から奜たしい適甚法ずいえる。 本発明によれば、スルホン酞モノマヌたたはス
ルホン酞塩モノマヌの濃床は、CFず単量䜓ずの
総重量に基づき玄0.05〜100重量、奜たしくは
0.1〜50重量、特に奜たしくは0.5〜30重量の
量で䜿甚される。倧抵の堎合、単量䜓成分の増加
に応じおスルホン酞モノマヌたたはスルホン酞塩
モノマヌの量を増加させるのが奜たしい。䜿甚す
るCFに察する単量䜓もしくは単量䜓混合物の重
量比は広範囲に倉えるこずができ、玄500乃
至、奜たしくは玄50乃至玄であ
る。氎の量は、CFず単量䜓ずの総重量に基づき
玄乃至数癟倍、奜たしくは玄10〜10倍であ
る。反応は奜たしくは、たずえば窒玠等の䞍掻性
ガスの雰囲気䞋においお枩床玄10〜100℃、奜た
しくは20〜80℃で行なわれる。ここで具䜓的な反
応枩床は甚いるビニルモノマヌによ぀お適宜遞択
されるが、熱重合が無芖できる皋床に抑制される
枩床で実斜するこずが重芁であり、極端に熱重合
がおこる様な高枩で実斜する堎合、生成耇合䜓の
合䞀性および均䞀性は阻害される。反応時間は30
分乃至玄15時間である。生成耇合䜓は玄10〜300
℃、奜たしくは玄50〜200℃の枩床範囲で也燥す
るこずができる。尚、CFの衚面ず本発明方法に
よ぀お斜される重合䜓ずの間の盞互䜜甚は、簡単
な吞着ないしはフアンデルワヌルス力等による物
理的な意味における接着を超えたものであり、こ
の事実はビニルポリマヌの良溶媒で抜出凊理しお
も倚量の未抜出ポリマヌが認められるこずから明
癜である。 次に実斜䟋により本発明をさらに詳现に説明す
る。 実斜䟋、比范䟋〜 冷华管、窒玠導入管、撹拌棒および内枩怜知甚
熱電察をセツトした500ml四぀口フラスコにピツ
チ系黒鉛質CF呉矜化孊工業(æ ª)補クレカチペツプ
M20138.7を脱むオン氎270ml䞭に懞濁、分散
せしめ、30分間窒玠眮換を行な぀た。次いでビニ
ル単量䜓ずしおメタクリル酞メチル30.0を窒玠
の流通䞋に激しく撹拌しながら加えた。次に枩氎
济䞭、䞊蚘反応液を50℃たで昇枩せしめ、該添加
モノマヌの均䞀なる分散状態を確認した呉、スル
ホン酞塩モノマヌずしおSEM・Na6.5を脱むオ
ン氎10mlに溶解した溶液を埐々に加え、同枩にお
時間重合反応を行な぀た。重合終了埌、反応埌
から玄をサンプリングし、ゞオキサンを内郚
暙準詊薬ずしおガスクロマトグラフむヌにお残存
未反応モノマヌ量を定量し重合率を求めた。比范
のためにCFを添加しない堎合、スルホン酞モノ
マヌたたはスルホン酞塩モノマヌを添加しない堎
合、飜和有機スルホン酞である゚タンスルホン酞
を添加した堎合、および亜硫酞氎を添加した堎合
の重合挙動に぀いおも、同様の重合操䜜および重
合埌の評䟡を行ない怜蚎した。結果を第衚に瀺
す。なお郚はすべお重量郚を瀺す。
[Formula] COO (CH 2 ) n or (CH 2 ) o , R 2 and R 3 are each H or an alkyl group having 1 to 15 carbon atoms, R 4
is an alkylene group having 1 to 15 carbon atoms, m is an integer of 1 to 20, n is an integer of 0 to 20, and Y is H, NH 4 or an alkali metal atom). CF and an organic polymer are strongly integrated by polymerizing at least one radically polymerizable vinyl monomer in the presence of CF and in a polymerization system in which CF is dispersed. A method for producing a novel polymer composition is provided. Generally, when vinyl monomers are simply polymerized in the presence of an acid under temperature conditions that do not cause a thermal polymerization reaction, the polymerization rate remains at an extremely low level even after several days of polymerization time. On the other hand, according to the present invention, adding CF as a third component brings about a very specific polymerization activity,
Not only can a polymer with a high polymerization rate of practical value be obtained in a few hours, but also an extremely clean polymerization form without the formation of cullet due to gas phase polymerization. Furthermore, a feature of the present invention is that the interaction between the CF surface and the polymer applied by the method of the present invention goes beyond adhesion in the sense of simple adsorption and is strongly integrated. It is at the point where it is done. In addition to fine powder CF, it can also be applied to relatively long CF such as chopped strand fibers, which are normally difficult to process in a medium due to reduced cohesiveness, entanglement and agglomeration between fibers. This can be said to be a great practical value of the present invention. To give an example of an embodiment when carrying out the present invention, an organic vinyl monomer and CF are suspended and dispersed in an aqueous medium under temperature conditions that do not cause a thermal polymerization reaction, and then a sulfonic acid monomer or sulfonate is added. By adding and stirring the acid salt monomer, an aqueous heterogeneous polymerization reaction is caused, and the CF surface is uniformly and firmly covered with the vinyl monomer polymer at a high polymerization rate over a predetermined polymerization time. It can be fixed. At this time, it is an essential condition that the three components mentioned above are brought into contact with each other in coexistence.
They do not necessarily need to be brought into contact at the same time. That is,
For example, using CF pretreated with sulfonic acid or sulfonate monomers
By the method of the present invention, similar polymer compositions can be obtained without adding new sulfonic acid monomers or sulfonate monomers during the polymerization of the monomers. Conventionally, a method for obtaining a similar polymer composition in the presence of hydrogen sulfite ions is known, but since a large amount of cullet from gas phase polymerization adheres and the product is extremely fine particles, washing, recovery, etc. are difficult. It has a disadvantage in terms of industrial practicality in that post-processing is not easy. Regarding these problems, the method of the present invention
By using the specific sulfonic acid monomer or sulfonate monomer represented by the above general formula [], a clean polymerization form with almost no cullet formation is obtained, and more surprisingly,
Because the resulting polymer composition has excellent granulation properties,
This provides a method for obtaining a product with extremely easy post-processes such as washing and recovery. The specific sulfonic acid monomer or sulfonate monomer used in the present invention has a sulfonic acid group as an active side that brings about polymerization activity, and an active side that exhibits strong union between the produced polymer and CF. The presence of a double bond is essential, and compounds having the structure represented by the above general formula [] that have both of these two types of functional groups can be applied, and a specific example thereof is 2-acrylamide-2-methylpropane. Sulfonic acid (hereinafter referred to as
AMPS), sodium 2-methacrylethanesulfonate (hereinafter abbreviated as SEM・Na), 3
-Sodium methacrylicpropanesulfonate (hereinafter abbreviated as SPS), sodium 2-propenesulfonate (hereinafter abbreviated as NaAS), 2-methyl-
Sodium 2-propenesulfonate (hereinafter referred to as
(Abbreviated as NaMS), etc., but especially AMPS containing amide bonds, SEM and
