JPH0353914B2 - - Google Patents

Info

Publication number
JPH0353914B2
JPH0353914B2 JP57138977A JP13897782A JPH0353914B2 JP H0353914 B2 JPH0353914 B2 JP H0353914B2 JP 57138977 A JP57138977 A JP 57138977A JP 13897782 A JP13897782 A JP 13897782A JP H0353914 B2 JPH0353914 B2 JP H0353914B2
Authority
JP
Japan
Prior art keywords
cysteine
reaction
atc
acid
carboxymethylcysteine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57138977A
Other languages
Japanese (ja)
Other versions
JPS5928486A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57138977A priority Critical patent/JPS5928486A/en
Priority to DE8383107857T priority patent/DE3376341D1/en
Priority to EP19830107857 priority patent/EP0101052B1/en
Publication of JPS5928486A publication Critical patent/JPS5928486A/en
Publication of JPH0353914B2 publication Critical patent/JPH0353914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はL−システインの誘導体であるS−カ
ルボキシルメチル−L−システイン(以下、単に
カルボキシメチルシステイン又はSMCと略す。)
の製造法に関する。 カルボキシメチルシステインは気管支炎の治療
剤特に去痰剤あるいは解毒剤等に用途を有する化
合物であり、その製造法は人毛の加水分解物から
分離されるシスチンを還元してL−システインと
し、このL−システイにモノハロゲノ酢酸を反応
する方法で製造されている。 L−システインは上記の如く人毛等を原料とす
るため供給量に限度があり、これに代る工業的生
産方法の開発が望まれていた。 これに対し、本出願人においては既に、2−ア
ミノ−チアゾリン−4−カルボン酸(以下、
ATCと記す。)を原料とし、微生物の作用を利用
してシステイン又はシスチンを製造する方法(特
開昭51−70881、51−54983又は特公昭54−2272号
公報参照)を開発した。 この方法はL−システインの工業生産に適した
方法であるが、ATCのシステインへの水解反応
は反応液中に生成されるシステインによつて強く
阻害されるためシステインを直接得ることができ
ない。そこで、この方法に於ては、ATCを水解
してシステインを生成する反応とシステインのシ
スチンへの酸化反応を同時に行いATC水解反応
に阻害のないシスチンを生成させ、このシスチン
を還元してシステインとする方法を採用せざるを
得ない。従つて、このATCを原料とする方法は
工程が長くかつ煩雑であり、更に収率の低い点に
ついても改善が望まれていた。 そこで本発明者等は、ATCから直接カルボキ
シメチルシステインを効率良くかつ高収率で製造
する方法を開発することを目的として鋭意研究を
重ねた結果、ATCを水解してシスチンを生成す
る能力を有する微生物をモノハロゲノ酢酸の存在
下でATCに作用せしめるとカルボキシメチルシ
ステインが直接高収率で生産できることを発見し
た。本発明は、この発見に基づいて完成されたも
のである。 本発明で使用する微生物はATCを水解してシ
ステイン又はシスチンを生成する能力を有する微
生物であり、例えば特開昭51−54983、51−70881
及び特公昭54−2272号公報に記載されているアク
ロモバクター、アルカリゲネス、バチルス、ブレ
ビバクテリウム、エンテロバクター、エルビニ
ア、エツシエリヒア、フラボバクテリウム、ミク
ロコツカス、ミコプラナ、シユードモナス、サル
シナあるいはセラチアの各属に属し、ATCを水
解してシステイン又はシスチンを生成する能力を
有する微生物であり、より具体的に例示するなら
ば次の如き菌株があげられる。
The present invention relates to S-carboxylmethyl-L-cysteine (hereinafter simply referred to as carboxymethylcysteine or SMC), which is a derivative of L-cysteine.
Concerning the manufacturing method. Carboxymethylcysteine is a compound that has uses as a therapeutic agent for bronchitis, particularly as an expectorant or antidote.The production method involves reducing cystine separated from human hair hydrolyzate to L-cysteine, -Produced by reacting cysteine with monohalogenoacetic acid. As mentioned above, since L-cysteine is made from human hair or the like, there is a limit to its supply, and there has been a desire to develop an alternative industrial production method. In contrast, the present applicant has already developed 2-amino-thiazoline-4-carboxylic acid (hereinafter referred to as
It is written as ATC. ) was used as a raw material, and a method for producing cysteine or cystine using the action of microorganisms was developed (see JP-A-51-70881, JP-A-51-54983 or JP-B-Sho 54-2272). Although this method is suitable for the industrial production of L-cysteine, cysteine cannot be directly obtained because the hydrolysis reaction of ATC to cysteine is strongly inhibited by cysteine produced in the reaction solution. Therefore, in this method, the reaction of hydrolyzing ATC to generate cysteine and the oxidation reaction of cysteine to cystine are carried out simultaneously to generate cystine that does not inhibit the ATC hydrolysis reaction, and this cystine is reduced to form cysteine. We have no choice but to adopt a method to do so. Therefore, this method using ATC as a raw material has long and complicated steps, and furthermore, there has been a desire to improve the low yield. Therefore, the present inventors have conducted intensive research with the aim of developing a method for producing carboxymethylcysteine directly from ATC efficiently and with high yield, and as a result, they have found that they have the ability to hydrolyze ATC to produce cystine. We discovered that carboxymethylcysteine can be directly produced in high yield by allowing microorganisms to act on ATC in the presence of monohalogenoacetic acid. The present invention was completed based on this discovery. The microorganism used in the present invention is a microorganism that has the ability to hydrolyze ATC to produce cysteine or cystine.
and belong to the genera Achromobacter, Alcaligenes, Bacillus, Brevibacterium, Enterobacter, Erwinia, Etschierichia, Flavobacterium, Micrococcus, Mycoplana, Pseudomonas, Sarcina, or Serratia as described in Japanese Patent Publication No. 54-2272. , is a microorganism that has the ability to hydrolyze ATC to produce cysteine or cystine, and more specific examples include the following strains.

