JPH0353358Y2 - - Google Patents

Info

Publication number
JPH0353358Y2
JPH0353358Y2 JP7942983U JP7942983U JPH0353358Y2 JP H0353358 Y2 JPH0353358 Y2 JP H0353358Y2 JP 7942983 U JP7942983 U JP 7942983U JP 7942983 U JP7942983 U JP 7942983U JP H0353358 Y2 JPH0353358 Y2 JP H0353358Y2
Authority
JP
Japan
Prior art keywords
signal
phase
rotating body
antenna
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7942983U
Other languages
Japanese (ja)
Other versions
JPS59185616U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7942983U priority Critical patent/JPS59185616U/en
Publication of JPS59185616U publication Critical patent/JPS59185616U/en
Application granted granted Critical
Publication of JPH0353358Y2 publication Critical patent/JPH0353358Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【考案の詳細な説明】 本考案は第1の回転体の特定の角度位置と第2
の回転体の特定の角度位置を等しくして同期回転
する装置、例えば小型レーダの空中線と指示器の
CRTの偏向コイルの回転位置を一致させて同期
回転させる装置に関する。 従来、この種の回転同期装置としては例えば第
1図に示すようなものがある。第1図において、
第1の回転体であるアンテナ1は駆動モータ2に
よつて回転駆動される。第2の回転体である
CRT6の偏向コイル7は2相モータ10によつ
て回転駆動される。2相モータ10はアンテナ1
により回転される2相発電機5からの相互に進み
遅れ関係にある二相の角度信号を増巾回路12を
介して送ることにより回転駆動される。ただしア
ンテナ1と偏向コイル7の位相を一致させて同期
回転させる為には2相モータ10と2相発電機5
との中間に切換スイツチ15を具え、更にアンテ
ナ1の回転部分にカム3とその固定部分にマイク
ロスイツチ4とを具え、同様に偏向コイル7の回
転部分にカム8とその固定部分にマイクロスイツ
チ9とを具え、マイクロスイツチ4と9からの出
力である位相信号をそれぞれ入力してアンテナ1
と偏向コイル7との位相差の有無を検出して判別
信号を出力する検出回路11を具え、更にこの判
別信号によつて切換スイツチ15を切換え、2相
の角度信号の1相又は2相に直流電源13からの
直流電圧を導入する働きをするリレー14を具え
る必要がある。今マイクロスイツチ4と9とが同
時に作動するようにアンテナ1と偏向コイル7と
が同期回転するときは位相が一致している。何と
なればカム3と6とはそれぞれアンテナ1と偏向
コイル7の特定の角度位置を示しているからであ
る。もしマイクロスイツチ4と9とが同時に作動
しないときは位相差がある場合で、検出回路11
の出力である判別信号によつてリレー14がON
となり、切換スイツチ15は増巾回路12の出力
端から直流電源13の出力端へ切換り、2相の角
度信号の1相は直流電圧となり、2相モータ10
は制動されて停止する。アンテナ1が回転を続づ
けマイクロスイツチ4が作動した時点で位相差は
無くなり、検出回路11の出力である判別しによ
りリレー14がOFFとなり、切換スイツチ15
は直流電源13の出力端から増巾回路12の出力
端へ切換り、2相の角度信号が2相モータ10へ
入力すると、制動が解除され、2相モータ10は
回転を始め、アンテナ1は偏向コイル7と位相を
一致して同期回転する。しかしながら、このよう
な従来の回転同期装置にあつては停止中の装置を
位相の一致した同期回転に導入するためにはマイ
クロスイツチ4と9とが同時に作動する位置にア
ンテナ1と偏向コイル7とがなくてはならず、更
に2相発電機5から発信される二相の角度信号に
対して2相モータ10はその回転子と固定子の相
互位置関係が正確である必要がある。又アンテナ
1は停止中に風等の外力によつて回転移動するこ
ともあり、更に同期回転中の2相モータ10を上
述のように位相を一致させる場合の制動停止のタ
イミングは不足で、必しも再起動できる位置では
ないので、二相モータ10の回転子を少しづつ移
動して起動位置を模索するようなわづらわしい作
業が必要であるという難点があつた。また二相モ
ータ10は起動時のトルクが小さいために同期回
転に誤差を生じ易い欠点もあつた。 本考案は、このような従来の問題点に着目して
なされたもので第2の回転体であるCRTの偏向
コイルを回転駆動するモータとして起動トルクの
大きいパルスモータを使用し、第1の回転体であ
るアンテナの回転に同期したパルス列からなる方
位パルス信号を生成する方位検出器を備け、この
方位パルス信号毎に逐次移相する複数列の角度信
号を生成し、位相差を検出する判別信号により上
記角度信号の生成と消滅を制御するシフトレジス