Na, SPS, and the like are preferred because they exhibit remarkable granulation properties and have high polymerization activity. The CF used in the present invention includes high-strength or high-elasticity CF made of polyacrylonitrile or its copolymer, petroleum high-temperature cracking pitch, coal tar pitch, and coal depolymerized products as raw materials.
Examples include CF and CF produced by vapor phase growth, and both carbonaceous and graphitic CF are applicable.
Further, various types of CF may be subjected to a commonly performed surface oxidation treatment. A wide range of fiber lengths can be used, from a powdery one of about 0.1 mm to a chopped strand with a large aspect ratio of about 3 to 20 mm, and the fiber diameter is not particularly limited. All of the composites obtained by the present invention are obtained in the form of granules that have good interfacial adhesion and are easy to handle. Among them, when chopped strand-like CF is stirred in water or an organic solvent, the single fibers generally coagulate and are difficult to blend with resin, but according to the present invention, the excellent granulation By taking advantage of this property and adjusting the conditions, it is possible to obtain pellets of about 1 to 5 mm that are easy to handle and work. Especially in the case of pitch-type CF, about 1
When the fiber length exceeds mm, the CF itself is already flocculent and agglomerated, so it cannot normally be blended with resin, but when the formulation of the present invention is applied, a pellet-like composite with good extrusion or injection molding processability is obtained. Therefore, in addition to the interfacial effect, the present invention is extremely unique and has high practical value as a method for controlling the shape of composites. Regarding roving-like long fibers,
The present invention can be applied by static treatment or gentle stirring conditions, and excellent interfacial effects can be obtained. As the vinyl monomer used in the present invention, any ordinary vinyl monomer that can be radically polymerized can be used, but among them, methyl methacrylate has a particularly high polymerization activity, and moreover, it has a high polymerization activity. It is particularly preferred because of its good coalescence properties. When a mixture of two or more monomers is used, it is preferable to use methyl methacrylate as one component, particularly from the viewpoint of polymerization activity. According to the invention, the concentration of sulfonic acid monomer or sulfonate monomer is about 0.05 to 100% by weight based on the total weight of CF and monomer, preferably
It is used in amounts of 0.1 to 50% by weight, particularly preferably 0.5 to 30% by weight. In most cases, it is preferred to increase the amount of sulfonic acid or sulfonate monomer as the monomer component increases. The weight ratio of monomer or monomer mixture to CF used can vary within a wide range and is from about 500:1 to 1:5, preferably from about 50:1 to about 1:1. The amount of water is about 1% to several hundred times, preferably about 10% to 10 times, based on the total weight of CF and monomer. The reaction is preferably carried out at a temperature of about 10-100°C, preferably 20-80°C, under an atmosphere of an inert gas, such as nitrogen. The specific reaction temperature here is selected as appropriate depending on the vinyl monomer used, but it is important to conduct the reaction at a temperature that suppresses thermal polymerization to a negligible degree, and not at a high temperature that would cause extremely thermal polymerization. When carried out, the integrity and homogeneity of the resulting complex is inhibited. reaction time is 30
minutes to about 15 hours. The generated complexes are approximately 10-300
℃, preferably in the temperature range of about 50 to 200℃. Note that the interaction between the CF surface and the polymer applied by the method of the present invention goes beyond adhesion in a physical sense due to simple adsorption or van der Waals forces, and this fact This is clear from the fact that a large amount of unextracted polymer is observed even after extraction treatment with a good solvent for vinyl polymer. Next, the present invention will be explained in more detail with reference to Examples. Example 1, Comparative Examples 1 to 6 A 500 ml four-necked flask equipped with a cooling tube, a nitrogen introduction tube, a stirring rod, and a thermocouple for detecting internal temperature was charged with a pitch-based graphite CF (Kureka Tippu manufactured by Kureha Chemical Industry Co., Ltd.).
38.7 g of M201) was suspended and dispersed in 270 ml of deionized water, and the mixture was purged with nitrogen for 30 minutes. Next, 30.0 g of methyl methacrylate as a vinyl monomer was added under nitrogen flow and vigorous stirring. Next, the temperature of the above reaction solution was raised to 50°C in a hot water bath, and a uniform dispersion state of the added monomer was confirmed. The mixture was gradually added and the polymerization reaction was carried out at the same temperature for 8 hours. After the polymerization was completed, about 2 g was sampled after the reaction, and the amount of remaining unreacted monomer was determined by gas chromatography using dioxane as an internal standard reagent to determine the polymerization rate. For comparison, we also looked at the polymerization behavior when no CF was added, when no sulfonic acid monomer or sulfonate monomer was added, when ethanesulfonic acid, which is a saturated organic sulfonic acid, was added, and when sulfite water was added. Similar polymerization operations and post-polymerization evaluations were conducted. The results are shown in Table 1. All parts are by weight.

