JPH035409B2 - - Google Patents

Info

Publication number
JPH035409B2
JPH035409B2 JP15880982A JP15880982A JPH035409B2 JP H035409 B2 JPH035409 B2 JP H035409B2 JP 15880982 A JP15880982 A JP 15880982A JP 15880982 A JP15880982 A JP 15880982A JP H035409 B2 JPH035409 B2 JP H035409B2
Authority
JP
Japan
Prior art keywords
reactor
weight
maleic anhydride
polymerization
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15880982A
Other languages
Japanese (ja)
Other versions
JPS5949209A (en
Inventor
Shinichi Toyoshima
Katsuaki Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15880982A priority Critical patent/JPS5949209A/en
Publication of JPS5949209A publication Critical patent/JPS5949209A/en
Publication of JPH035409B2 publication Critical patent/JPH035409B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、メチルメタクリレートに無水マレイ
ン酸及びスチレンを主たる共重合成分として連続
的に重合せしめ、透明で着色の少ない、熱変形温
度の高い成型材料を製造する方法に関する。無水
マレイン酸をスチレン及びメチルメタクリレート
と共重合させる事によつて耐熱性の高い成形材料
を製造する方法は公知であるが、従来の知見に基
づく製造方法に於ては、得られた重合体を用いて
250℃以上の高温下で成型を行うと、発泡や、シ
ルバーストリークスと呼ばれるキズが発生すると
ともに著るしく黄色に変色する等の問題があつ
た。これらのシルバーストリークス、着色の問題
は、本来メチルメタクリレートやスチレン系ポリ
マーの重要な性能である、光透過性を懐失してし
まい著るしく商品価値を低下させている。本発明
者らはこれらの原因を究明すべく鋭意検討を行な
つて来たがその結果、原料中に溶存している酸素
と、重合反応工程から脱揮工程に導入される未反
応無水マレイン酸が、重大な悪影響を及ぼしてい
る事を見出し、本発明を完成するに到つた。即
ち、通常取り扱われている、工業原料であるメチ
ルメタクリレート、スチレン、無水マレイン酸、
溶剤は、空気共存下に貯蔵され、酸素は、空気分
圧に見合つた濃度でこれらの原料に溶解してい
る。これらの酸素はポリメチルメタクリレートや
ポリスチレンの重合であれば、さほど着色に影響
は与えないので、光学用途以外の重合体の合成に
は、そのまま利用されている。しかし、無水マレ
イン酸系の重合体となると様相が大分異なり、酸
素の存在下の重合は著るしい着色の助長をうなが
す事が判明した。酸素の除去は、蒸留による方
法、窒素ガスとの接触によるストリツピング、減
圧脱気法等が採用でき、原料混合物の20℃大気圧
下の空気と平衡に達している溶存酸素を、有機溶
剤用センサーを用いた。溶存酸素分析計で測定し
その指示値を基準とした時、上記の方法によれ
ば、容易に1/10〜1/20にする事が可能である。し
かも着色はこの酸素含有量で充分改善される。一
方無水マレイン酸による着色については、更に特
異な挙動を示す。連続重合に於ては重合率を100
%にする事は極めて限定された組成の場合にのみ
可能であり、通常は100%重合を行なわしめると
重合体の透明性をそこなう。従つて重合率は60%
〜90%の範囲を選ぶのが好ましい。しかも、この
時の重合方法としては、重合の開始から終了ま
で、流通式の反応でおくるのではなく、できるだ
け、重合の多くの部分を一定の重合体組成になる
様一定温度、一定反応組成の均一反応器で反応さ
せるのが透明性と、機械的、耐熱的物性を向上さ
せるのに都合がよい。しかしこの様な均一反応器
だけの反応では、必ず共重合体組成を保持するた
めの単量体が重合体と共に、排出されて来る。特
に、耐熱性に重要な影響を与える無水マレイン酸
についても、一定の単量体濃度を保持する必要か
ら、このまま、反応混合物が、脱揮装置に導入さ
れる事になると、脱揮装置内での熱的な影響をを
受け、著るしく黄色な重合体しか得られない。こ
の様な重合体は、射出成型時のシルバーストリー
クスの程度も大きく、実用にはならない。無水マ
レイン酸は、残留未反応分によつて導入される事
になるが、本発明者はここに、新たな思想を導入
する事により問題の解決にあたつた。即ち、均一
に反応している第一反応器で、反応の過半数以上
を行なわしめた後、流通式反応器からなる第二反
応器で更に反応をせしめ、無水マレイン酸を消費
せしめ、脱揮工程への導入量を少なくするもので
ある。ここに第一反応器の反応率は、第一反応器
に供給された全単量体モル数に対し30〜70%と
し、第二反応器では、10〜30%の重合率の上昇と
なる様に反応させる必要がある。第一反応器の重
合率が30%より低い場合には、経済的に好ましく
ない事の他に、組成分布の広範な重合体しか得ら
れず、透明性、耐熱性に優れた重合体が得にく
い。一方、70%を越える場合には、第二反応器
で、無水マレイン酸を消費する事が難しくなるの
で好ましくない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent molding material with little coloring and a high heat distortion temperature by continuously polymerizing methyl methacrylate with maleic anhydride and styrene as the main copolymer components. A method for producing a highly heat-resistant molding material by copolymerizing maleic anhydride with styrene and methyl methacrylate is known, but in a production method based on conventional knowledge, the resulting polymer cannot be make use of
When molded at high temperatures of 250°C or higher, there were problems such as foaming, scratches called silver streaks, and a noticeable yellow discoloration. These silver streaks and coloring problems cause the loss of light transmittance, which is an important performance of methyl methacrylate and styrene polymers, and significantly reduce the commercial value. The present inventors have conducted intensive studies to investigate the causes of these problems, and as a result, we have found that oxygen dissolved in the raw materials and unreacted maleic anhydride introduced from the polymerization reaction process to the devolatilization process. However, it was discovered that this had a serious adverse effect, and the present invention was completed. That is, commonly used industrial raw materials such as methyl methacrylate, styrene, maleic anhydride,