【表】 微生物を培養するための培地は炭素源、窒素
源、無機イオン、更に要すれば有機微量栄養素を
適宜含有する培地であり、例えば、炭素源として
グルコース、シユクロース、キシロース、糖密等
の糖類、酢酸等の有機酸、エタノール、グリセロ
ール、メタノール等のアルコール類など、窒素源
として硫酸アンモニウム、塩化アンモニウムな
ど、有機栄養源として、酵母エキス、ペプトン、
肉エキス、コーン・ステイーブリカーなど、無機
イオンとして、マグネシウム、鉄、マンガン、カ
リウム、ナトリウム、リン酸などのイオンが適宜
用いられる。 微生物の培養法は常法に従つて行えば良く、上
記培地のPHを6〜9とし、20〜40℃で好気的に培
養すれば良い。 培養に際してはATCを少量添加することが望
ましくATCの水解活性の高い微生物菌体が得ら
れる。本発明の方法では、このようにして得られ
た微生物を酵素源として使用する。酵素源として
は、このようにして得られた培養液、培養液から
分離した分離菌体、洗滌生菌体、凍結乾燥体、ア
セトン乾燥菌体、物理的、化学的もしくは生化学
的に破壊された菌体、抽出液、粗精製物、精製
物、精製蛋白標晶、または菌体もしくは精製処理
物の固定化物などが酵素源として使用される。 原料であるATCは合成法にて供給されるD−
体、L−体、ラセミ体のいずれもが使用される。 基質濃度は、バツチ式、連続式によつても異な
るが、バツチ式では一般に水性媒質中0.1〜30%、
好ましくは0.5〜10%程度で、連続式では、これ
よりやや濃度を低下させた方が好ましい。 モノハロゲノ酢酸としてはモノフルオロ酢酸、
モノクロル酢酸、モノブロム酢酸、モノヨード酢
酸あるいはこれらの塩類が使用され、濃度は0.1
〜10%の範囲が望ましい。 反応は、普通、水性媒質中で15〜60℃、好まし
くは30〜50℃附近で、PH=6〜10、好ましくは
7.0〜9.5附近で行われる。反応時間は、静置、撹
拌、流下等の手段あるいは酵素標品の形態、力価
によつて異つてくるので一様ではないが、バツチ
法では通常10分〜72時間程度である。 反応に際して、ヒドロキシルアミン又はセミカ
ルバチドを添加することが望ましく、反応収率を
向上することができる。このような条件下、モノ
ハロゲノ酢酸の存在下でATCに微生物を作用さ
せるとカルボキシメチルシステインが直接反応液
中に生成される。 反応液からカルボキシメチルシステインを採取
する方法は公知の方法に従つて行えばよく、例え
ばカルボキシメチルシステインは酸性条件で簡単
に結晶化するので反応液から不溶性物質を除去し
た後酸性化で結晶化する方法によつて簡単に採取
される。 以下、実施例にて説明する。 実施例 1 第1表に示す組成の培地を調製し、500ml容振
盪フラスコに50ml宛分注し、120℃にて10分間加
熱した。
[Table] A medium for culturing microorganisms is a medium containing a carbon source, a nitrogen source, inorganic ions, and, if necessary, organic micronutrients. For example, as a carbon source, glucose, sucrose, xylose, molasses, etc. Sugars, organic acids such as acetic acid, alcohols such as ethanol, glycerol, methanol, etc. Nitrogen sources such as ammonium sulfate and ammonium chloride; organic nutritional sources such as yeast extract, peptone,
Ions such as magnesium, iron, manganese, potassium, sodium, and phosphoric acid are appropriately used as inorganic ions in meat extracts, corn staple liquor, and the like. The microorganisms may be cultured according to a conventional method, and the pH of the medium may be adjusted to 6 to 9, and the microorganisms may be cultured aerobically at 20 to 40°C. During cultivation, it is desirable to add a small amount of ATC to obtain microbial cells with high ATC water-degrading activity. In the method of the present invention, the microorganism thus obtained is used as an enzyme source. As an enzyme source, the