JPH0353739B2 - - Google Patents

Info

Publication number
JPH0353739B2
JPH0353739B2 JP56041677A JP4167781A JPH0353739B2 JP H0353739 B2 JPH0353739 B2 JP H0353739B2 JP 56041677 A JP56041677 A JP 56041677A JP 4167781 A JP4167781 A JP 4167781A JP H0353739 B2 JPH0353739 B2 JP H0353739B2
Authority
JP
Japan
Prior art keywords
molybdenum
rotating anode
rotating
plate
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56041677A
Other languages
Japanese (ja)
Other versions
JPS57157447A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4167781A priority Critical patent/JPS57157447A/en
Publication of JPS57157447A publication Critical patent/JPS57157447A/en
Publication of JPH0353739B2 publication Critical patent/JPH0353739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、X線管用回転陽極、更に詳しくは高
温・高速で回転していても変形することがなく、
したがつて高い信頼生と安全生を有するX線管用
回転陽極に関する。 X線管用回転陽極は、同固定陽極に比べてその
熱容量が大きいので高負荷入力が可能となり、し
たがつて透視力の大きいX線を得ることができる
ため、乳ガン投影、血管造影撮影などの医療分野
で広く用いられている。 従来から回転陽極は、第1図(断面図)及び第
2図(平面図)で示されるタングステン板とモリ
ブデン板とを接合した構造の複合体である。第1
図において、1はタングステン板、2は厚いモリ
ブデン板で、両者はその接合面3に例えばモリブ
デン微粉を用いた接合剤を介在させた後、約1600
℃の温度で圧着して一体的に接合されている。4
は中心部に設けられている貫通孔で、ここには回
転軸が嵌挿されて該回転軸に回転陽極が固定され
る。 回転陽極は、真空のガラス外囲器の中に収容さ
れて数千回転分の高速で回転され、図のタングス
テン板の傾斜面5には、その上方に設けられた集
束電極(陰極)から電子ビーム束が該傾斜面で焦
点を結ぶように照射される(矢印A)。その結果、
該傾斜面5からX線が発生する(矢印B)。 さて、この回転陽極の運転時には、照射される
電子ビーム束によつて該回転陽極が高温となる。
その温度は、入力する負荷によつて変動はする
が、通常、その照射軌道においては2400〜2600
℃、回転陽極全体でも1000〜1200℃である。透視
力のより大きいX線を得るために、更なる高温負
荷を入力すると、回転陽極は一層高温になる。 ところで、タングステン、モリブデンは一般に
温度が上昇するにつれて、その機械的強度が低下
する。このことは、高温、高速で回転する回転陽
極の傾斜面に作用する遠心力が、該傾斜面を外周
方向に押し広げる傾向に対する耐力の低下、すな
わち、傾斜面の変形に対する対力の低下を意味す
る。 また、タングステンとモリブデンは線熱膨張係
数が異なり、モリブデンの方がその値は大きい。
したがつて、回転陽極が高温にあるとき、下方に
あるモリブデン板の熱膨張量が上方にあるタング
ステン板のそれよりも大きくなるので、接合面に
おいては両者の熱膨張差に基づく熱応力が発生す
る。それは、接合面での部分的剥離又は、傾斜面
を外周方向に押し広げる作用の原因となる。 このようなことから、回転陽極においては、高
温・高速での運転時に、その傾斜面が外周方向に
“そる”という事態がしばしば生ずる。このよう
な“そり”が発生した場合、X線の発生方向(第
1図の矢印B)が設計した方向からずれるため、
得られるX線量が減少するとともに、なにより
も、回転陽極の回転バランスが崩れて円滑な回転
が不可能となり最悪の場合には回転軸の折損など
の事故を招くことがある。 本発明は、上記のような欠点を解決するため
に、高温においてもその機械的強度が大きくかつ
接合面での熱膨張差に基づく熱応力を減少せしめ
るモリブデン板を用いることによつて、高い信頼
生と安全性をもつて運転できるX線管用回転陽極
の提供を目的とする。 すなわち、本発明の回転陽極は、タングステン
板をX線照射面としてモリブデン板を基体として
成るX線管用回転陽極において、該基体を鉄、ニ
ツケル、コバルト及びスズの少なくとも1種を
150ppm以下含有してなるトープモリブデン;又
はケイ素、カリウム及びアルミニウムの少なくと
も1種を150ppm以下含有してなるドープモリブ
デンで形成したことを特徴とする。 本発明に用いるドープモリブデン板は、ドープ
剤としてFe,Ni,Co及びSnを少なくとも1種含
有する組成(Mo−Fe−Ni−Co−Snと記す。)又
はドープ剤としてSi,K及びAlを少なくとも1
種含有する組成(Mo−Si−K−Alと記す。)で
ある。これらのモリブデン板は、いずれもモリブ
デン単独の場合に比べて、その高温での機械的強
度が大きくかつ線熱膨張係数も小さい。したがつ
て、タングステン板と接合した場合タングステン
板との熱膨張差が小さくなる。この効果は、粉末
の状態で添加されたドープ剤が焼結の過程で飛散
する際の挙動により不純物を除去し清浄にすると
ともにモリブデンの結晶を調整することにもよる
ものである。 このとき、Fe,Ni,Co,Sn又はSi,K,Alの
残存量はいずれも150ppm以下であることが必要
で、残存量が150ppmを超えると、上記のような
特性を得ることができない。残存量が100ppm以
下の場合にはより好ましい特性を与える。 このようなMo−Fe−Ni−Co−Sn又はMo−Si
−K−Alは、例えば次のようにして調整するこ
とができる。 前者においては、モリブデンのアンモニウム溶
解液にグリコールスズおよび硝酸コバルトを添加
して結晶を抽出し、ついでこれを還元して所望の
粉末とする。また後者においてはモリブデン酸化
物粉末にけい酸カリウム溶液をドープして同様に
粉末とする。このようにしてドープ剤を150ppm
以下含有するMo粉末を得ることができる。 ついで、このMo粉を所定形状に加圧形成した
後、還元雰囲気中で焼結し、更に必要に応じて、
鋳造・圧延等の加工処理を施して本発明にかかる
モリブデン板が得られる。 本発明の回転陽極は、上記のようにして得られ
たモリブデン板の上に、例えば1μ以下のモリブ
デン粉末を有機バインダーを用いてペースト状と
した接合剤を薄く一様に塗布し、その後、水素雰
囲気中で脱バインダ処理を施した後、この上にタ
ングステン板を積層し、全体を水素還元雰囲気中
で1400〜1600℃の温度で所定の圧力(例えば250
Kg/cm2)を加えて圧着・接合することにより得る
ことができる。 以下に本発明を実施例に基づいて説明する。 実施例 (1) モリブデン板の作成 Co源を硝酸コバルト、Sn源をグリコールス
ズおよびK源、Si源をけい素カリウムとし、こ
れらのMo粉末への添加量を変化させて、表に
示す組成のモリブデン板を作成した。これらの
板について、線熱膨張係数を測定した。その結
果を、表に示した。なお比較のため、モリブデ
ン、タングステン単独の場合(No.3,No.4)の
上記特性も併記した。
The present invention provides a rotating anode for an X-ray tube, and more specifically, a rotating anode for an X-ray tube that does not deform even when rotating at high temperatures and high speeds.