タを使用し、この角度信号によつてパルスモータ
を駆動するようにして上記の欠点を解消すること
を目的とする。 本考案の回転同期装置は第1の回転体を駆動す
る手段である駆動モータと、第1の回転体の回転
体に同期したパルス列からなる方位パルス信号を
生成する手段である方位検出器と、第1の回転体
の起動を示す起動信号を生成する手段である起動
信号発信器と、第1の回転体の特定角度位置を示
す第1の位相信号を生成する手段であるアンテナ
方向検出器と、第2の回転体の特定角度位置を示
す第2の位相信号を生成する手段である偏向コイ
ル方向検出器と、上記起動信号と上記第1および
第2の位相信号とを入力して第1と第2の回転体
の位相差の有無を検出する判別信号を出力する手
段である検出回路と、上記方位パルス信号毎に逐
次移相する複数列の角度信号を生成し、上記判別
信号により上記角度信号の生成と消滅を制御する
手段であるシフトレジスタと、上記角度信号を電
力増巾する増巾手段である増巾回路と、この増巾
回路からの出力により第2の回転体を駆動する手
段であるパルスモータとから構成される。従つて
第1の回転体のアンテナが駆動モータにより回転
起動されると方位検出器により方位パルス信号が
生成され、起動信号発信器によつて起動信号が発
信され、アンテナ方向検出器により第1の位相信
号が生成される。方位パルス信号はシフトレジス
タにクロツクパルスとして入力する。シフトレジ
スタは並列に設定された二値データを方位パルス
信号毎に循環して移相出力することにより直列の
角度信号を複数列、すなわち相互に進み遅れ関係
にある多相の角度信号を生成し、この角度信号は
増巾回路にてそれぞれ電力増巾されてパルスモー
タを回転起動し、第2の回転体の偏向コイルを回
転する。位相差がある場合には偏向コイル方向検
出器で生成される第2の位相信号とアンテナ方向
検出器からの第1の位相信号および起動信号が論
理回路よりなる検出回路に入力して位相差の有無
を検出し、その判別結果を判別信号としてシフト
レジスタのプリセツト端子に入力し、クロツクパ
ルスに優先して移相動作を停止又は起動させる。
位相差のあるときには移相動作は停止になり第2
の回転体は停止する。しかし第1の回転体は回転
しているので第1の位相信号が移動を続け静止し
ている第2の位相信号に一致して位相差が無くな
ると判別信号はシフトレジスタの移相動作を再度
起動しパルスモータを回転させる。パルスモータ
を駆動する角度信号はアンテナの起動により生成
される方位パルス信号によつて生成されるのでア
ンテナの回転停止中の位置には何ら関係がなく、
パルスモータの回転子と固定子の相互関係さえ調
整しておけば同期回転し、特定の角度位置で必ず
停止および起動を行うので従来のようなわづらは
しさは無くなる。位相を一致させる作業は全く自
動的に行なわれ、またパルスモータは起動トルク
が大きいので起動時に同期回転の誤差が生じない
利点もある。 次に、本考案を図面に基づいて詳しく説明す
る。第2図は本考案の回転同期装置の一実施例を
示すブロツク図である。第2図において第1図と
同一機能のものは同付号を用い、各ブロツク間の
矢印を示した線には英小文字で示した信号が矢印
の方向に転送されることを示す。アンテナ21は
レーダ装置等の空中線で駆動モータ2により回転
系37を介して回転駆動される。方位検出器25
は回転系37に連結され、360度の方位方向に多
数の細〓を設けた回転円板をもち、この細〓を利
用して半導体素子による光検出を行い、アンテナ
21の回転に同期したパルス列からなる方位パル
ス信号cを生成しシフトレジスタ32のクロツク
端子に送る。電源36は電源スイツチ35を介し
て駆動モータ2を起動すると同時に起動信号bを
生成するフリツプフロツプ等からなる起動信号発
信器34を動作させる。起動信号bは検出回路
1に送られる。アンテナ21の特定角度位置とし
て示される回転系37の表面上の一方向に細〓2
3が設けられ、この細〓23を利用した半導体素
子による光検出を行うアンテナ方向検出器24が
設けられ、第1の位相信号fを“0”、“1”の信
号で生成し、検出回路31へ送る。同様に偏向コ
イル27の特定角度位置として示される偏向コイ
ル27の回転系38の表面上の一方向は細〓28
が設けられ、この細〓28を利用して半導体素子
による光検出を行う偏向コイル方向検出器29が
設けられ、第2の位相信号eを“0”、“1”の信
号で生成し、検出回路31へ送る。検出回路31
は論理素子よりなり、位相信号eとfと起動信号
bとを入力して第1と第2の回転体であるアンテ
ナ21と偏向コイル27との位相差の有無を検出
する“0”、“1”の信号からなる判別信号gを生
成し、シフトレジスタ32のプレセツト端子へ送
る。シフトレジスタ32は方位パルス信号cと判
別信号gを得て、方位パルス信号c毎に逐次移相
する複数列の角度信号dを生成し、判別信号gに
より角度信号dの生成あるいは消滅を制御するこ
とは既に説明した通りである。角度信号dは増巾
回路33を介してパルスモータ30を回転駆動す
る。偏向コイル27はCRT6の細い基部で回転
してCRT6の映像面上に電子ビームのPPI表示を
行う。次に第3図は本考案の回転同期装置の一部
回路図である。第2図と同一機能を示すものは同
一付号を用いる。シフトレジスタ32はシフトレ
ジスタ素子41とNOTゲート42と43よりな
る。方位パルス信号cはシフトレジスタ素子41
のクロツク端子clockに入力し、位相信号eとf
はANDゲート49に入力し、その出力と起動信
号bとはORゲート48に入力し、その出力は判