【衚】【table】

【衚】 第衚から明らかな様に、比范䟋に瀺すスル
ホン酞モノマヌたたはスルホン酞塩モノマヌを添
加しない系では重合掻性を党く瀺さず、たたスル
ホン酞モノマヌたたはスルホン酞塩モノマヌずビ
ニル単量䜓ずの単なる成分系では重合掻性が極
めお䜎いのに察し、第成分ずしおCFを添加す
る本発明方法により単量䜓重合率が顕著に高たる
䞀方、比范䟋に瀺す埓来の亜硫酞氎による重合
系は単量䜓重合率が高いものの、カレツト付着及
び二次凝集性胜等の重合状況が、本発明方法に比
范しお著しく劣り、本発明方法により、実甚性が
飛躍的に向䞊するこずを瀺しおいる。 実斜䟋〜、比范䟋〜 実斜䟋においおスルホン酞モノマヌたたはス
ルホン酞塩モノマヌずしおSEM・Naのかわりに
SPSAMPSNaASNaMSを䜿甚した以倖は
党く実斜䟋ず同様にしお重合を行ない、単量䜓
重合率を枬定評䟡し、実斜䟋ず比范し結果を第
衚に瀺す。
[Table] As is clear from Table 1, the system shown in Comparative Example 4 in which the sulfonic acid monomer or sulfonate monomer was not added showed no polymerization activity, and the sulfonic acid monomer or sulfonate monomer and vinyl monomer In contrast, the polymerization activity is extremely low in a simple two-component system in which CF is added as a third component, whereas the monomer polymerization rate is significantly increased by the method of the present invention in which CF is added as a third component. Although the polymerization system has a high monomer polymerization rate, the polymerization conditions such as cullet adhesion and secondary aggregation performance are significantly inferior to the method of the present invention, and it is concluded that the method of the present invention dramatically improves practicality. It shows. Examples 2 to 5, Comparative Examples 7 to 9 In Example 1, instead of SEM Na as the sulfonic acid monomer or sulfonate monomer
Polymerization was carried out in the same manner as in Example 1 except that SPS, AMPS, NaAS, and NaMS were used, and the monomer polymerization rate was measured and evaluated and compared with Example 1. The results are shown in Table 2.