Therefore, the present invention relates to a rotating anode for an X-ray tube that has high reliability and safety. Rotating anodes for X-ray tubes have a larger heat capacity than fixed anodes, making it possible to input high loads and obtain X-rays with high fluoroscopic vision, making them ideal for medical applications such as breast cancer projection and angiography. Widely used in the field. Conventionally, a rotating anode is a composite structure in which a tungsten plate and a molybdenum plate are joined together, as shown in FIG. 1 (cross-sectional view) and FIG. 2 (plan view). 1st
In the figure, 1 is a tungsten plate, 2 is a thick molybdenum plate, and after interposing a bonding agent using, for example, fine molybdenum powder on the joint surface 3 of both, about 1600
They are integrally bonded by pressure bonding at a temperature of °C. 4
is a through hole provided in the center, into which a rotating shaft is inserted and the rotating anode is fixed to the rotating shaft. The rotating anode is housed in a vacuum glass envelope and rotates at a high speed of several thousand revolutions, and electrons are sent from the focusing electrode (cathode) provided above to the inclined surface 5 of the tungsten plate shown in the figure. The beam bundle is irradiated so as to be focused on the inclined surface (arrow A). the result,
X-rays are generated from the inclined surface 5 (arrow B). Now, when the rotating anode is in operation, the rotating anode becomes hot due to the irradiated electron beam flux.
Although the temperature varies depending on the input load, it is usually between 2400 and 2600 in the irradiation trajectory.
℃, and the temperature of the entire rotating anode is 1000-1200℃. In order to obtain X-rays with greater visual acuity, the rotating anode becomes hotter when a further high temperature load is input. By the way, the mechanical strength of tungsten and molybdenum generally decreases as the temperature increases. This means that the centrifugal force acting on the inclined surface of the rotating anode rotating at high temperature and high speed tends to spread the inclined surface outward in the outer circumferential direction, and this means that the resistance to the deformation of the inclined surface is reduced. do. Furthermore, tungsten and molybdenum have different linear thermal expansion coefficients, with molybdenum having a larger value.
Therefore, when the rotating anode is at a high temperature, the amount of thermal expansion of the molybdenum plate below is greater than that of the tungsten plate above, and thermal stress is generated at the joint surface due to the difference in thermal expansion between the two. do. This causes partial separation at the joint surface or an action that pushes the inclined surface outward in the outer circumferential direction. For this reason, when the rotating anode is operated at high temperatures and high speeds, the inclined surface often "warps" in the direction of the outer circumference. If such "warping" occurs, the direction of X-ray generation (arrow B in Figure 1) will deviate from the designed direction.
