JPH0353604B2 - - Google Patents

Info

Publication number
JPH0353604B2
JPH0353604B2 JP57183549A JP18354982A JPH0353604B2 JP H0353604 B2 JPH0353604 B2 JP H0353604B2 JP 57183549 A JP57183549 A JP 57183549A JP 18354982 A JP18354982 A JP 18354982A JP H0353604 B2 JPH0353604 B2 JP H0353604B2
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical fibers
optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183549A
Other languages
Japanese (ja)
Other versions
JPS5972414A (en
Inventor
Yasuyuki Kato
Hisaharu Yanagawa
Shigeru Tategami
Yoshio Tsuchida
Juichi Toda
Shigeru Tanaka
Ko Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18354982A priority Critical patent/JPS5972414A/en
Publication of JPS5972414A publication Critical patent/JPS5972414A/en
Publication of JPH0353604B2 publication Critical patent/JPH0353604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明は光フアイバ相互、特にシングルモード
型の光フアイバ相互を調心するのに適した方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method suitable for aligning optical fibers, particularly single mode optical fibers.

『従来の技術』 周知の通り、光フアイバ相互を融着接続すると
き、これら光フアイバを互いに調心する。
BACKGROUND OF THE INVENTION As is well known, when optical fibers are fusion spliced together, the optical fibers are aligned with each other.

一般的な光フアイバの調心手段としては、第1
図に示す方法が広く採用されている。
As a general optical fiber alignment means, the first
The method shown in the figure is widely adopted.

第1図の方法では、調心端部が相互に対向する
一対の光フアイバa,bにおいて、光フアイバa
の入射端部には光源cを、光フアイバbには受光
器dをそれぞれ配置しておき、光源cから光フア
イバa,bを経て受光器dへ入射される光量をモ
ニタしながら調心する。
In the method shown in FIG. 1, in a pair of optical fibers a and b whose alignment ends face each other, optical fiber a
A light source c is placed at the input end of the optical fiber B, and a photoreceiver d is placed on the optical fiber b, and alignment is performed while monitoring the amount of light incident from the light source c to the photoreceiver d via the optical fibers a and b. .

すなわち、受光器dの入射光量が最大となるよ
うに、光フアイバa,bをX方向、Y方向に微動
させて、これら光フアイバa,bを調心する。
That is, the optical fibers a and b are slightly moved in the X direction and the Y direction to align the optical fibers a and b so that the amount of light incident on the light receiver d is maximized.

その他、特開昭54−47671号公報、特開昭54−
61547号公報、特開昭54−126555号公報に開示さ
れた各公知例では、光学手段を介して光フアイバ
端部の形状を適当な表示部にあらわし、その光フ
アイバ端部をモニタしながら光フアイバの外形を
基準にして調心している。
Others: JP-A-54-47671, JP-A-54-
In the known examples disclosed in Japanese Patent Laid-Open No. 61547 and Japanese Patent Application Laid-open No. 126555/1987, the shape of the end of the optical fiber is displayed on a suitable display section through optical means, and the end of the optical fiber is monitored while being displayed. Alignment is done based on the outer shape of the fiber.

『発明が解決しようとする問題点』 第1図の従来例では、コア相互が一致する最大
入射光量が得られるよう、対をなす光フアイバ端
部を調心するので、コア相互の一致した望ましい
調心状態が得られるが、光フアイバa,bが長尺
の場合は、光源cと受光器dとの間隔が大きくな
り、したがつて、接続箇所に配置された一名の作
業員のみで、偏心を行ないつつ受光器dを監視す
ること、光源cを操作することが不可能となり、
各所に作業を配置しなければならない不都合が生
じる。
``Problems to be Solved by the Invention'' In the conventional example shown in FIG. A state of alignment can be obtained, but if the optical fibers a and b are long, the distance between the light source c and the receiver d will be large, and therefore only one worker placed at the connection point will be able to do it. , it becomes impossible to monitor the light receiver d and operate the light source c while performing eccentricity,
This creates the inconvenience of having to place work in various locations.

前記各公報に開示された公知例の場合、接続箇
所にモニタ手段を配置し、その接続箇所で光フア
イバ端部をモニタしながら調心できるので、一名
の作業員にて調心が行なえるが、これらの公知例
は、いずれも外形を基準にした光フアイバの調心
手段であるため、つぎのような問題点がある。
In the case of the known examples disclosed in the above-mentioned publications, a monitor means is placed at the connection point, and alignment can be performed while monitoring the end of the optical fiber at the connection point, so alignment can be performed by one worker. However, since all of these known examples are means for aligning the optical fiber based on the outer shape, they have the following problems.