The solvent is stored in the presence of air, and oxygen is dissolved in these raw materials at a concentration commensurate with the partial pressure of the air. These oxygens do not have much effect on coloring in the polymerization of polymethyl methacrylate or polystyrene, so they are used as they are in the synthesis of polymers for purposes other than optical applications. However, the situation is quite different when it comes to maleic anhydride-based polymers, and it has been found that polymerization in the presence of oxygen promotes significant discoloration. Oxygen can be removed by methods such as distillation, stripping by contact with nitrogen gas, and vacuum deaeration. was used. When measured with a dissolved oxygen analyzer and using the indicated value as a standard, the above method can easily reduce the amount to 1/10 to 1/20. Moreover, coloration is sufficiently improved with this oxygen content. On the other hand, coloring with maleic anhydride shows a more peculiar behavior. In continuous polymerization, the polymerization rate is 100.
% is possible only in extremely limited compositions, and 100% polymerization usually impairs the transparency of the polymer. Therefore, the polymerization rate is 60%
It is preferable to choose a range of ~90%. Moreover, the polymerization method used at this time is not to perform a flow-type reaction from the start to the end of the polymerization, but to maintain a constant temperature and a constant reaction composition in as much of the polymerization as possible to achieve a constant polymer composition. It is convenient to carry out the reaction in a homogeneous reactor in order to improve transparency and mechanical and heat-resistant properties. However, in such a reaction using only a homogeneous reactor, monomers for maintaining the copolymer composition are inevitably discharged together with the polymer. In particular, for maleic anhydride, which has an important effect on heat resistance, it is necessary to maintain a constant monomer concentration, so if the reaction mixture is introduced into the devolatilization equipment as it is, it will not be possible to Due to the thermal influence of this process, only a markedly yellow polymer can be obtained. Such polymers have a large degree of silver streaks during injection molding and are not of practical use. Maleic anhydride would be introduced by the remaining unreacted components, but the inventors of the present invention attempted to solve this problem by introducing a new idea. That is, after more than half of the reaction is carried out in the first reactor, which is reacting uniformly, the reaction is further carried out in the second reactor, which is a flow reactor, to consume maleic anhydride, and to complete the devolatilization step. This is to reduce the amount introduced into the system. Here, the reaction rate in the first reactor is 30 to 70% of the total number of monomer moles supplied to the first reactor, and in the second reactor, the polymerization rate is increased by 10 to 30%. You need to react accordingly. If the polymerization rate in the first reactor is lower than 30%, in addition to being economically unfavorable, only a polymer with a wide composition distribution can be obtained, and a polymer with excellent transparency and heat resistance can be obtained. Hateful. On the other hand, if it exceeds 70%, it becomes difficult to consume maleic anhydride in the second reactor, which is not preferable.