別信号gで、これらは検出回路31を形成する。
シフトレジスタ32は判別信号gから位相差のあ
るときは“1”、位相が一致したときは“0”の
信号をプリセツト端子Mcに入力する。また例え
ば4ビツトの並列データである0,0、1,1デ
ータをプリセツト・エンネブル端子PEに入力す
る起動信号bの“1”信号により各端子AIN
BIN、CINおよびDINに入力設定する。またシフト
レジスタ素子41の出力信号が送出される端子
C0とD0に関しては、端子C0からの出力信号は2
分岐して一つはNOTゲート42を介して増巾器
44に入力し、他は増巾器45に入力する。端子
D0からの出力信号は3分岐して一つはシフトレ
ジスタ素子41のシリアル入力端子SINと接続さ
れ、他はNOTゲート43と増巾器46に入力す
る。またNOTゲート42と43の出力はそれぞ
れ増巾器44と47に入力し、増巾器44,4
5,46および47は増巾回路33を形成し、そ
の出力はそれぞれパルスモータ30の入力端子
A、B、C、およびDに角度信号d1、d2、d3およ
びd4を送る。図にはパルスモータ30を4相の角
度信号で駆動する場合の回路を示したがより多相
の角度信号で駆動することも並列データのビツト
数を増加し、パルスモータ30を多相にすること
により極めて容易である。次に本考案の回転同期
装置の上記実施例の作用を第4図に示す各信号の
タイミング図によつて説明する。電源スイツチ3
5を閉じ駆動モータ2に電源36から電圧を印加
して回転駆動すると同時に起動信号発信回路34
に入力して“1”で示される起動信号bを生成す
る。勿論検出回路31、シフトレジスタ32、増
巾回路33、方位検出器25、アンテナ方向検出
器24、パルスモータ30および偏向コイル方向
検出器29にも電圧が供給される。アンテナ21
の回転に従つて連続するパルス列からなる方位パ
ルス信号cが生成される。同時に“0”で示さ
れ、回転につれて時間軸上に移動して現れる第1
の位相信号fが生成される。シフトレジスタ素子
41の出力端子C0とD0には方位パルス信号c毎
にシフトされた信号が“0”と“1”、次に“0”
と“0”、“1”と“0”、“1”と“1”、と以下
続いて出力される。これは0011……なる直列デー
タの角度信号d2と1001……なる直列データの角度
信号d3を生成する。角度信号d2はNOTゲート4
2により角度信号d1を生じ、同様に角度信号d3
NOTゲート43により角度信号d4を生ずる。第
4図に示すように角度信号d1、d2、d3およびd4
方位パルス信号c毎に逐次移相する4列の角度信
号を形成する。この4相の角度信号はパルスモー
30の端子A、B、CおよびDを介して各相固
定子捲線に入り、パルスモータ30を回転駆動す
る。この回転に伴つて“1”で示され、時間軸上
に移動して現れる第2の位相信号eが生成され
る。アンテナ21と偏向コイル27の位相関係に
ついては検出回路31の判別信号gが“0”のと
きシフトレジスタ32はシフト動作を行い、“1”
のときシフト動作を停止する。従つて検出回路
1の入力信号に関しては起動信号bが起動後は常
に“0”信号で、位相信号eとfとが共に“1”
信号のとき以外はシフト動作が行われる。第4図
で停止1の状態は起動信号bが“1”信号で未だ
方位信号cが生成されない状態である。やがてシ
フトレジスタ32がシフト動作を行い、偏向コイ
ル27は回転を始めるがアンテナ21とは位相差
をもつて回転する状態である。次に第2の位相信
号eが現れ、そのときの第1の位相信号fと共に
“1”信号を示すとシフト動作は停止され、角度
信号d1、d2、d3およびd4は0011なる並列データ状
態となり、パルスモータ30および偏向コイル2
7は停止する。この状態が停止2で示される。第
1の位相信号fはアンテナ27が回転しているの
で静止している第2の位相信号eに近づいて来る
ように現れ、この両信号が“0”と“1”の如く
“1”と“1”の状態からはづれるとシフト動作
が始まり、再び偏向コイル27の回転が始まる。
以後位相信号eとfとは一緒に伴つて現はれるの
で、アンテナ21と位相を一致させて同期回転を
続けることになる。 以上の説明のように本考案によればパルスモー
タは各相に印加される規則正しい正確な角度信号
により回転され、かつ常に同一状態で停止され
る。これは同期電動機の場合に発生する回転子と
固定子の位置が停止状態で不定となる従来の不安
定状態を解消するものであり、パルスモータは起
動トルクが大きいので起動時の回転誤差も少く、
更に極めて容易に第1の回転体と第2の回転体を
それぞれの位相を一致させて同期回転できること
は大きな実用的効果がある。
[Detailed description of the invention] The present invention is based on the specific angular position of the first rotating body and the second rotating body.
A device that rotates synchronously by equalizing the specific angular position of the rotating body, such as the antenna and indicator of a small radar.