すなわち、外形基準による調心法では、対をな
す光フアイバの外形中心が相互に一致するが、光
フアイバ外形とそのコアとが偏心しているような
光フアイバにあつては、コア相互が一致せず、接
続ロスを小さくすることのできる調心状態を常に
確保するのが困難となる。
In other words, in the alignment method based on the external shape, the external centers of the paired optical fibers coincide with each other, but in the case of optical fibers where the optical fiber external shape and its core are eccentric, the cores may not coincide with each other. First, it becomes difficult to always maintain an alignment state that can reduce connection loss.

特に、コア径の小さいシングルモード型光フア
イバの場合、コア相互のずれが接続ロスを大きく
してしまう。
Particularly in the case of a single-mode optical fiber with a small core diameter, misalignment between the cores increases connection loss.

本発明は上記の問題点に鑑み、少ない作業員に
て、コア相互を一致させることのできる光フアイ
バの調心方法を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides an optical fiber alignment method that allows the cores to be aligned with each other with a small number of workers.

『問題点を解決するための手段』 本発明は所期の目的を達成するため、対をなす
光フアイバの端部を互いに対向させて配置し、そ
の対向状態の光フアイバ端部を挟む位置に光照射
機構と受光機構とを配置した後、光照射機構から
の平行光線を各光フアイバ端部に照射し、かつ、
その透過光線を受光機構により受光するととも
に、当該透過光線の光量分布をモニタしながら、
光フアイバ相互を調心する方法において、上記光
照射時には、光照射機構からの平行光線を光フア
イバ軸線と交差する方向から各光フアイバ端部の
外周面に照射することにより、光フアイバのコ
ア、クラツドの屈折率差に基づくレンズ効果に依
存して、上記透過光線の光量分布に、光強度の強
弱による光フアイバ半径方向の明暗分布を生じさ
せ、上記受光時には、明暗分布の生じた上記透過
光線を受光機構により受光して、その透過光線の
明暗分布から光フアイバコアの外形線を認識し、
これら光照射および受光を、光フアイバ軸線と交
差する二方向について行ない、その際のコア外形
線をモニタしながら対をなす光フアイバのコア相
互を一致させることを特徴とする。
``Means for Solving the Problems'' In order to achieve the intended purpose, the present invention arranges the ends of a pair of optical fibers to face each other, and positions the opposite ends of the optical fibers in between. After arranging the light irradiation mechanism and the light reception mechanism, irradiating parallel light beams from the light irradiation mechanism to each optical fiber end, and
The transmitted light beam is received by a light receiving mechanism, and the light intensity distribution of the transmitted light beam is monitored.
In the method for aligning optical fibers with each other, during the light irradiation, the core of the optical fiber, Depending on the lens effect based on the difference in the refractive index of the cladding, a brightness distribution in the radial direction of the optical fiber is generated depending on the intensity of the light intensity in the light amount distribution of the transmitted light beam, and when the light is received, the transmitted light beam with the brightness distribution is generated. is received by a light receiving mechanism, and the outline of the optical fiber core is recognized from the brightness distribution of the transmitted light.
The light irradiation and light reception are performed in two directions intersecting the axis of the optical fiber, and the cores of the paired optical fibers are made to coincide with each other while monitoring the core outline at that time.

『作用』 本発明方法は上述のごとく、互いに対向した光
フアイバ端部において、これら光フアイバコアの
外形線をモニタしながら、対をなす光フアイバの
コア相互を一致させるので、調心に必要な設備を
光フアイバ端部の対向部付近に集中して配置し、
その集中配置された設備を一名の作業員にて取り
扱うことにより、長尺光フアイバ相互の調心が難
なく行なえ、しかも、コア相互を一致させる調心
手段であるから、接続ロスがきわめて小さく、シ
ングルモード型光フアイバの調心にも有効に活用
することができる。
"Operation" As described above, the method of the present invention aligns the cores of a pair of optical fibers while monitoring the outer contours of the optical fiber cores at the end portions of the optical fibers facing each other, and therefore requires no equipment for alignment. are concentrated near the opposite end of the optical fiber,
By handling the centrally located equipment by one worker, the long optical fibers can be aligned easily, and since the cores are aligned with each other, the connection loss is extremely small. It can also be effectively used for aligning single mode optical fibers.