第二反応器での重合率は、第一反応器で残留し
ている無水マレイン酸を充分低い濃度になるまで
消費させる反応率となるできるだけ低い重合率の
上昇を計るのがよい。これは均一重合によつて得
られる均一屈折率の重合体と、それから屈折率が
徐々に異なつて行く第二反応器で生成する重合体
の混合物が、相互に相溶し、完全透明な重合体を
形成するためである。更に、耐熱性も、機械的物
性も、最も優れた性能を示すのは、重合体が均一
な組成分布に近いところにあるからである。
The polymerization rate in the second reactor is preferably increased as low as possible, such that the maleic anhydride remaining in the first reactor is consumed to a sufficiently low concentration. This is a mixture of a polymer with a uniform refractive index obtained by homogeneous polymerization and a polymer with a gradually different refractive index produced in a second reactor, which are mutually compatible, resulting in a completely transparent polymer. This is to form a Furthermore, the reason why the polymer exhibits the best performance in both heat resistance and mechanical properties is because the polymer has a nearly uniform composition distribution.

第二反応器での重合率の向上は、無水マレイン
酸濃度を下げるため少くとも10%以上を、そして
組成分布巾を許容値におさえるために30%以下と
する必要がある。この様に第一反応器と第二反応
器での反応率を維持する為の手段としては、第一
反応器での重合を主に重合開始剤による重合を中
心に行い、第二反応器での重合は、第一反応器で
の開始剤による反応を利用するのが好ましい。第
二反応器での新重合開始剤の添加も考えられる
が、混合に著るしく特別な工夫をしない限り不均
一な反応をおこすため好ましくなく、この様な触
媒の追加添加をするよりは半減期の異なる触媒を
併用して、複合触媒として第一反応器以前に添加
して置く方が好ましい。スチレンが共重合体とし
て存在する本発明の重合体系に於ては、重合温度
も重要である。即ち、スチレンは、熱重合により
重合開始剤の不存在下に重合が可能であるが、熱
重合を主体とした反応を行なわしめる場合、どう
しても耐熱分解性が好ましくなく、重合開始剤を
主体とした重合を推進させる必要がある。この様
な観点から重合反応器の温度は規制でき、特に第
一反応器では50〜150℃の範囲に保つことが好ま
しい。50℃以下にする事は、反応速度及び重合開
始剤の使用量が大巾に増大し、経済的ではない。
150℃以上の条件では熱重合による影響が著るし
く大きくなる。より好ましくは70℃〜120℃の範
囲を保つのが好結果を与える。更に望ましくは70
℃〜100℃である。第二反応器の温度は、第一反
応器の温度から断熱的又は、加熱によつて昇温せ
しめ、150℃以下好ましくは120℃以下の温度まで
に目的とする重合率の上昇を達成する必要があ
る。無水マレイン酸を大量に含有したまま、150
℃以上の高温にさらす事は黄変色の関点から好ま
しくはなく、無水マレイン酸の濃度を充分低く保
つ必要がある。そのような無水マレイン酸の濃度
は、残留単量体及び溶剤等の揮発成分に占める割
合として2.5重量%以下、好ましくは1.5重量%以
下とするのがよい。その為には第二反応器に於て
生成した重合体のスチレンと無水マレイン酸組成
の比率を1.8以上にする必要がある。この比率が
高ければ高い程、無水マレイン酸を、第二反応器
で完全に消費せしめる事が可能ではある。しか
し、この比率は3.5以下に保つ必要がある。なぜ
ならば、スチレンの比率の増大は重合体の強度を
弱くし、更に耐候性を悪化させる事につながるか
らである。
The polymerization rate in the second reactor must be increased by at least 10% to lower the maleic anhydride concentration, and 30% or less to keep the composition distribution range within an acceptable value. In this way, as a means to maintain the reaction rate in the first reactor and the second reactor, the polymerization in the first reactor is mainly performed using a polymerization initiator, and the second reactor is Preferably, the polymerization utilizes a reaction using an initiator in the first reactor. Addition of a new polymerization initiator in the second reactor is also considered, but this is undesirable as it will cause a non-uniform reaction unless significant special measures are taken for mixing, and it is less desirable than adding such an additional catalyst. It is preferable to use catalysts of different stages together and add them as a composite catalyst before the first reactor. In the polymer systems of the present invention where styrene is present as a copolymer, the polymerization temperature is also important. That is, styrene can be polymerized by thermal polymerization in the absence of a polymerization initiator, but when carrying out a reaction based mainly on thermal polymerization, thermal decomposition resistance is unfavorable, and styrene is It is necessary to promote polymerization. From this point of view, the temperature of the polymerization reactor can be regulated, and it is particularly preferable to maintain the temperature in the first reactor within the range of 50 to 150°C. Setting the temperature below 50°C is not economical because the reaction rate and the amount of polymerization initiator used increase significantly.
Under conditions of 150°C or higher, the influence of thermal polymerization becomes significantly greater. More preferably, maintaining the temperature within the range of 70°C to 120°C gives good results. More preferably 70
℃~100℃. The temperature of the second reactor must be raised adiabatically or by heating from the temperature of the first reactor to achieve the desired increase in polymerization rate to a temperature of 150°C or lower, preferably 120°C or lower. There is. 150 while containing a large amount of maleic anhydride.
Exposure to high temperatures of .degree. C. or higher is not preferable from the viewpoint of yellowing, and it is necessary to keep the concentration of maleic anhydride sufficiently low. The concentration of such maleic anhydride is preferably 2.5% by weight or less, preferably 1.5% by weight or less as a proportion of volatile components such as residual monomers and solvents. For this purpose, it is necessary to make the ratio of styrene and maleic anhydride composition of the polymer produced in the second reactor to 1.8 or more. The higher this ratio, the more completely maleic anhydride can be consumed in the second reactor. However, this ratio must be kept below 3.5. This is because increasing the proportion of styrene weakens the strength of the polymer and further deteriorates its weather resistance.