This invention relates to a device that synchronizes the rotational positions of the deflection coils of a CRT and rotates them synchronously. Conventionally, as this type of rotation synchronizing device, there is one shown in FIG. 1, for example. In Figure 1,
An antenna 1, which is a first rotating body, is rotationally driven by a drive motor 2. is the second rotating body
The deflection coil 7 of the CRT 6 is rotationally driven by a two-phase motor 10. The two-phase motor 10 is the antenna 1
It is rotationally driven by sending two-phase angle signals having a lead/lag relationship with each other from a two-phase generator 5 rotated by the amplifying circuit 12. However, in order to match the phases of the antenna 1 and the deflection coil 7 and rotate them synchronously, a two-phase motor 10 and a two-phase generator 5 are required.
A changeover switch 15 is provided between the rotating part of the antenna 1, a cam 3 on the rotating part of the antenna 1, and a micro switch 4 on its fixed part, and a cam 8 on the rotating part of the deflection coil 7 and a micro switch 9 on its fixed part. The phase signals output from the micro switches 4 and 9 are inputted to the antenna 1.
The detection circuit 11 detects the presence or absence of a phase difference between the angle signal and the deflection coil 7 and outputs a discrimination signal, and further switches a changeover switch 15 based on this discrimination signal to select one phase or two phases of the two-phase angle signal. It is necessary to include a relay 14 that functions to introduce the DC voltage from the DC power supply 13. When the antenna 1 and the deflection coil 7 rotate synchronously so that the microswitches 4 and 9 operate simultaneously, the phases match. This is because cams 3 and 6 indicate specific angular positions of antenna 1 and deflection coil 7, respectively. If microswitches 4 and 9 do not operate at the same time, there is a phase difference, and the detection circuit 11
Relay 14 is turned on by the discrimination signal output from
Therefore, the changeover switch 15 switches from the output end of the amplifier circuit 12 to the output end of the DC power supply 13, and one phase of the two-phase angle signal becomes a DC voltage, and the two-phase motor 10
is braked and stopped. When the antenna 1 continues to rotate and the micro switch 4 is activated, the phase difference disappears, the relay 14 is turned OFF by the output of the detection circuit 11, and the changeover switch 15 is turned OFF.