『実施例』 以下、本発明に係る光フアイバの調心方法の実
施例につき、図面を参照して説明する。
"Embodiments" Hereinafter, embodiments of the optical fiber alignment method according to the present invention will be described with reference to the drawings.

本発明方法の原理を示した第2図において、光
フアイバ1はコア2とクラツド3とからなり、こ
れらコア2、クラツド3の相対関係では、周知の
通り、コア2が高屈折率、クラツド3が低屈折率
である。
In FIG. 2, which shows the principle of the method of the present invention, an optical fiber 1 consists of a core 2 and a cladding 3.As is well known, in the relative relationship between the core 2 and the cladding 3, the core 2 has a high refractive index, and the cladding 3 has a high refractive index. has a low refractive index.

光フアイバ1の軸線と直交して照射される平行
光線Rは、光フアイバ1を透過し、その透過光線
が後述のごとく受光機構によりとらえられて、ス
クリーン上に光量分布として示される。
A parallel light beam R emitted orthogonally to the axis of the optical fiber 1 is transmitted through the optical fiber 1, and the transmitted light beam is captured by a light receiving mechanism as described later and is displayed as a light amount distribution on a screen.

第2図の光量分布において、rは半径方向を示
し、qは上記透過光線の光量を示す。
In the light quantity distribution shown in FIG. 2, r indicates the radial direction, and q indicates the quantity of the transmitted light beam.

第3図はかかる光量分布を透過光線の進行方向
Aから観察したときの明暗分布図であり、同図の
r0はコア2の直径をあらわし、qにサフイツクス
0123)を付した符号は、第2図の光量分布と
対応している。
Fig. 3 is a brightness/darkness distribution diagram when such a light quantity distribution is observed from the traveling direction A of the transmitted light beam.
r 0 represents the diameter of the core 2, and the suffix ( 0 , 1 , 2 , 3 ) added to q corresponds to the light amount distribution in FIG.

第3図で明らかなごとく、q0の部分は真暗、q1
の部分はぼんやりと暗く、q2の部分は比較的明る
く、q3の部分は輝いていることが認められ、この
際のq0の真暗な部分が、コア2の外形線(光フア
イバ長手方向に沿う輪郭線)を示すものであるか
ら、光フアイバ1の側面(外周面)に前記平行光
線を照射すれば、コア2の位置がq0により認識か
つ把握できる。
As is clear from Figure 3, the part q 0 is completely dark, and the part q 1
It can be seen that the part of q 2 is vaguely dark, the part of q 2 is relatively bright, and the part of q 3 is bright.The dark part of q 0 at this time is the outline of the core 2 (in the longitudinal direction of the optical fiber). Therefore, if the side surface (outer peripheral surface) of the optical fiber 1 is irradiated with the parallel light beam, the position of the core 2 can be recognized and grasped by q 0 .

したがつて、光フアイバ相互の調心に際し、こ
れらの接続箇所たる対向状態の光フアイバ端部に
平行光線を照射し、その透過光線を受光機構によ
りとらえてスクリーン上に示し、当該スクリーン
上においてコアをモニタしながら、コア相互を一
致させることができる。
Therefore, when aligning the optical fibers with each other, parallel light beams are irradiated onto the opposing ends of the optical fibers, which are the connecting points, and the transmitted light beams are captured by a light receiving mechanism and shown on a screen, and the cores are detected on the screen. cores can be matched with each other while monitoring the

なお、透過光線に明暗分布が生じる理由は、光
フアイバ軸線と交差する方向から光フアイバ1の
端部外周面に光照射した場合、コア2、クラツド
3の屈折率差に依存したレンズ効果により、光強
度の強弱が生じるからであり、かかる明暗分布に
よるスクリーン上のコントラストから、上述のご
とくコア2の外形線が認識できるようになる。
The reason why a brightness distribution occurs in the transmitted light is that when the outer peripheral surface of the end of the optical fiber 1 is irradiated with light from a direction intersecting the optical fiber axis, due to the lens effect depending on the refractive index difference between the core 2 and the cladding 3. This is because the light intensity varies, and the outline of the core 2 can be recognized from the contrast on the screen due to the brightness distribution as described above.