この様に無水マレイン酸を充分低温度になるま
で消費せしめる。重合方法に於ては、揮発成分の
リサイクル使用により品質の低下を来すこともな
いという重大な効果がある。耐候性を満足させう
る様な重合体という観点から云えば、メチルメタ
クリレートの組成率は全体100部に対して少なく
とも40重量部は必要である。以上の様に無水マレ
イン酸の濃度を全揮発成分に対し充分低くした重
合体混合物は、脱揮工程に送られ、新たな着色や
分解による品質の低下をせしめることなく揮発成
分を除去し、特に無水マレイン酸は500ppm以下、
好ましくは100pmにする必要がある。このような
脱気方法の具体的な方法としては、例えば2段以
上からなる脱揮帯域を有する脱揮工程に反応混合
物を送り、第一段目の脱揮帯域で180℃以下、よ
り好ましくは150℃以下の温度条件下に大部分の
揮発成分を除去するとともに第二段目以降の脱揮
帯域では更に高温で、減圧下に残りの揮発成分を
除去する方法である。ここでいう2段以上からな
る脱揮装置の第一段目の脱揮帯域、多段ベント付
スクリユー押し出し機の第一段目であつてもよい
し、あるいは、流下液柱型の蒸発脱揮装置であつ
てもよいが、重要な事は脱揮温度条件を可及的に
低くすることである。その限界となる温度は180
℃でありこれ以下の温度で脱揮するのが好まし
い。脱揮工程の最終段は、スクリユー押し出し機
が好ましい。無水マレイン酸の残量は500ppm以
下でなければ、ペレツトの成型時に置色や発泡が
生ずる。本発明の条件下では容易に500ppm以下
にする事が可能である。
In this way, maleic anhydride is consumed until the temperature is sufficiently low. In the polymerization process, recycling of volatile components has the important effect of not causing any deterioration in quality. From the viewpoint of a polymer that can satisfy weather resistance, the composition ratio of methyl methacrylate should be at least 40 parts by weight based on 100 parts of the total. As described above, the polymer mixture in which the concentration of maleic anhydride is sufficiently low relative to the total volatile components is sent to a devolatilization step to remove the volatile components without deteriorating the quality due to new coloring or decomposition. Maleic anhydride is less than 500ppm,
Preferably it should be 100pm. As a specific method of such a degassing method, for example, the reaction mixture is sent to a devolatilization step having a devolatilization zone consisting of two or more stages, and the temperature is lowered to 180°C or less in the first stage devolatilization zone, more preferably. In this method, most of the volatile components are removed under a temperature condition of 150° C. or lower, and the remaining volatile components are removed under reduced pressure at an even higher temperature in the second and subsequent devolatilization zones. It may be the first stage devolatilization zone of a devolatilization device consisting of two or more stages, the first stage of a multi-stage vented screw extruder, or a falling liquid column type evaporation devolatilization device. However, the important thing is to keep the devolatilization temperature conditions as low as possible. The temperature limit is 180
℃, and it is preferable to devolatilize at a temperature below this temperature. The final stage of the devolatilization step is preferably a screw extruder. Unless the remaining amount of maleic anhydride is less than 500 ppm, discoloration and foaming will occur during pellet molding. Under the conditions of the present invention, it is possible to easily reduce the content to 500 ppm or less.

このような重合条件で重合された重合体は、充
分実用的であるがメチルメタクリレート成分の多
い重合体においては、メチルアクリレート、エチ
ルアクリレート等のエステル基の炭素数1〜4ケ
のアクリレート又はアクリル酸を2%以内で共重
合させることが更に有効であることを見出した。
2%を上廻ると熱に対する耐熱分解性は向上する
が、耐熱変形性の低下を来すので好ましくはな
い。
Polymers polymerized under such polymerization conditions are sufficiently practical, but in the case of polymers with a large methyl methacrylate component, acrylates with 1 to 4 carbon atoms in ester groups such as methyl acrylate and ethyl acrylate, or acrylic acid It has been found that it is more effective to copolymerize within 2%.
If it exceeds 2%, the thermal decomposition resistance against heat will improve, but the thermal deformation resistance will decrease, which is not preferable.

本反応は溶剤を用いた反応で行なう場合により
良い結果を得る。これは、無水マレイン酸の脱揮
を効率的に行い、特に低温で脱揮を行う一段目の
脱揮工程を効果的にするものであるとともに、低
温重合反応を安定に行なわしめる為に好適であ
る。溶剤としてはメチルイソブチレート、メチル
エチルケトン、メチルイソブチルケトン、トルエ
ン、エチルベンゼン等が使用できる。
This reaction gives better results when carried out using a solvent. This devolatilizes maleic anhydride efficiently, making the first stage devolatilization process particularly effective at low temperatures, and is suitable for stably performing low-temperature polymerization reactions. be. As the solvent, methyl isobutyrate, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethylbenzene, etc. can be used.

本重合に供されるスチレンは、重合禁止剤とし
て一般に15ppm程度添加されているtertブチルカ
テコールは極力低く抑えた方が良い。これは重合
体の着色に影響を与えるためであり、5ppm以下
にして使用するのが好ましい。そのためには吸着
剤等で使用直前に除去したり、蒸留によつて除去
したりする事である。
In the styrene used for the main polymerization, it is better to keep the amount of tert-butylcatechol, which is generally added at about 15 ppm as a polymerization inhibitor, as low as possible. This is because it affects the coloring of the polymer, and it is preferable to use it at 5 ppm or less. To this end, it is necessary to remove it with an adsorbent or the like immediately before use, or by distillation.