【衚】 第衚から明らかな様に、重合掻性はSEM・
NaSPSAMPSが極めお高く、NaAS
NaMSは若干䜎目の氎準を瀺した。 実斜䟋〜の方法によ぀お埗られる重合䜓組
成物玄10を円筒ロ玙ず共に秀量し、メタクリル
酞メチル重合䜓の良溶媒であるベンれンを抜出溶
媒ずしお、24時間゜ツクスレヌ抜出詊隓を行なう
こずにより、該組成物の重合䜓抜出率を枬定し
た。比范のために、ポリメタクリル酞メチルの塩
化メチレン溶液に無機粉䜓ピツチ系CFを混
緎、分散させ、次いで溶媒を揮発せしめお補造し
たポリメタクリル酞メチルにより被芆された組成
物比范䟋および通垞のラゞカル重合觊媒を
甚いお、生成した組成分比范䟋、に぀い
おも同様の評䟡を行ない怜蚎した。結果を第衚
に瀺すが、比范䟋に瀺される組成物䞭の重合䜓成
分は24時間の抜出詊隓で完党に抜出されるのに察
し、本発明方法によ぀お埗られる耇合䜓の重合䜓
成分の抜出率は小さく、倧郚分は抜出されずに
CFに匷固に合䞀化しおいる。
[Table] As is clear from Table 2, the polymerization activity is SEM/
Na, SPS, AMPS are extremely high, NaAS,
NaMS showed a slightly low level. Approximately 10 g of the polymer composition obtained by the method of Examples 1 to 5 was weighed together with a cylindrical paper, and a 24-hour Soxhlet extraction test was conducted using benzene, which is a good solvent for methyl methacrylate polymer, as an extraction solvent. The polymer extraction rate of the composition was measured. For comparison, a composition coated with polymethyl methacrylate produced by kneading and dispersing an inorganic powder (Pitzi-based CF) in a methylene chloride solution of polymethyl methacrylate and then evaporating the solvent was prepared (Comparative Example 7). ) and a conventional radical polymerization catalyst, the compositions produced (Comparative Examples 8 and 9) were also evaluated and studied in the same manner. The results are shown in Table 3, and show that the polymer component in the composition shown in the comparative example was completely extracted in the 24-hour extraction test, whereas the polymer component in the composite obtained by the method of the present invention The extraction rate of components is small, and most of them are not extracted.
It is strongly integrated into CF.

【衚】【table】

【衚】 実斜䟋  CFの皮類を倉えた以倖は、実斜䟋ず同様に
しお反応を実斜し、埗られた組成物を評䟡した。
結果を第衚に瀺す。
[Table] Example 6 The reaction was carried out in the same manner as in Example 1 except that the type of CF was changed, and the resulting composition was evaluated.
The results are shown in Table 4.