is switched from the output end of the DC power supply 13 to the output end of the amplifier circuit 12, and when the two-phase angle signal is input to the two-phase motor 10, the braking is released, the two-phase motor 10 starts rotating, and the antenna 1 It rotates synchronously with the deflection coil 7 in phase. However, in such a conventional rotation synchronizer, in order to bring the stopped device into synchronized rotation with the same phase, the antenna 1 and the deflection coil 7 are placed in a position where the micro switches 4 and 9 are activated simultaneously. Furthermore, the mutual positional relationship between the rotor and stator of the two-phase motor 10 needs to be accurate with respect to the two-phase angle signal transmitted from the two-phase generator 5. In addition, the antenna 1 may rotate due to external forces such as wind while stopped, and when the two-phase motor 10 is rotating synchronously and the phases are matched as described above, the timing of braking and stopping is insufficient and necessary. However, since it is not in a position where it can be restarted, there is a problem in that the rotor of the two-phase motor 10 must be moved little by little to find the starting position, which is a troublesome task. Furthermore, since the two-phase motor 10 has a small torque at startup, it also has the disadvantage that errors tend to occur in synchronous rotation. The present invention was developed by focusing on these conventional problems, and uses a pulse motor with a large starting torque as a motor to rotationally drive the deflection coil of the CRT, which is the second rotating body. Equipped with an azimuth detector that generates an azimuth pulse signal consisting of a pulse train synchronized with the rotation of the antenna, which is the body, and generates multiple sequences of angle signals whose phase shifts sequentially for each azimuth pulse signal, and detects the phase difference. It is an object of the present invention to eliminate the above-mentioned drawbacks by using a shift register that controls the generation and disappearance of the angle signal based on a signal, and by driving a pulse motor using this angle signal. The rotation synchronizer of the present invention includes: a drive motor that is a means for driving a first rotating body; an azimuth detector that is a means for generating an azimuth pulse signal consisting of a pulse train synchronized with the rotating body of the first rotating body; a starting signal transmitter that is a means for generating a starting signal indicating starting of the first rotating body; and an antenna direction detector that is a means for generating a first phase signal indicating a specific angular position of the first rotating body. , a deflection coil direction detector which is a means for generating a second phase signal indicating a specific angular position of the second rotating body; and a detection circuit which is a means for outputting a discrimination signal for detecting the presence or absence of a phase difference between the first and second rotary bodies, and a detection circuit which generates a plurality of rows of angle signals whose phase is successively shifted for each of the azimuth pulse signals, A shift register is a means for controlling the generation and disappearance of the angle signal, an amplification circuit is an amplification means for amplifying the power of the angle signal, and the output from the amplification circuit drives the second rotating body. It consists of a pulse motor as a means. Therefore, when the antenna of the first rotating body is started to rotate by the drive motor, the azimuth detector generates an azimuth pulse signal, the start signal transmitter sends a start signal, and the antenna direction detector starts the rotation of the first rotor. A phase signal is generated. The azimuth pulse signal is input to the shift register as a clock pulse. A shift register circulates binary data set in parallel for each azimuth pulse signal and outputs it with a phase shift, thereby generating multiple series of serial angle signals, that is, multiphase angle signals that are in a lead/lag relationship with each other. The angle signals are each amplified in power by an amplification circuit to rotate the pulse motor and rotate the deflection coil of the second rotating body. If there is a phase difference, the second phase signal generated by the deflection coil direction detector and the first phase signal and activation signal from the antenna direction detector are input to a detection circuit consisting of a logic circuit to detect the phase difference. The presence or absence is detected, and the result of the determination is input as a determination signal to the preset terminal of the shift register, and the phase shift operation is stopped or activated in priority to the clock pulse.
When there is a phase difference, the phase shift operation stops and the second
The rotating body stops. However, since the first rotating body is rotating, the first phase signal continues to move and matches the stationary second phase signal, and when the phase difference disappears, the discrimination signal starts the phase shifting operation of the shift register again. Start up and rotate the pulse motor. The angle signal that drives the pulse motor is generated by the azimuth pulse signal generated by starting the antenna, so it has no relation to the position of the antenna when it is stopped rotating.