本発明を以下実施例で詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

実施例中%は重量%を示し、又耐熱性の評価は
ASTM D−1525に定められたVSPを測定した。
メルトフローインデツクスはASTM−D−1238
(条件)に従つて測定した。
In the examples, % indicates weight %, and the heat resistance evaluation is
VSP defined in ASTM D-1525 was measured.
Melt flow index is ASTM-D-1238
(Conditions).

実施例 1 反応容積10の均一撹拌槽からなる第一反応
器、引きつづき、L/D=20からなる反応容積1.5 のプラグフロー第二反応器と、脱揮装置として3
段ベント付き押し出し機からなる装置を用いて重
合体を得た。
Example 1 A first reactor consisting of a uniformly stirred tank with a reaction volume of 10, followed by a plug flow second reactor with a reaction volume of 1.5 and L/D = 20, and 3 as a devolatilization device.
The polymer was obtained using an apparatus consisting of a stage vented extruder.

原材料としてメタクリル酸メチル72、tertブチ
ルカテコール1ppm含有のスチレン18、無水マレ
イン酸9、アクリル酸メチル1からなる単量体
と、ラウリルパーオキサイド0.45、オクチルメル
カプタン0.11なる触媒、及び、メチルエチルケト
ン42.9重量部からなる混合物を、脱酸素塔にて窒
素ガスと向流接触させた。
Raw materials include monomers consisting of 72 methyl methacrylate, 18 styrene containing 1 ppm of tert-butylcatechol, 9 maleic anhydride, and 1 methyl acrylate, a catalyst consisting of 0.45 lauryl peroxide, 0.11 octyl mercaptan, and 42.9 parts by weight of methyl ethyl ketone. The mixture was brought into countercurrent contact with nitrogen gas in a deoxidizing tower.

この混合物の溶存酸素の除去率をオリタル電気
製ユニバーサルオキシゲンアナライザー(センサ
ーは有機溶剤用)を用いてこれらの原料混合物の
20℃大気圧下に空気と平衡状態にあるサンプルの
指針のふれを基準にして酸素濃度を測定したとこ
ろその1/20以下であつた。
The removal rate of dissolved oxygen in this mixture was measured using a universal oxygen analyzer manufactured by Orital Electric (the sensor is for organic solvents).
When the oxygen concentration was measured based on the movement of the needle of the sample in equilibrium with air at 20°C and atmospheric pressure, it was less than 1/20 of that.

この原料を第一反応器に連続的に供給した。第
一反応器は78℃で滞留時間4時間で操作されてい
る。内部には窒素ガスで6Kg/cm2Gに加圧され、
空気の混入を防いである。引きつづき、入口78
℃、出口110℃まで徐々に昇温されているプラグ
フロー第二反応器で滞留時間0.6時間で反応を行
なつた。20時間の反応径過後第一反応器及び第二
反応器出口より反応混合物をサンプリングし、組
成分析を行なつた結果、重合反応率は55%及び80
%であつた。又重合体分の組成率は、赤外吸収ス
ペクトル、酸滴法、熱分解ガスクロマトグラフイ
ーにより定量した結果、第一反応器ではメチルメ
タクリレート64.4、スチレン22.8、無水マレイン
酸11.9、メチルアクリレート0.9重量%、第二反
応器出口では、メチルメタクリレート67.2、スチ
レン21.3、無水マレイン酸10.6メチルアクリレー
ト0.9重量%になつた。
This raw material was continuously fed to the first reactor. The first reactor is operated at 78°C with a residence time of 4 hours. The inside is pressurized with nitrogen gas to 6Kg/cm 2 G,
Prevents air from entering. Continued, entrance 78
The reaction was carried out in a plug flow second reactor whose temperature was gradually raised to 110°C at the outlet for a residence time of 0.6 hours. After 20 hours of reaction time, the reaction mixture was sampled from the outlet of the first reactor and the second reactor, and the composition analysis was performed. As a result, the polymerization reaction rate was 55% and 80%.
It was %. The composition ratio of the polymer components was determined by infrared absorption spectrum, acid drop method, and pyrolysis gas chromatography, and found that in the first reactor, 64.4% by weight of methyl methacrylate, 22.8% by weight of styrene, 11.9% by weight of maleic anhydride, and 0.9% by weight of methyl acrylate. At the outlet of the second reactor, the contents were 67.2% by weight of methyl methacrylate, 21.3% by weight of styrene, 10.6% by weight of maleic anhydride, and 0.9% by weight of methylacrylate.