【衚】【table】

【衚】 第衚から明らかな様に、未凊理CF、特にピ
ツチ系CFの堎合、玄mm以䞊の繊維長になるず、
CF自身がすでに綿状で凝塊化しおいるため暹脂
ずブレンドしお抌出成圢するこずはできないが、
本発明方法を適甚するず、抌出あるいは射出成圢
加工性の良奜なペレツト状耇合䜓が埗られるた
め、ブレンド抌出性が極めお容易ずなる。たた本
発明方法は、重合掻性に関するCF遞択性が認め
られず、抂ね単量䜓重合率は良奜であるず共に、
生成耇合䜓䞭の重合䜓成分の抜出率は小さく、倧
郚分は抜出されず、CFず匷固に合䞀化しおいる
こずがわかる。 実斜䟋  ビニル単量䜓ずしおはメタクリル酞メチルのか
わりに第衚に瀺すビニル単量䜓皮あるいは
皮の混合物を䜿甚する以倖は実斜䟋ず同様に反
応し、埗られた組成物を評䟡した結果を第衚に
瀺す。
[Table] As is clear from Table 4, in the case of untreated CF, especially pitch-type CF, when the fiber length reaches approximately 1 mm or more,
Since CF itself is already flocculent and agglomerated, it cannot be blended with resin and extruded.
When the method of the present invention is applied, a pellet-like composite with good extrusion or injection molding processability is obtained, so blend extrusion becomes extremely easy. In addition, in the method of the present invention, CF selectivity regarding polymerization activity is not observed, and the monomer polymerization rate is generally good, and
It can be seen that the extraction rate of the polymer component in the generated complex is small, most of it is not extracted, and it is strongly integrated with CF. Example 7 As the vinyl monomer, one or two vinyl monomers shown in Table 5 were used instead of methyl methacrylate.
The reaction was carried out in the same manner as in Example 1 except that a mixture of seeds was used, and the results of evaluation of the obtained composition are shown in Table 5.

【衚】 実斜䟋  粉䜓混緎甚ヘンシ゚ルミキサヌ䞭に、ピツチ系
CF−20138.7ずSEM・Na6.5を加え、
10分間充分に撹拌した埌、実斜䟋ず同様にセツ
トされた反応噚を甚いお該凊理フむラヌ党量を脱
むオン氎280ml䞭に懞濁、分散せしめ、30分間窒
玠眮換を行な぀た。次いで、ビニル単量䜓ずしお
メタクリル酞メチル30.0を窒玠の流通䞋に激し
く撹拌しながら加えた。次に枩氎济䞭、䞊蚘反応
液を50℃たで昇枩せしめ、同枩にお時間重合反
応を行な぀た。重合終了埌、実斜䟋ず同様に評
䟡した結果、単量䜓重合率は80.5であり、しか
も埗られた耇合䜓のCF衚面は該ビニルモノマヌ
の重合䜓で均䞀に、か぀匷固に固着化された組成
物であ぀た。 実斜䟋  本発明によ぀お埗られる重合䜓組成物を汎甚ポ
リマヌペレツトずブレンドしCF含有率を30に
調敎しお、抌出機を甚いお耇合䜓成圢品を䜜成
し、成圢品の機械的特性および熱的特性を評䟡し
た。 比范のために、未凊理のCF衚䞭、単玔ブレン
ドずしお瀺すを同様にブレンドしお評䟡を行な
぀た。結果を第衚に瀺す。
[Table] Example 8 In a Henschel mixer for powder kneading,
Add 38.7g of CF (M-201) and 6.5g of SEM Na,
After stirring thoroughly for 10 minutes, the entire amount of the treated filler was suspended and dispersed in 280 ml of deionized water using a reactor set up in the same manner as in Example 1, and the mixture was purged with nitrogen for 30 minutes. Next, 30.0 g of methyl methacrylate as a vinyl monomer was added under nitrogen flow and vigorous stirring. Next, the temperature of the reaction solution was raised to 50° C. in a hot water bath, and a polymerization reaction was carried out at the same temperature for 8 hours. After the polymerization was completed, the same evaluation as in Example 1 revealed that the monomer polymerization rate was 80.5%, and the CF surface of the resulting composite was uniformly and firmly fixed with the vinyl monomer polymer. The composition was Example 9 The polymer composition obtained according to the present invention was blended with general-purpose polymer pellets, the CF content was adjusted to 30%, a composite molded article was created using an extruder, and the molded article was machined. The physical and thermal properties were evaluated. For comparison, untreated CF (shown as a simple blend in the table) was similarly blended and evaluated. The results are shown in Table 6.

【衚】 第衚から明らかなように、本発明方法による
重合䜓組成物は、機械的特性および耐熱性等の実
甚性においお優れた組成物であるこずを瀺しおい
る。
[Table] As is clear from Table 6, the polymer composition produced by the method of the present invention is a composition that is excellent in practicality such as mechanical properties and heat resistance.