The amount of X-rays obtained decreases, and above all, the rotational balance of the rotating anode is disrupted, making smooth rotation impossible, and in the worst case, an accident such as breakage of the rotating shaft may occur. In order to solve the above-mentioned drawbacks, the present invention uses a molybdenum plate that has high mechanical strength even at high temperatures and reduces thermal stress due to the difference in thermal expansion at the joint surface, thereby achieving high reliability. The purpose of this invention is to provide a rotating anode for an X-ray tube that can be operated safely and efficiently. That is, the rotating anode of the present invention is a rotating anode for an X-ray tube, which is composed of a tungsten plate as an X-ray irradiation surface and a molybdenum plate as a base, in which the base is made of at least one of iron, nickel, cobalt, and tin.
It is characterized by being formed of doped molybdenum containing 150 ppm or less; or doped molybdenum containing 150 ppm or less of at least one of silicon, potassium, and aluminum. The doped molybdenum plate used in the present invention has a composition containing at least one of Fe, Ni, Co, and Sn as a dopant (referred to as Mo-Fe-Ni-Co-Sn), or a composition containing Si, K, and Al as a dopant. at least 1
It has a composition containing seeds (denoted as Mo-Si-K-Al). All of these molybdenum plates have higher mechanical strength at high temperatures and lower linear thermal expansion coefficients than molybdenum alone. Therefore, when bonded to a tungsten plate, the difference in thermal expansion with the tungsten plate becomes small. This effect is due to the behavior of the dopant added in powder form when it scatters during the sintering process, removing impurities and cleaning it, as well as adjusting the molybdenum crystals. At this time, the residual amounts of Fe, Ni, Co, Sn, or Si, K, and Al must all be 150 ppm or less, and if the residual amounts exceed 150 ppm, the above characteristics cannot be obtained. When the residual amount is 100 ppm or less, more favorable characteristics are provided. Such Mo−Fe−Ni−Co−Sn or Mo−Si
-K-Al can be adjusted, for example, as follows. In the former, tin glycol and cobalt nitrate are added to an ammonium solution of molybdenum to extract crystals, which are then reduced to the desired powder. In the latter case, molybdenum oxide powder is doped with a potassium silicate solution to form a powder in the same way. In this way dope is 150ppm
Mo powder containing the following can be obtained. Next, after pressurizing and forming this Mo powder into a predetermined shape, it is sintered in a reducing atmosphere, and if necessary,
The molybdenum plate according to the present invention is obtained by processing such as casting and rolling. The rotating anode of the present invention is produced by uniformly coating a molybdenum plate obtained as described above with a bonding agent made by making a paste of, for example, molybdenum powder of 1μ or less using an organic binder, and then applying hydrogen. After debinding in an atmosphere, a tungsten plate is laminated on top of the tungsten plate, and the whole is heated at a temperature of 1400 to 1600°C under a predetermined pressure (e.g. 250°C) in a hydrogen reducing atmosphere.
Kg/cm 2 ) and crimping/bonding. The present invention will be explained below based on examples. Example (1) Preparation of Molybdenum Plate The Co source was cobalt nitrate, the Sn source was glycol tin and K source, and the Si source was potassium silicon, and the amounts added to these Mo powders were varied to create the compositions shown in the table. I made a molybdenum plate. The linear thermal expansion coefficients of these plates were measured. The results are shown in the table. For comparison, the above characteristics of cases where molybdenum and tungsten were used alone (No. 3, No. 4) are also shown.