本発明方法を第4図によりさらに説明すると、
同図に示すように、調心すべき一対の光フアイバ
1a,1bを用意し、これら光フアイバ1a,1
bの端部を互いに対向させて端面間隔を設定した
後、両光フアイバ1a,1bの端部を挟む位置
に、光照射機構20と受光機構30とを配置する
(軸対称の配置)。
The method of the present invention will be further explained with reference to FIG.
As shown in the figure, a pair of optical fibers 1a, 1b to be aligned is prepared, and these optical fibers 1a, 1b are aligned.
After setting the end face spacing by making the ends of the optical fibers 1a and 1b face each other, the light irradiation mechanism 20 and the light receiving mechanism 30 are placed at positions sandwiching the ends of both the optical fibers 1a and 1b (axisymmetric arrangement).

かくて準備を終えた後、光照射機構20からの
平行光線Rを光フアイバ1a,1bの端部に照射
し、これら光フアイバ端部の透過光線を受光機構
30により受光して、その透過光線の光量分布に
基づく明暗分布(第3図に示したもの)を図示し
ないスクリーン上に映し出す。
After completing the preparations in this way, the ends of the optical fibers 1a and 1b are irradiated with parallel light rays R from the light irradiation mechanism 20, and the transmitted light rays from the ends of these optical fibers are received by the light receiving mechanism 30, and the transmitted light rays are The brightness/darkness distribution (shown in FIG. 3) based on the light intensity distribution is projected on a screen (not shown).

かかるスクリーン投影は、光フアイバ軸線と交
差(直交)する二方向、例えば、第4図のX軸方
向とY軸方向について行なう。
Such screen projection is performed in two directions intersecting (orthogonal to) the optical fiber axis, for example, the X-axis direction and the Y-axis direction in FIG. 4.

こうしてスクリーン上に映し出された光フアイ
バコアの外形線をモニタしながら、両光フアイバ
1a,1bの端部をX軸方向、Y軸方向へ微動調
整することにより、両光フアイバ1a,1b相互
の調心を行ない、これら光フアイバ1a,1bの
コアを相互に一致させる。
While monitoring the outline of the optical fiber core projected on the screen, the ends of both optical fibers 1a and 1b are finely adjusted in the X-axis direction and the Y-axis direction, thereby adjusting the mutual alignment of both optical fibers 1a and 1b. The cores of these optical fibers 1a and 1b are made to coincide with each other.

本発明方法については、以下に述べる実施態様
が採用できる。
Regarding the method of the present invention, the embodiments described below can be adopted.

例えば平行光線Rの照射方向は、X軸方向、Y
軸方向のごとく直交する二方向からでもよく、直
交しない二方向からでもよい。
For example, the irradiation direction of the parallel ray R is the X-axis direction, the Y-axis direction, and the Y-axis direction.
It may be from two orthogonal directions such as the axial direction, or it may be from two non-orthogonal directions.

光照射機構20、受光機構30を光フアイバ1
a,1bの長手方向沿いに移動させるか、あるい
は光フアイバ1a,1bをその長手方向沿いに移
動させるようにすれば、光フアイバ端部相互の相
対傾斜および端面間隔を認識することができる。
The light irradiation mechanism 20 and the light reception mechanism 30 are connected to the optical fiber 1.
By moving the optical fibers a and 1b along their longitudinal directions, or by moving the optical fibers 1a and 1b along their longitudinal directions, the relative inclination of the optical fiber ends and the distance between the end faces can be recognized.

光照射機構20として、第5図に示すごとく、
一方の端面に球レンズ40を有する光フアイバ5
0を利用し、その光フアイバ50の他方の端面に
光源60を配置すれば、調心時の設備がよりコン
パクト化されるので望ましい。
As the light irradiation mechanism 20, as shown in FIG.
Optical fiber 5 having a ball lens 40 on one end face
It is preferable to use the optical fiber 50 and place the light source 60 on the other end face of the optical fiber 50 because the equipment during alignment can be made more compact.

受光機構30のスクリーン上に映し出される明
暗分布を観察するための受像手段(図示せず)と
しては、簡単な顕微鏡を用いた目視によるもので
もよいが(この場合、平行光線Rは可視光)、
CCDなどのイメージセンサを用いるのが、より
望ましい。
The image receiving means (not shown) for observing the brightness distribution projected on the screen of the light receiving mechanism 30 may be visual observation using a simple microscope (in this case, the parallel light beam R is visible light),
It is more desirable to use an image sensor such as a CCD.