As long as the mutual relationship between the rotor and stator of the pulse motor is adjusted, they will rotate synchronously and will always stop and start at specific angular positions, eliminating the cumbersomeness of conventional methods. The task of matching the phases is done completely automatically, and since the pulse motor has a large starting torque, it also has the advantage that no errors in synchronous rotation occur at the time of starting. Next, the present invention will be explained in detail based on the drawings. FIG. 2 is a block diagram showing an embodiment of the rotation synchronizer of the present invention. In FIG. 2, the same numbers are used for the same functions as those in FIG. 1, and lines indicating arrows between blocks indicate that signals indicated by lowercase letters are transferred in the direction of the arrow. The antenna 21 is an antenna of a radar device or the like and is rotationally driven by a drive motor 2 via a rotation system 37. Direction detector 25
is connected to a rotating system 37 and has a rotating disk with a large number of stripes in the azimuth direction of 360 degrees, and uses these stripes to detect light with a semiconductor element and generate a pulse train synchronized with the rotation of the antenna 21. An azimuth pulse signal c is generated and sent to the clock terminal of the shift register 32 . The power source 36 starts the drive motor 2 via the power switch 35, and at the same time operates the starting signal generator 34, which is a flip-flop or the like, and generates the starting signal b. The activation signal b is the detection circuit 3
Sent to 1. A thin line 2 in one direction on the surface of the rotating system 37, indicated as a specific angular position of the antenna 21.
3 is provided, and an antenna direction detector 24 is provided that performs light detection by a semiconductor element using this wire 23, and generates a first phase signal f as a signal of "0" and "1", and a detection circuit Send to 31 . Similarly, one direction on the surface of the rotating system 38 of the deflection coil 27, indicated as a specific angular position of the deflection coil 27, is
is provided, and a deflection coil direction detector 29 is provided which performs photodetection by a semiconductor element using this fiber 28, and generates a second phase signal e as a signal of "0" and "1", and detects it. It is sent to circuit 31 . Detection circuit 31
is composed of a logic element, and detects the presence or absence of a phase difference between the antenna 21 and the deflection coil 27, which are the first and second rotating bodies, by inputting the phase signals e and f and the starting signal b. A discrimination signal g consisting of a signal of 1'' is generated and sent to the preset terminal of the shift register 32 . The shift register 32 receives the azimuth pulse signal c and the discrimination signal g, generates multiple rows of angle signals d whose phase is sequentially shifted for each azimuth pulse signal c, and controls the generation or extinction of the angle signal d by the discrimination signal g. This is as already explained. The angle signal d rotates the pulse motor 30 via the amplification circuit 33 . The deflection coil 27 rotates at the thin base of the CRT 6 to perform PPI display of the electron beam on the image plane of the CRT 6. Next, FIG. 3 is a partial circuit diagram of the rotation synchronizing device of the present invention. The same numbers are used for the same functions as in FIG. 2. The shift register 32 consists of a shift register element 41 and NOT gates 42 and 43. The direction pulse signal c is sent to the shift register element 41
The phase signals e and f are input to the clock terminal clock of
is input to the AND gate 49, its output and the activation signal b are input to the OR gate 48, whose output is the discrimination signal g, and these form the detection circuit 31 .
The shift register 32 inputs a signal of "1" from the discrimination signal g when there is a phase difference, and a signal of "0" when the phases match, to the preset terminal Mc. Also, for example , each terminal A IN ,
Set input to B IN , C IN and D IN . Also, a terminal to which the output signal of the shift register element 41 is sent.
Regarding C 0 and D 0 , the output signal from terminal C 0 is 2
One branch is input to an amplifier 44 via a NOT gate 42, and the other is input to an amplifier 45. terminal
The output signal from D 0 is branched into three branches, one is connected to the serial input terminal S IN of the shift register element 41, and the other is input to the NOT gate 43 and the amplifier 46. Furthermore, the outputs of the NOT gates 42 and 43 are input to amplifiers 44 and 47, respectively.
5, 46 and 47 form an amplification circuit 33 , the output of which sends angle signals d 1 , d 2 , d 3 and d 4 to input terminals A, B, C and D of pulse motor 30 , respectively. The figure shows a circuit for driving the pulse motor 30 with four-phase angle signals, but driving with more multi-phase angle signals also increases the number of bits of parallel data and makes the pulse motor 30 multi-phase. This makes it extremely easy. Next, the operation of the above embodiment of the rotation synchronizer of the present invention will be explained with reference to the timing chart of each signal shown in FIG. Power switch 3
5 is closed, a voltage is applied to the drive motor 2 from the power source 36 to drive the drive motor 2, and at the same time the start signal generation circuit 34
is input to generate an activation signal b indicated by "1". Of course, voltage is also supplied to the detection circuit 31, shift register 32 , amplification circuit 33 , azimuth detector 25, antenna direction detector 24, pulse motor 30 , and deflection coil direction detector 29. antenna 21
An azimuth pulse signal c consisting of a continuous pulse train is generated in accordance with the rotation of the azimuth. At the same time, it is indicated as “0”, and as it rotates, it moves on the time axis and appears.