culture solution obtained in this way, isolated bacterial cells separated from the culture solution, washed viable bacterial cells, freeze-dried cells, acetone-dried bacterial cells, and physically, chemically or biochemically destroyed bacterial cells can be used. The enzyme source may be a bacterial cell, an extract, a crude product, a purified product, a purified protein standard, or an immobilized product of the bacterial cell or a purified product. The raw material ATC is D-, which is supplied by a synthetic method.
All of the isomer, L-isomer, and racemic isomer are used. The substrate concentration differs depending on whether it is a batch method or a continuous method, but in a batch method, it is generally 0.1 to 30% in the aqueous medium.
It is preferably about 0.5 to 10%, and in a continuous system, it is preferable to lower the concentration slightly. Monohalogenoacetic acid includes monofluoroacetic acid,
Monochloroacetic acid, monobromoacetic acid, monoiodoacetic acid or their salts are used, and the concentration is 0.1
A range of ~10% is desirable. The reaction is usually carried out in an aqueous medium at 15-60°C, preferably around 30-50°C, and at a pH of 6-10, preferably
It will be held around 7.0-9.5. The reaction time varies depending on the method of standing, stirring, flowing down, etc., and the form and potency of the enzyme preparation, so it is not uniform, but in the batch method it is usually about 10 minutes to 72 hours. During the reaction, it is desirable to add hydroxylamine or semicarbatide, which can improve the reaction yield. Under such conditions, when microorganisms are allowed to act on ATC in the presence of monohalogenoacetic acid, carboxymethylcysteine is directly produced in the reaction solution. Carboxymethylcysteine can be collected from the reaction solution by following a known method. For example, carboxymethylcysteine easily crystallizes under acidic conditions, so after removing insoluble substances from the reaction solution, it is crystallized by acidification. It is easily collected by this method. Examples will be described below. Example 1 A culture medium having the composition shown in Table 1 was prepared, and 50 ml was dispensed into a 500 ml shaking flask, followed by heating at 120° C. for 10 minutes.