『発明の効果』 以上説明した通り、本発明方法によるときは、
対向状態の光フアイバ端部、光照射機構、受光機
構を所定の状態にセツトし、所定の光照射、受光
とにより光フアイバコアの外形線をとらえる操作
を、光フアイバ軸線と交差する二方向について行
ない、その際のコア外形線をモニタしながら対を
なす光フアイバのコア相互を一致させるから、調
心に必要な設備を光フアイバ端部の対向部付近に
集中して配置し、その集中配置された設備を一名
の作業員にて取り扱うことにより、長尺光フアイ
バ相互の調心が難なく行なえ、しかも、光フアイ
バ相互の外形を一致さるのでなく、これら光フア
イバのコア相互を一致させるので、光フアイバ外
形とそのコアとが偏心しているような光フアイバ
でも、コア相互が一致した、すなわち、接続ロス
を小さくすることのできる調心状態が常に確保で
きる。
"Effects of the Invention" As explained above, when using the method of the present invention,
The opposing optical fiber ends, light irradiation mechanism, and light receiving mechanism are set in a predetermined state, and operations for capturing the outline of the optical fiber core through predetermined light irradiation and light reception are performed in two directions intersecting the optical fiber axis. Since the cores of the paired optical fibers are aligned with each other while monitoring the core outline at that time, the equipment necessary for alignment is concentrated near the opposing ends of the optical fibers, and the By handling the equipment with one worker, it is possible to align the long optical fibers with each other without difficulty, and since the cores of these optical fibers are aligned with each other rather than the outer shapes of the optical fibers with each other, Even in the case of an optical fiber in which the outer shape of the optical fiber and its core are eccentric, it is possible to always maintain an aligned state in which the cores are aligned with each other, that is, the connection loss can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の調心方法を略示した説明図、第
2図は本発明方法の原理を略示した説明図、第3
図は第2図の光量分布を透過光線の進行方向から
みた明暗分布図、第4図は本発明方法の一実施例
を略示した説明図、第5図は本発明方法の光照射
機構に利用される光フアイバの斜視図である。 1,1a,1b……光フアイバ、2……コア、
3……クラツド、20……光照射機構、30……
受光機構、R……平行光線。
Fig. 1 is an explanatory diagram schematically illustrating the conventional alignment method, Fig. 2 is an explanatory diagram schematically illustrating the principle of the method of the present invention, and Fig. 3
The figure is a light/dark distribution diagram of the light amount distribution in Figure 2 viewed from the traveling direction of the transmitted light beam, Figure 4 is an explanatory diagram schematically showing an embodiment of the method of the present invention, and Figure 5 is a diagram of the light irradiation mechanism of the method of the present invention. FIG. 2 is a perspective view of the optical fiber utilized. 1, 1a, 1b...optical fiber, 2...core,
3...Clad, 20...Light irradiation mechanism, 30...
Light receiving mechanism, R...Parallel light beam.

Claims (1)