一方揮発成分については、第一反応器に於て
は、メチルメタクリレート41.6、スチレン6.2、
無水マレイン酸2.8、メチルアクリレート0.6、メ
チルエチルケトン48.8重量%であつた。第二反応
器出口ではメチルメタクリレート29.0、スチレン
1.5、無水マレイン酸0.8、メチルアクリレート
0.5、メチルエチルケトン68.2重量%であつた。
これらの第二反応器出口の重合反応物質は、引き
つづき、第一段ベントが大気圧下120℃、第2ベ
ントは220℃20Torr、第3ベントは220℃4Torr
まで減圧し、脱揮を行なつた。
On the other hand, regarding volatile components, in the first reactor, methyl methacrylate 41.6, styrene 6.2,
The contents were 2.8% by weight of maleic anhydride, 0.6% by weight of methyl acrylate, and 48.8% by weight of methyl ethyl ketone. At the outlet of the second reactor, methyl methacrylate 29.0, styrene
1.5, maleic anhydride 0.8, methyl acrylate
0.5, and 68.2% by weight of methyl ethyl ketone.
These polymerization reactants at the outlet of the second reactor are continuously heated at 120°C under atmospheric pressure at the first stage vent, at 220°C 20 Torr at the second stage vent, and at 220°C 4 Torr at the third stage vent.
The pressure was reduced to 1,000 ml, and devolatilization was performed.

得られた重合体は、メチルメタクリレート
67.2、スチレン21.3、無水マレイン酸10.6、メチ
ルアクリレート0.9重量%よりなる共重合体で、
残留単量体は、メタクリル酸メチルが300ppm検
出された他は、スチレン及び無水マレイン酸は検
出限界値100ppm以下であつた。
The resulting polymer is methyl methacrylate
67.2, styrene 21.3, maleic anhydride 10.6, and methyl acrylate 0.9% by weight.
Regarding residual monomers, methyl methacrylate was detected at 300 ppm, and styrene and maleic anhydride were below the detection limit of 100 ppm.

得られたペレツトを用いプレス機で270℃で10
分間加圧成型し、50×100×4mmの試験片を得た。
この試験片の中にはどこにも気泡は検出されず着
色はほとんど認められなかつた。更に熱分解減量
を調べるため、第二精工舎製熱重量測定装置
SSC/560GHで275℃で測定した熱分解量は0.8
%/10分であつた。これは市販されているポリメ
チルメタクリレートと同程度の熱分解レベルと成
つた。この試片のVSP値は128℃、MI値は230℃
荷重3.8Kgで1.5g/10分であつた。
Using the obtained pellets, press at 270℃ for 10 minutes.
Pressure molding was performed for a minute to obtain a test piece measuring 50 x 100 x 4 mm.
No air bubbles were detected anywhere in this test piece, and almost no coloration was observed. Furthermore, in order to investigate the pyrolysis loss, we used a thermogravimetric measuring device manufactured by Daini Seikosha.
The amount of thermal decomposition measured at 275℃ with SSC/560GH is 0.8
%/10 minutes. This resulted in a thermal decomposition level comparable to that of commercially available polymethyl methacrylate. The VSP value of this specimen is 128℃, and the MI value is 230℃.
The load was 3.8 kg and the speed was 1.5 g/10 minutes.

比較例 1 実施例1と同様の装置を用いて重合を行なつた
が、反応原料の脱酸素処理を省いた。
Comparative Example 1 Polymerization was carried out using the same apparatus as in Example 1, but the deoxidation treatment of the reaction raw material was omitted.

得られた重合体の無水マレイン酸残留分は、
100ppm以下であつたが、ペレツトは黄着色して
いた。
The residual maleic anhydride content of the obtained polymer is
Although the concentration was less than 100 ppm, the pellets were colored yellow.

実施例 2 実施例1と同様な装置を用い、メチルメタクリ
レート62.5、trrrブチルカテコール1ppm含有のス
チレン28.4、無水マレイン酸8.1、メチルアクリ
レート1.0、ラウリルパーオキサイド0.45、オク
チルメルカプタン0.11、メチルエチルケトン42.9
なる反応原料を、脱酸素塔で窒素ガスと向流接触
させ酸素の除去率を1/20以下とし第一反応器に連
続的に供給した。
Example 2 Using the same equipment as in Example 1, methyl methacrylate 62.5, trrr styrene containing 1 ppm of butylcatechol 28.4, maleic anhydride 8.1, methyl acrylate 1.0, lauryl peroxide 0.45, octyl mercaptan 0.11, methyl ethyl ketone 42.9
The reaction raw material was brought into countercurrent contact with nitrogen gas in a deoxidizing tower to reduce the oxygen removal rate to 1/20 or less, and was continuously supplied to the first reactor.

第一反応器及び第二反応器の滞留時間及び温度
は実施例1と同様であつた。
The residence time and temperature of the first reactor and second reactor were the same as in Example 1.

第一反応器の重合率は55%第二反応器の重合率
は80%であつた。第二反応器を出た重合反応混合
物中の揮発成分の組成はメチルメタクリレート
26.4、スチレン4.8、無水マレイン酸0.16、メチル
アクリレート0.4、メチルエチルケトン68.2重量
%であつた。
The polymerization rate in the first reactor was 55%, and the polymerization rate in the second reactor was 80%. The composition of volatile components in the polymerization reaction mixture leaving the second reactor is methyl methacrylate.
26.4, styrene 4.8, maleic anhydride 0.16, methyl acrylate 0.4, and methyl ethyl ketone 68.2% by weight.