【表】 (2) 回転陽極の作成 直径100mm、厚み10mmのNo.1〜No.3のモリブ
デン板の上に、モリブデン粉末のペースト剤を
塗布した後、この上に直径100mm、厚み2mmの
No.4のタングステン板を重ねた。 ついでこれらを水素雰囲気中で温度1600℃、
圧力250Kg/cm2の条件で熱圧プレスした。両者
が一体的に接合したW/Mo接合体が得られ
た。この接合体を加工し、回転陽極とした。 (3) 傾斜面の“そり”の観察 こうして得られた回転陽極を、第3図にて簡
略な断面図で示すような回転陽極の変形度を測
定する装置にそれぞれ組み込んで、回転陽極の
変形度を測定した。 第3図について説明すると、まず、試料とな
る回転陽極をそれぞれ実際にX線管に組み込
み、第3図のように配置する。すなわち、図に
おいて11はX線照射面、12は基体、13は
X線管壁である。そしてX線管と平行して管壁
より一定距離(図においてL)の位置に感光体
14を設ける。 このように配置された装置にてX線管を作動さ
せると感光体14上に照射されるX線の範囲が判
別できる。したがつてX線管作動中に回転陽極の
変系が起こればこのX線の照射範囲が感光体にて
明らかとなる。 今、例えば、第3図において、作動前の回転陽
極によつて照射されるX線の照射範囲が破線にて
示されるところまでで、感光体14上の基点aか
らの距離がyであるとする。仮に作動中に回転陽
極の変形があるとその照射範囲は実線で示される
範囲に移動し、基点aからの距離がxに変化す
る。このとき、回転陽極の変形度を、 変形度(%)=(y−x)/y×100 として表わす。 このようにして、前記した各回転陽極について
この変形度を調査した。 試験条件としては電子照射時間を1回につき4
秒とし、回転陽極を回動しながら電子照射を行い
X線を発生させて、作動初期と100回照射後のお
のおののX線照射位置を測定した。 その結果、前記表(試料番号1,2)に示した
組成のドープモリブデンを基体とした回転陽極は
変形度3%以下であつて良好な作動状態を示し
た。 一方比較のため試料番号3の純モリブデンを基
体としたターゲツトは変形度10%以上であつて、
好ましくなかつた。
[Table] (2) Creating a rotating anode After applying a paste of molybdenum powder on molybdenum plates No. 1 to No. 3 with a diameter of 100 mm and a thickness of 10 mm, a paste of molybdenum powder with a diameter of 100 mm and a thickness of 2 mm
Layered No. 4 tungsten plates. These were then heated at a temperature of 1600°C in a hydrogen atmosphere.
Hot pressure pressing was carried out at a pressure of 250 kg/cm 2 . A W/Mo bonded body in which both were integrally bonded was obtained. This joined body was processed to form a rotating anode. (3) Observation of “warpage” on the inclined surface The rotating anodes obtained in this way were installed in a device for measuring the degree of deformation of the rotating anode, as shown in the simplified cross-sectional view in Figure 3, and the deformation of the rotating anode was measured. The degree of To explain FIG. 3, first, each rotating anode serving as a sample is actually assembled into an X-ray tube and arranged as shown in FIG. That is, in the figure, 11 is an X-ray irradiation surface, 12 is a base, and 13 is an X-ray tube wall. A photoreceptor 14 is provided parallel to the X-ray tube at a certain distance (L in the figure) from the tube wall. When the X-ray tube is operated in a device arranged in this manner, the range of X-rays irradiated onto the photoreceptor 14 can be determined. Therefore, if a change in the rotating anode occurs during operation of the X-ray tube, the irradiation range of the X-rays becomes clear on the photoreceptor. For example, in FIG. 3, if the irradiation range of the X-rays irradiated by the rotating anode before operation is indicated by the broken line, the distance from the base point a on the photoreceptor 14 is y. do. If the rotating anode is deformed during operation, its irradiation range moves to the range shown by the solid line, and the distance from the base point a changes to x. At this time, the degree of deformation of the rotating anode is expressed as degree of deformation (%)=(y-x)/y×100. In this manner, the degree of deformation of each of the rotating anodes described above was investigated. The test conditions are electron irradiation time of 4 times per time.
2 seconds, electron irradiation was performed while rotating the rotating anode to generate X-rays, and the X-ray irradiation positions at the initial stage of operation and after 100 irradiations were measured. As a result, the rotating anodes based on doped molybdenum having the compositions shown in the table (sample numbers 1 and 2) had a degree of deformation of 3% or less and exhibited good operating conditions. On the other hand, for comparison, sample number 3, a target based on pure molybdenum, had a degree of deformation of 10% or more.
I didn't like it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はX線管用回転陽極の断面図及
び平面図である。第3図は回転陽極の変形度を測
定する装置を概略的に示す断面図である。 1,11……タングステン板、2,12……モ
リブデン板、3……接合面、4……貫通孔、5…
…傾斜面、A……電子ビーム束、B……X線。
FIGS. 1 and 2 are a sectional view and a plan view of a rotating anode for an X-ray tube. FIG. 3 is a sectional view schematically showing an apparatus for measuring the degree of deformation of a rotating anode. 1, 11... Tungsten plate, 2, 12... Molybdenum plate, 3... Joint surface, 4... Through hole, 5...
...Slope, A...Electron beam flux, B...X-ray.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄、ニツケル、コバルト及びスズの少なくと
も1種を150ppm以下含有してなるドープモリブ
デン;又はケイ素、カリウム及びアルミニウムの
少なくとも1積を150ppm以下含有してなるドー
プモリブデンを基体とし、X線照射面をタングス
テンあるいはその合金で形成してなるX線管用回
転陽極。
1 Doped molybdenum containing 150 ppm or less of at least one of iron, nickel, cobalt, and tin; or doped molybdenum containing 150 ppm or less of at least one of silicon, potassium, and aluminum as a base, and the X-ray irradiated surface A rotating anode for an X-ray tube made of tungsten or its alloy.
JP4167781A 1981-03-24 1981-03-24 Rotary anode for x-ray tube Granted JPS57157447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4167781A JPS57157447A (en) 1981-03-24 1981-03-24 Rotary anode for x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4167781A JPS57157447A (en) 1981-03-24 1981-03-24 Rotary anode for x-ray tube