【特許請求の範囲】 1 対をなす光フアイバの端部を互いに対向させ
て配置し、その対向状態の光フアイバ端部を挟む
位置に光照射機構と受光機構とを配置した後、光
照射機構からの平行光線を各光フアイバ端部に照
射し、かつ、その透過光線を受光機構により受光
するとともに、当該透過光線の光量分布をモニタ
しながら、光フアイバ相互を調心する方法におい
て、上記光照射時には、光照射機構からの平行光
線を光フアイバ軸線と交差する方向から各光フア
イバ端部の外周面に照射することにより、光フア
イバのコア、クラツドの屈折率差に基づくレンズ
効果に依存して、上記透過光線の光量分布に、光
強度の強弱による光フアイバ半径方向の明暗分布
を生じさせ、上記受光時には、明暗分布の生じた
上記透過光線を受光機構により受光して、その透
過光線の明暗分布から光フアイバコアの外形線を
認識し、これら光照射および受光を、光フアイバ
軸線と交差する二方向について行ない、その際の
コア外形線をモニタしながら対をなす光フアイバ
のコア相互を一致させることを特徴とする光フア
イバの調心方法。 2 光照射機構による平行光線の照射位置および
受光機構による透過光線の受光位置と、対向状態
の光フアイバ端部とを、光フアイバ長手方向に相
対移動させて、光フアイバ端部相互の相対傾斜お
よび端面間隔を認識する特許請求の範囲第1項記
載の光フアイバの調心方法。
[Claims] After arranging the ends of a pair of optical fibers to face each other, and arranging a light irradiation mechanism and a light reception mechanism at positions sandwiching the opposed optical fiber ends, the light irradiation mechanism In the method of aligning the optical fibers with each other while irradiating parallel light beams from a parallel beam onto the ends of each optical fiber, receiving the transmitted light beams by a light receiving mechanism, and monitoring the light intensity distribution of the transmitted light beams, the method includes: During irradiation, parallel light from a light irradiation mechanism is irradiated onto the outer peripheral surface of the end of each optical fiber from a direction that intersects the axis of the optical fiber. In this way, the light intensity distribution of the transmitted light ray is caused to have a brightness and darkness distribution in the radial direction of the optical fiber depending on the strength and weakness of the light intensity. The outer shape of the optical fiber core is recognized from the brightness distribution, and the light irradiation and light reception are performed in two directions intersecting the optical fiber axis, and the cores of the paired optical fibers are aligned with each other while monitoring the core outer shape. A method for aligning an optical fiber, characterized by: 2. The irradiation position of the parallel light beam by the light irradiation mechanism and the reception position of the transmitted light beam by the light reception mechanism, and the opposing optical fiber ends are moved relative to each other in the longitudinal direction of the optical fiber, so that the relative inclination of the optical fiber ends and A method for aligning an optical fiber according to claim 1, wherein the distance between the end faces is recognized.
JP18354982A 1982-10-19 1982-10-19 Aligning method of center of optical fiber Granted JPS5972414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18354982A JPS5972414A (en) 1982-10-19 1982-10-19 Aligning method of center of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18354982A JPS5972414A (en) 1982-10-19 1982-10-19 Aligning method of center of optical fiber

Publications (2)

Publication Number Publication Date
JPS5972414A JPS5972414A (en) 1984-04-24
JPH0353604B2 true JPH0353604B2 (en) 1991-08-15

Family

ID=16137747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18354982A Granted JPS5972414A (en) 1982-10-19 1982-10-19 Aligning method of center of optical fiber

Country Status (1)

Country Link
JP (1) JPS5972414A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108808A (en) * 1983-11-18 1985-06-14 Nippon Telegr & Teleph Corp <Ntt> Optical fiber observing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS5461547A (en) * 1977-10-25 1979-05-17 Nippon Telegr & Teleph Corp <Ntt> Monitor for alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS5461547A (en) * 1977-10-25 1979-05-17 Nippon Telegr & Teleph Corp <Ntt> Monitor for alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Also Published As

Publication number Publication date
JPS5972414A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
JP3168844B2 (en) Splicing method of constant polarization optical fiber
CN103119489B (en) Imaging interface for optics
CN100412585C (en) PM fiber alignment
AU571968B2 (en) Plural-channel optical rotary joint for light guide fibres
CA2104550A1 (en) Method of Determining Azimuthal Position of Transverse Axes of Optical Fibers with Elliptical Cores
JPS6355505A (en) Method for aligning multicore optical fiber
EP0788611B1 (en) Splicing an optical fiber having twin cores and a fiber having a single core
JPH0353604B2 (en)
JPS62220909A (en) Optical connection of end of optical fiber to another optical element
JPH02196204A (en) Method for aligning axis of constant polarization optical fiber
JPH0815563A (en) Alignment method in coupling part of optical fiber having non-axisymmetrical refractive index distribution and optical waveguide, optical fiber fixing structure and coupling part
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
JPS6049307A (en) Fiber connecting device
JPS58220111A (en) Connecting method of optical fiber
JPS6070407A (en) Method and mechanism for observing optical fiber core
JP3051327B2 (en) Measurement method of polarization-maintaining plane of polarization-maintaining optical fiber on optical connector
JPH0374364B2 (en)
JPS5938709A (en) Connecting method of optical fiber for retaining plane of polarization
JPS62189409A (en) Measuring method for optical fiber axial shift
JPH0324642B2 (en)
JP2903748B2 (en) Shape measurement method by laser microscope
JP2842627B2 (en) Multi-core fusion splicing method for optical fibers
JPS6263905A (en) Observing device for optical fiber
JPH01235907A (en) Fusion splicing device for multifiber tape optical fiber
JPS6355506A (en) Optical fiber coupler