引き続き三段ベントからなる脱揮装置で実施例
1と同様の条件で脱揮を行なつた。この第一段ベ
ントから回収される回収液は、特に蒸溜等の処理
をする事なく新しい原料と混合し、脱酸素工程を
へて引きつづき10日間連続運転を行なつたが運転
及び品質は安定しており、色度の優れた重合体が
得られた。
Subsequently, devolatilization was carried out under the same conditions as in Example 1 using a devolatilization device consisting of a three-stage vent. The recovered liquid recovered from this first stage vent was mixed with new raw materials without any special treatment such as distillation, passed through a deoxidation process, and was operated continuously for 10 days, but the operation and quality remained stable. A polymer with excellent chromaticity was obtained.

得られた重合体組成は、メチルメタクリレート
57.4%、スチレン31.7%、無水マレイン酸10.0%、
メタクリル酸メチル0.9%よりなる重合体であり、
残存単量体は、メタクリル酸メチルが0.05%検出
された他はスチレン、無水マレイン酸とも
100ppmの検出限界値以下であつた。このペレツ
トを用いて射出成型機で250、270℃でダンベルを
得たが、温度による着色はごくわずかであり、シ
ルバーストリークス等の発生も全く見当らなかつ
た。この樹脂の耐熱性はVSP130℃MI値は1.4で
あつた。
The resulting polymer composition was methyl methacrylate
57.4%, styrene 31.7%, maleic anhydride 10.0%,
A polymer consisting of 0.9% methyl methacrylate,
Regarding remaining monomers, methyl methacrylate was detected at 0.05%, and styrene and maleic anhydride were also detected.
It was below the detection limit of 100ppm. Using this pellet, dumbbells were made using an injection molding machine at 250 and 270°C, but there was very little discoloration due to temperature and no silver streaks were observed. Regarding the heat resistance of this resin, the VSP130°C MI value was 1.4.

比較例 2 メチルメタクリレート81.3、スチレン7.3、無
水マレイン酸11.4、及びラウリルパーオキサイド
0.45、オクチルメルカプタン0.11及びメチルエチ
ルケトン42.9からなる原料を脱酸素した後、10
の均一反応器に連続的に導入し滞留時間4時間で
重合率55%、重合体組成メチルメタクリレート
80.1、スチレン9.9、無水マレイン酸10.4の重合体
分と揮発成分としてメチルメタクリレート42.4、
スチレン2.1、無水マレイン酸6.7、メチルエチル
ケトン48.8重量%の混合物を得た。この混合物を
三段ベントからなる脱揮装置に導入し、第一ベン
トから回収される揮発分を精製する事なく再使用
を続けたところ、20時間後に得られたペレツトを
射出成型機で250℃、270℃で成型を試みたが、成
型温度の上昇と共に著るしい黒黄色着色の増加が
見られ、270℃の成型に於ては、激しいシルバー
ストリークスが観察された。
Comparative Example 2 Methyl methacrylate 81.3, styrene 7.3, maleic anhydride 11.4, and lauryl peroxide
After deoxidizing the raw material consisting of 0.45, octyl mercaptan 0.11 and methyl ethyl ketone 42.9, 10
Continuously introduced into a homogeneous reactor with a residence time of 4 hours, the polymerization rate was 55%, and the polymer composition was methyl methacrylate.
80.1, styrene 9.9, maleic anhydride 10.4 and methyl methacrylate 42.4 as volatile components.
A mixture containing 2.1% by weight of styrene, 6.7% by weight of maleic anhydride, and 48.8% by weight of methyl ethyl ketone was obtained. This mixture was introduced into a devolatilization device consisting of a three-stage vent, and the volatile components recovered from the first vent were reused without purification. When molding was attempted at 270°C, a marked increase in black-yellow coloring was observed as the molding temperature increased, and severe silver streaks were observed during molding at 270°C.

Claims (1)