Claims (1)

【特蚱請求の範囲】  䞋蚘の䞀般匏 匏䞭、R1は、炭玠数〜20のアルキル基、
プニル基およびその誘導䜓たたはハロゲン原
子、はCONH【匏】COO CH2nたたはCH2oであり、R2およびR3はそ
れぞれたたは炭玠数〜15のアルキル基、R4
は炭玠数〜15のアルキレン基、は〜20の敎
数、は〜20の敎数、はNH4たたはア
ルカリ金属原子を瀺すで衚わされるスルホン酞
モノマヌたたはスルホン酞塩モノマヌの存圚䞋
に、か぀炭玠繊維を分散させた重合系䞭で、少な
くずも皮のラゞカル重合しうるビニル単量䜓を
重合せしめるこずを特城ずする新芏重合䜓組成物
の補造法。  スルホン酞モノマヌたたはスルホン酞塩モノ
マヌが、−アクリルアミド−−メチルプロパ
ンスルホン酞、−メタアクリル゚タンスルホン
酞ナトリりムたたは−メタアクリルプロパンス
ルホン酞ナトリりムであるこずを特城ずする特蚱
請求の範囲第項蚘茉の新芏重合䜓組成物の補造
法。  ビニル単量䜓の䞻成分が、メタクリル酞メチ
ルであるこずを特城ずする特蚱請求の範囲第項
たたは第項蚘茉の新芏重合䜓組成物の補造法。
[Claims] 1. The following general formula (In the formula, R 1 is H, an alkyl group having 1 to 20 carbon atoms,
Phenyl group and its derivatives or halogen atom ; Four
is an alkylene group having 1 to 15 carbon atoms, m is an integer of 1 to 20, n is an integer of 0 to 20, and Y is H, NH 4 or an alkali metal atom). 1. A method for producing a novel polymer composition, which comprises polymerizing at least one radically polymerizable vinyl monomer in the presence of carbon fibers in a polymerization system in which carbon fibers are dispersed. 2. Claims characterized in that the sulfonic acid monomer or sulfonate monomer is 2-acrylamido-2-methylpropanesulfonic acid, sodium 2-methacrylethanesulfonate, or sodium 3-methacrylpropanesulfonate A method for producing the novel polymer composition according to item 1. 3. The method for producing a novel polymer composition according to claim 1 or 2, wherein the main component of the vinyl monomer is methyl methacrylate.
JP11524682A 1982-07-02 1982-07-02 Production of new polymer composition Granted JPS596203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11524682A JPS596203A (en) 1982-07-02 1982-07-02 Production of new polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11524682A JPS596203A (en) 1982-07-02 1982-07-02 Production of new polymer composition

Publications (2)

Publication Number Publication Date
JPS596203A JPS596203A (en) 1984-01-13
JPH0354121B2 true JPH0354121B2 (en) 1991-08-19

Family

ID=14657953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11524682A Granted JPS596203A (en) 1982-07-02 1982-07-02 Production of new polymer composition

Country Status (1)

Country Link
JP (1) JPS596203A (en)

Also Published As

Publication number Publication date
JPS596203A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
EP0047529B1 (en) Polyoxymethylene molding blends
EP4053177A1 (en) Flame-retardant antimicrobial agent, preparation method therefor and use thereof, and flame-retardant antimicrobial thermoplastic resin composition
US3929727A (en) Stabilized ethylene-carbon monoxide copolymers
JPH01146958A (en) Thermoplastic resin composition
JPH0352486B2 (en)
GB726506A (en) Modified polytetrafluoroethylene compositions and products related thereto
JP2003535180A (en) Flame retardant polypropylene resin composition
JPH072891B2 (en) Polyacetal resin composition and method for producing the same
JPH0225364B2 (en)
US4139522A (en) Stabilized ethylene-carbon monoxide copolymers
JPH0354121B2 (en)
JP2003505523A (en) Method for preparing highly rigid composite materials based on polyolefins
JP3414490B2 (en) Method for producing propylene polymers grafted with polyalkenylenes
JPH01138214A (en) Preparation of graft resin composition
JPS5876444A (en) Modifying method of propylene-ethylene block copolymer
CN113549312B (en) Antibacterial flame-retardant antistatic PC/ABS composition and preparation method and application thereof
JPS631967B2 (en)
JPS6310655A (en) Resin composition
JPH0660273B2 (en) Rubber modified polystyrene resin composition
JPS6225693B2 (en)
JPH03255114A (en) Production of graft olefin copolymer
JPS621414B2 (en)
JPH0476383B2 (en)
JPS58117239A (en) High electroconductivity flame-retardant thermoplastic forming composition
JPH0118934B2 (en)