【表】 この培地にシユードモナス・デスモリチカ
AJ3868 FERM−P2816、FERM BP−323を接
種し、30℃にて24時間振盪培養した。培養液を遠
心分離して菌体を採取し、湿菌体5.0gを下記組
成の基質溶液100mlに添加し、30℃に保持し時々
軽くかきまぜて8時間反応を行つた。
[Table] In this medium, Pseudomonas desmolytica
AJ3868 FERM-P2816 and FERM BP-323 were inoculated and cultured with shaking at 30°C for 24 hours. The culture solution was centrifuged to collect bacterial cells, and 5.0 g of wet bacterial cells were added to 100 ml of a substrate solution having the composition shown below, and the reaction was carried out for 8 hours while being kept at 30° C. and stirring gently from time to time.

【表】 反応終了後、反応液中に生成したカルボキシメ
チルシステインをカチオン交換樹脂「ZYPAX
SCX」を用いる高速液体クロマトグラフイーで
定量したところ生成量は0.91g/dlであつた。 モノクロル酢酸の代りにモノフルオロ酢酸ナト
リウム0.9g、モノブロム酢酸ナトリウム1.2g又
はモノヨード酢酸ナトリウム1.6gを用いて同様
の反応を行つたところ、カルボキシメチルシステ
インの生成量は夫々、0.9g/dl、0.87g/dl及
び0.91g/dlであつた。 実施例 2 実施例1の方法で得られた湿菌体5.0を凍結乾
燥したもの、あるいは湿菌体5.0を0.1M、PH7.0の
リン酸緩衝液50mlに懸濁し、これに超音波処理
(トミー精工社製 LIR−200P型、20KC、5分
間)したもの、更には湿菌体5.0gを脱イオン水
20mlに懸濁し、これにアクリルアミバ3.8gとメ
チレンビスアクリルアミド225mgを加え、N2ガス
を流して酸素を除去し、過硫酸アンモニウム17.5
mg及びN1,N1−ジメチルアミノプロピオニトリ
ル40μgを加えて固定化した固定化物を夫々調製
した。これらの標品を第2表に示す組成の基質溶
液100mlに加え30℃に16時間保持して酵素反応を
行つた。反応終了後、各反応液より不溶性物質を
除去した後、生成したカルボキシメチルシステイ
ンの量を測定した。その結果を第3表に示す。
[Table] After the reaction is complete, the carboxymethyl cysteine produced in the reaction solution is removed using cation exchange resin "ZYPAX".
The amount produced was 0.91 g/dl as determined by high performance liquid chromatography using "SCX". When a similar reaction was carried out using 0.9 g of sodium monofluoroacetate, 1.2 g of sodium monobromoacetate, or 1.6 g of sodium monoiodoacetate instead of monochloroacetic acid, the amounts of carboxymethylcysteine produced were 0.9 g/dl and 0.87 g, respectively. /dl and 0.91g/dl. Example 2 The wet bacterial cells 5.0 obtained by the method of Example 1 were freeze-dried, or the wet bacterial cells 5.0 were suspended in 50 ml of a 0.1 M, PH 7.0 phosphate buffer solution and subjected to ultrasonic treatment ( Tomy Seiko LIR-200P model, 20KC, 5 minutes), and then 5.0g of wet bacterial cells in deionized water.
20 ml of suspension, add 3.8 g of acryl amiva and 225 mg of methylene bisacrylamide, remove oxygen by flowing N 2 gas, and add 17.5 g of ammonium persulfate.
An immobilized product was prepared by adding 40 μg of N 1 ,N 1 -dimethylaminopropionitrile and 40 μg of N 1 ,N 1 -dimethylaminopropionitrile. These preparations were added to 100 ml of a substrate solution having the composition shown in Table 2 and kept at 30°C for 16 hours to carry out an enzyme reaction. After the reaction was completed, insoluble substances were removed from each reaction solution, and the amount of carboxymethylcysteine produced was measured. The results are shown in Table 3.