【特許請求の範囲】 1 メチルメタクリレート、無水マレイン酸、ス
チレン、または、これらと炭素数1〜4のアルキ
ル基を有するアルキルアクリレートからなる耐熱
性熱可塑性樹脂を連続的に重合して製造する方法
において、20℃大気下で平衡溶存している酸素の
少なくとも1/10以下の値にまで溶存酸素を除去し
た原料混合物を用い、50℃〜150℃の範囲で重合
反応を行う第一反応器で30〜70重量%の重合率ま
で重合反応せしめ、次いで、流通式反応器からな
る第二反応器で重合率を更に10〜30重量%上昇せ
しめ、得られた重合体混合物組成が、無水マレイ
ン酸5〜20重量%、スチレン10〜40重量%であ
り、かつスチレン対無水マレイン酸の重量比率が
1.8〜3.5であり、さらにメチルメタクリレート組
成が40重量%を上廻り、さらにアルキルアクリレ
ートは0〜20重量%含有するように重合せしめ、
しかも第二反応器を出た重合体混合物中に残留す
る単量体、溶剤等の揮発成分のうちに占める無水
マレイン酸の濃度比率が2.5重量%以下にまで反
応せしめた後、脱揮工程にて無水マレイン酸の濃
度を0.05重量%以下にまで脱揮処理することを特
徴とする、着色の少ない透明な耐熱重合体を連続
的に重合して製造する方法。 2 第一反応器が70〜100℃、第二反応器が70〜
120℃である特許請求の範囲第1項記載の方法。 3 脱揮工程が少なくとも2段階以上の脱揮条件
下に操作される工程よりなり、第一段目の脱揮帯
域の温度が180℃以下である特許請求の範囲第1
項及び第2項記載の方法。 4 スチレンに含有される重合禁止剤を5重量
ppm以下にして重合する特許請求の範囲1〜3項
記載の方法。
[Scope of Claims] 1. A method for producing a heat-resistant thermoplastic resin by continuously polymerizing methyl methacrylate, maleic anhydride, styrene, or an alkyl acrylate having an alkyl group having 1 to 4 carbon atoms. In the first reactor, a polymerization reaction is carried out in the range of 50℃ to 150℃ using a raw material mixture in which dissolved oxygen has been removed to at least 1/10 of the oxygen dissolved in equilibrium at 20℃ in the atmosphere. The polymerization reaction was carried out to a polymerization rate of ~70% by weight, and then the polymerization rate was further increased by 10 to 30% by weight in a second reactor consisting of a flow reactor, so that the composition of the resulting polymer mixture became maleic anhydride 5. ~20 wt%, styrene 10-40 wt%, and the weight ratio of styrene to maleic anhydride is
1.8 to 3.5, further polymerized so that the methyl methacrylate composition exceeds 40% by weight, and the alkyl acrylate content is 0 to 20% by weight,
Moreover, after reacting until the concentration ratio of maleic anhydride among volatile components such as monomers and solvents remaining in the polymer mixture exiting the second reactor is 2.5% by weight or less, the devolatilization step is carried out. A method for continuously polymerizing and producing a transparent heat-resistant polymer with little coloration, characterized by devolatilizing the maleic anhydride to a concentration of 0.05% by weight or less. 2 The first reactor is 70-100℃, the second reactor is 70-100℃
The method according to claim 1, wherein the temperature is 120°C. 3. Claim 1, wherein the devolatilization step consists of a step operated under at least two stages of devolatilization conditions, and the temperature of the first stage devolatilization zone is 180°C or less.
The method described in Sections 1 and 2. 4 5 weight of polymerization inhibitor contained in styrene
The method according to any one of claims 1 to 3, wherein the polymerization is carried out at less than ppm.
JP15880982A 1982-09-14 1982-09-14 Method for continuous polymerization Granted JPS5949209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15880982A JPS5949209A (en) 1982-09-14 1982-09-14 Method for continuous polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15880982A JPS5949209A (en) 1982-09-14 1982-09-14 Method for continuous polymerization

Publications (2)

Publication Number Publication Date
JPS5949209A JPS5949209A (en) 1984-03-21
JPH035409B2 true JPH035409B2 (en) 1991-01-25

Family

ID=15679827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15880982A Granted JPS5949209A (en) 1982-09-14 1982-09-14 Method for continuous polymerization

Country Status (1)

Country Link
JP (1) JPS5949209A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772213B2 (en) * 1993-08-25 1995-08-02 旭化成工業株式会社 Method for producing methacrylic resin
JP3682229B2 (en) 1998-05-19 2005-08-10 三菱レイヨン株式会社 Copolymer, thermoplastic resin composition and method for producing the same
JP2010285582A (en) * 2009-06-15 2010-12-24 Asahi Kasei Chemicals Corp Method for producing thermoplastic resin, thermoplastic resin, and molding

Also Published As

Publication number Publication date
JPS5949209A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
US6632907B1 (en) Process for producing methacrylic polymer
EP0234726B1 (en) Methacrylate resin composition and process for its preparation
KR100427376B1 (en) Process for Preparing Polymer
CN111051273B (en) Method for producing optical molding compounds
EP0652237B1 (en) Process for preparing Methyl Methacrylate Polymer
US4122248A (en) Manufacture of homogeneous ethylene/tert-butyl acrylate/acrylic acid terpolymers
CA2135010A1 (en) Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation
JPH0796580B2 (en) Transparent heat resistant styrene copolymer
GB1576341A (en) Rubber-modified impact polystyrenes
KR950008151B1 (en) Methacrylimide containing polymer
CN113637105A (en) Preparation method of SAN resin with low crystal point and low yellow index
US6100366A (en) Cyclic imino ether group containing polymer and production process therefor
US5096976A (en) Methacrylimide-containing polymer
JPS6241973B2 (en)
CA1335621C (en) Maleimide copolymer and a process for producing the same
JPH035409B2 (en)
US5478903A (en) Maleimide-based copolymer, process for producing it, and thermoplastic resin composition containing the same
US3207205A (en) Extrusion-devolatilization process
JP3013951B2 (en) Acrylic resin manufacturing method
JP2007009228A (en) Thermoplastic copolymer and manufacturing method thereof
US4275182A (en) Process for the preparation of improved styrene acrylic acid copolymers
KR100763951B1 (en) Process for Methacrylic Resin Having Good Optical Properties
JPS6357613A (en) Methacrylate resin and its production
JP3858948B2 (en) Method for producing styrene-methyl methacrylate polymer
US4177340A (en) Manufacture of high-pressure polyethylene