A phase signal f is generated. At the output terminals C0 and D0 of the shift register element 41, the signals shifted for each azimuth pulse signal c are "0" and "1", and then "0".
and "0", "1" and "0", "1" and "1", and so on are output in succession. This produces an angle signal d 2 of serial data of 0011... and an angle signal d 3 of serial data of 1001.... Angle signal d 2 is NOT gate 4
2 yields the angle signal d 1 and similarly the angle signal d 3 is
NOT gate 43 produces an angle signal d4 . As shown in FIG. 4, the angle signals d 1 , d 2 , d 3 and d 4 form four columns of angle signals whose phase is successively shifted for each azimuth pulse signal c. These four-phase angle signals enter the stator windings of each phase via terminals A, B, C, and D of the pulse motor 30 , and drive the pulse motor 30 to rotate. Along with this rotation, a second phase signal e, which is indicated by "1" and appears to move on the time axis, is generated. Regarding the phase relationship between the antenna 21 and the deflection coil 27, when the discrimination signal g of the detection circuit 31 is "0", the shift register 32 performs a shift operation, and the signal g is "1".
Shift operation is stopped when . Therefore, the detection circuit 3
Regarding the input signal of 1, the activation signal b is always a “0” signal after activation, and both the phase signals e and f are “1”.
A shift operation is performed except when there is a signal. In FIG. 4, the stop 1 state is a state in which the activation signal b is a "1" signal and the orientation signal c is not yet generated. Eventually, the shift register 32 performs a shift operation, and the deflection coil 27 begins to rotate, but with a phase difference from the antenna 21. Next, when the second phase signal e appears and shows a "1" signal together with the first phase signal f at that time, the shift operation is stopped and the angle signals d 1 , d 2 , d 3 and d 4 become 0011. It becomes a parallel data state, and the pulse motor 30 and deflection coil 2
7 stops. This condition is indicated by Stop 2. Since the antenna 27 is rotating, the first phase signal f appears approaching the stationary second phase signal e, and both signals become "1" like "0" and "1". When the state is removed from "1", the shift operation starts and the rotation of the deflection coil 27 starts again.
Thereafter, the phase signals e and f appear together, so that the phase coincides with that of the antenna 21 and the synchronous rotation continues. As described above, according to the present invention, the pulse motor is rotated by regular and accurate angle signals applied to each phase, and is always stopped in the same state. This eliminates the conventional unstable situation that occurs with synchronous motors, where the positions of the rotor and stator are unstable when stopped, and since pulse motors have a large starting torque, there is little rotational error when starting. ,
Furthermore, the fact that the first rotating body and the second rotating body can be rotated synchronously with their respective phases matching each other very easily has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転同期装置のブロツク図、第
2図は本考案の回転同期装置の一実施例を示すブ
ロツク図、第3図は本考案の回転同期装置の一部
回路図、第4図は第3図に英小文字で示す信号の
タイミングの説明図である。 1と21……アンテナ、2……駆動モータ、3
と8……カム、4と9……マイクロスイツチ、5
……2相発電機、6……CRT、7と27……偏
向コイル、10……2相モータ、11と31……
検出回路、12と33……増巾回路、13……直
流電源、14……リレー、15……切換スイツ
チ、23と28……細〓、24……アンテナ方向
検出器、25……方位検出器、29……偏向コイ
ル方向検出器、30……パルスモータ、32……
シフトレジスタ、34……起動信号発信器、35
……電源スイツチ、36……電源、37と38…
…回転系、41……シフトレジスタ素子、42と
43……NOTゲート、44と45と46と47
……増巾器、48……ORゲート、49……AND
ゲート。
FIG. 1 is a block diagram of a conventional rotation synchronizer, FIG. 2 is a block diagram showing an embodiment of the rotation synchronizer of the present invention, FIG. 3 is a partial circuit diagram of the rotation synchronizer of the present invention, and FIG. The figure is an explanatory diagram of the timing of the signals shown in lowercase letters in FIG. 3. 1 and 21... antenna, 2... drive motor, 3
and 8... cam, 4 and 9... micro switch, 5
...2-phase generator, 6...CRT, 7 and 27...deflection coil, 10...2-phase motor, 11 and 31 ...