Publications (2)

Publication Number Publication Date
JPS57157447A JPS57157447A (en) 1982-09-29
JPH0353739B2 true JPH0353739B2 (en) 1991-08-16

Family

ID=12615041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4167781A Granted JPS57157447A (en) 1981-03-24 1981-03-24 Rotary anode for x-ray tube

Country Status (1)

Country Link
JP (1) JPS57157447A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787082B2 (en) * 1987-07-24 1995-09-20 株式会社日立製作所 Rotating anode target for X-ray tube
JPWO2012169258A1 (en) * 2011-06-08 2015-02-23 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169261A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531188A (en) * 1978-07-24 1980-03-05 Gen Electric Target base body for x ray tube of molybdenum alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531188A (en) * 1978-07-24 1980-03-05 Gen Electric Target base body for x ray tube of molybdenum alloy

Also Published As

Publication number Publication date
JPS57157447A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
US4195247A (en) X-ray target with substrate of molybdenum alloy
US4004174A (en) Rotary anode structure for an X-ray tube
US3328626A (en) Rotary anodes of x-ray tubes
US4298816A (en) Molybdenum substrate for high power density tungsten focal track X-ray targets
JPS59141144A (en) Method of producing x-ray tube rotary anode and rotary anode
JPH0353739B2 (en)
US4482837A (en) Rotary anode for an X-ray tube and a method for manufacturing the same
KR910001514B1 (en) X-ray tube
US20010036249A1 (en) Composite X-ray target
US6428904B2 (en) X-ray target
CA1081758A (en) X-ray tube anode with alloyed surface and method of making the same
US1733744A (en) Composite x-ray target
JPH04118841A (en) Rotary anode x-ray tube and manufacture thereof
CN105087986B (en) A kind of preparation method of non-solid-solution copper carbon supersaturated solid solution
US4731805A (en) Rotary anode for an x-ray tube and an x-ray tube having such anode
US3836808A (en) Rotary anode for an x-ray tube
AT412689B (en) METHOD FOR PRODUCING A ROTATING X-RAY TUBE
JP3292507B2 (en) Anode for X-ray tube, method for producing the same, and X-ray tube for CT
JPS60198045A (en) Rotary anode for x-rat tube
JP2840915B2 (en) Rhenium-molybdenum alloy tubular parts for impregnated cathodes for electron tubes
AT397005B (en) METHOD FOR PRODUCING AN X-RAY ROTARY ANODE
JPH0668960B2 (en) X-ray tube
US1625427A (en) Target for X-ray tubes
JPH10223161A (en) Evaporation type gettering device shortened with activation time
US1153290A (en) X-ray target.