【表】 実施例 3 第4表に示す微生物を第1表に示す培地で実施
例1の方法に従つて培養した。夫々の培養液を遠
心分離し、湿菌体5.0gを取つてこれを第2表に
示す基質溶液100mlに懸濁し、30℃に24時間保持
して反応を行つた。反応終了後、反応液中に生成
したカルボキシメチルシステインを高速液体クロ
マトグラフイーで定量した。その結果を第4表に
示す。
[Table] Example 3 The microorganisms shown in Table 4 were cultured in the medium shown in Table 1 according to the method of Example 1. Each culture solution was centrifuged, 5.0 g of wet bacterial cells were suspended in 100 ml of the substrate solution shown in Table 2, and the reaction was carried out at 30° C. for 24 hours. After the reaction was completed, carboxymethylcysteine produced in the reaction solution was quantified by high performance liquid chromatography. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 2−アミノ−チアゾリン−4−カルボン酸を
水解してL−システイン又はL−シスチンを生成
する能力を有する微生物をモノハロゲノ酢酸の存
在下で2−アミノ−チアゾリン−4−カルボン酸
に作用させてS−カルボキシメチル−L−システ
インを生成せしめ、これを採取することを特徴と
するS−カルボキシメチル−S−システインの製
造法。
1 A microorganism capable of hydrolyzing 2-amino-thiazoline-4-carboxylic acid to produce L-cysteine or L-cystine is allowed to act on 2-amino-thiazoline-4-carboxylic acid in the presence of monohalogenoacetic acid. 1. A method for producing S-carboxymethyl-S-cysteine, which comprises producing S-carboxymethyl-L-cysteine and collecting it.
JP57138977A 1982-08-09 1982-08-10 Preparation of s-carboxymethyl-l-cysteine Granted JPS5928486A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57138977A JPS5928486A (en) 1982-08-10 1982-08-10 Preparation of s-carboxymethyl-l-cysteine
DE8383107857T DE3376341D1 (en) 1982-08-09 1983-08-09 Method for producing 2-substituted-thiazolidine-4-carboxylic acids
EP19830107857 EP0101052B1 (en) 1982-08-09 1983-08-09 Method for producing 2-substituted-thiazolidine-4-carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138977A JPS5928486A (en) 1982-08-10 1982-08-10 Preparation of s-carboxymethyl-l-cysteine

Publications (2)

Publication Number Publication Date
JPS5928486A JPS5928486A (en) 1984-02-15
JPH0353914B2 true JPH0353914B2 (en) 1991-08-16

Family

ID=15234589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138977A Granted JPS5928486A (en) 1982-08-09 1982-08-10 Preparation of s-carboxymethyl-l-cysteine

Country Status (1)

Country Link
JP (1) JPS5928486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110036A1 (en) 2008-03-06 2009-09-11 株式会社Ihi Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110036A1 (en) 2008-03-06 2009-09-11 株式会社Ihi Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor

Also Published As

Publication number Publication date
JPS5928486A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
CH639695A5 (en) PROCEDURE ENZYME-MICROBIOLOGICAL FOR THE PRODUCTION OF OPTICALLY ACTIVE AMINO ACID FROM hydantoins AND / OR DERIVATIVES carbamyl-RACEMI.
EP0330529A1 (en) Process for the preparation of optically active 2-aryl-propionic acids
JPH0353914B2 (en)
JP2843596B2 (en) Process for producing novel D-amidase and D-α-alanine and / or L-α-alanine amide
JP2679031B2 (en) Amino acid production method and amino acid-producing bacterium
JP2832723B2 (en) Method for producing L-alanine
JPH0669381B2 (en) Carnitine manufacturing method
JP2899071B2 (en) Method for producing L-α-alanine
JPH0353915B2 (en)
JPH0353916B2 (en)
JP4561021B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JPH0329395B2 (en)
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine
JPS62289194A (en) Production of phenylalanine or its derivative
JP3018471B2 (en) Method for producing L-amino acid
JPS6219095A (en) Racemization of 2-oxo-oxazolidine-4-carboxylic acid
JPH01228489A (en) Production of d-n-carbamyl-alpha-amino acid
JPS6296095A (en) Conversion of acetamide cinamic acid to l-phenylalanine by fermentation
JPH0525476B2 (en)
JPH0870878A (en) Method for producing tropolonyl alanine
JPS63273487A (en) Production of l-threonine
JPS63283591A (en) Production of l-alpha-amino-epsilon-caprolactam
JPH0346115B2 (en)
JPS62296895A (en) Production of l-isoleucine from d, l-alpha-hydroxybutyrate and variant of corynebacterium glutamicum
JPS615793A (en) Production of d-aspartic acid