Detection circuit, 12 and 33 ... Amplification circuit, 13... DC power supply, 14... Relay, 15... Changeover switch, 23 and 28... Thread, 24... Antenna direction detector, 25... Direction detection device, 29...deflection coil direction detector, 30 ...pulse motor, 32 ...
Shift register, 34...Start signal generator, 35
...Power switch, 36...Power supply, 37 and 38...
...Rotation system, 41...Shift register element, 42 and 43...NOT gate, 44, 45, 46 and 47
...Mixer, 48...OR gate, 49...AND
Gate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1の回転体を駆動する手段と、第1の回転体
の回転に同期したパルス列からなる方位パルス信
号を生成する手段と、第1の回転体の起動を示す
起動信号を生成する手段と、第1の回転体の特定
角度位置を示す第1の位相信号を生成する手段
と、第2の回転体の特定角度位置を示す第2の位
相信号を生成する手段と、上記起動信号と上記第
1および第2の位相信号とを入力して第1と第2
の回転体の位相差の有無を検出する判別信号を出
力する手段と、上記方位パルス信号毎に逐次移相
する複数列の角度信号を生成し、上記判別信号に
より上記角度信号の生成と消滅を制御する手段
と、上記角度信号を電力増巾する増巾手段と、こ
の増巾手段からの出力により第2の回転体を駆動
する手段とからなる回転同期装置。
means for driving the first rotating body; means for generating an azimuth pulse signal consisting of a pulse train synchronized with the rotation of the first rotating body; and means for generating an activation signal indicating activation of the first rotating body; means for generating a first phase signal indicative of a specific angular position of the first rotating body; means for generating a second phase signal indicative of the specific angular position of the second rotating body; 1 and the second phase signal.
means for outputting a discrimination signal for detecting the presence or absence of a phase difference between the rotating bodies; generating a plurality of rows of angle signals whose phase is sequentially shifted for each of the azimuth pulse signals; and generating and extinguishing the angle signals by the discrimination signal; A rotation synchronizing device comprising a controlling means, an amplifying means for amplifying the power of the angle signal, and a means for driving a second rotating body by an output from the amplifying means.
JP7942983U 1983-05-26 1983-05-26 rotation synchronizer Granted JPS59185616U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7942983U JPS59185616U (en) 1983-05-26 1983-05-26 rotation synchronizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7942983U JPS59185616U (en) 1983-05-26 1983-05-26 rotation synchronizer

Publications (2)

Publication Number Publication Date
JPS59185616U JPS59185616U (en) 1984-12-10
JPH0353358Y2 true JPH0353358Y2 (en) 1991-11-21

Family

ID=30209433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7942983U Granted JPS59185616U (en) 1983-05-26 1983-05-26 rotation synchronizer

Country Status (1)

Country Link
JP (1) JPS59185616U (en)

Also Published As

Publication number Publication date
JPS59185616U (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US5572097A (en) Method and apparatus for starting polyphase dc motor
US4136308A (en) Stepping motor control
US5801509A (en) Method of starting a permanent-magnet synchronous motor equipped with angular position detector and apparatus for controlling such motor
US5276569A (en) Spindle controller with startup correction of disk position
US3706923A (en) Brushless d.c. motor acceleration system
GB2307805A (en) Brushless DC motor start circuit
US5936365A (en) Method and apparatus for using back EMF to control a motor
US3476996A (en) Hybrid closed loop stepping motor control system including acceleration and deceleration control
KR870000882B1 (en) Disc torquiking apparatus
JPH0353358Y2 (en)
US4489266A (en) Circuit and a method for processing amplitude and phase variable multiphase signals, which are required as current or voltage reference to drive synchronous motors
US5089900A (en) Spindle control device in optical disk recording/reproducing apparatus
JPH10111304A (en) Rotary angle detecting device
US4967122A (en) Digital synchronizing circuit for brushless DC motor
US3135905A (en) Shaft synchronizing and phasing motor control system
SU1100700A1 (en) Device for matching angular positions of shafts of d.c.motors rotating in synchronism
JPS6325919Y2 (en)
US2469140A (en) Synchronizing system for geared motors
JPH0511473B2 (en)
JPH04331488A (en) Encoder for ac synchronous motor and starting method for ac synchronous motor by use of said encoder
JP2958360B2 (en) Synchronous brushless DC motor
JPH01197685A (en) Synchronous rotation system for plural nearby antennas
JPS59172998A (en) Drive control system of stepping motor
SU902189A1 (en) Device for matching angular position of synchronously rotating shafts of electric motors
JP2934257B2 (en) Servo device