JPH0353267B2 - - Google Patents

Info

Publication number
JPH0353267B2
JPH0353267B2 JP57126951A JP12695182A JPH0353267B2 JP H0353267 B2 JPH0353267 B2 JP H0353267B2 JP 57126951 A JP57126951 A JP 57126951A JP 12695182 A JP12695182 A JP 12695182A JP H0353267 B2 JPH0353267 B2 JP H0353267B2
Authority
JP
Japan
Prior art keywords
dielectric
ceramic
temperature
dielectric constant
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126951A
Other languages
Japanese (ja)
Other versions
JPS5918154A (en
Inventor
Yasuo Tsuda
Hideyuki Okinaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57126951A priority Critical patent/JPS5918154A/en
Publication of JPS5918154A publication Critical patent/JPS5918154A/en
Publication of JPH0353267B2 publication Critical patent/JPH0353267B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Pbを含む複合ペロブスカイト型化
合物であるPb(Mg1/4Fe1/4W1/2)O3及びPb(Mg1/3
Nb2/3)O3を主成分とする磁器組成物に関するも
のであり、その目的とするところは、高誘電率で
誘電体損失が小さく、絶縁抵抗が高く、なおかつ
1000℃以下の低温で焼結が可能な高誘電率系の磁
器組成物を提供することにある。 従来、高誘電率系の磁器組成分としてはチタン
酸バリウムBaTiO3を主成分として、これにジル
コン酸カルシウムCaZrO3、チタン酸カルシウム
CaTiO3、スズ酸カルシウムCaSnO3、チタン酸
ストロンチウムSrTiO3などを適量添加して特性
を改善したものが実用化されている。これらの磁
器の焼結温度は概数1300℃〜1400℃と高いもので
あつた。 近年、電子機器分野の発展とともに、電子機器
の小形・軽量化が著しく、従来円板形状で用いら
れていた磁器コンデンサにおいても、小形で大容
量を達成するために積層構造を持つた積層セラミ
ツクコンデンサが開発され広く使用されてきてい
る。積層セラミツクコンデンサにおいては図面に
示すように、磁器誘電体1の上下に内部電極2を
配して、小さな単板コンデンサを多数個並列に接
続し、詰み重ねた構造をとつており、内部電極2
は交互に左右いずれかの外部電極3に接続されて
いる。 この積層セラミツクコンデンサでは、その製造
上内部電極をセラミツク誘電体に埋込んだ状態で
焼結する必要があるが、従来の高誘電率系の磁器
組成物では前述のように焼成温度が1300℃以上と
高いため、内部電極の材料としてはこのような高
温でも安定な白金、あるいはパラジウムのような
高価な貴金属を使わざるを得なかつた。従つて
1000℃以下の低温で焼結できる磁器誘電体材料を
開発し、これを積層セラミツクコンデンサに用い
ることができれば、内部電極材料として銀系合
金、ニツケル系合金などの安価な金属材料を使用
することができるため、低コストの積層セラミツ
クコンデンサを供給することが可能となる。 本発明は上記のような背景のもとに、種々の複
合ペロブスカイト型化合物について研究を重ねた
結果、Pb(Mg1/4Fe1/4W1/2)O3で表わされる化合
物とPb(Mg1/3Nb2/3)O3で表わされる化合物を用
いることにより、誘電率が高く、誘電体損失が小
さく、絶縁抵抗が高く、なおかつ低温で焼結可能
な磁器誘電体材料の開発に成功したものである。 以下本発明の実施例について詳細に説明する。 まず焼結によりPb(Mg1/4Fe1/4W1/2)O3及びPb
(Mg1/3Nb2/3)O3の比率が次表に示すモル比とな
るように酸化鉛、酸化鉄、酸化タングステン、酸
化マグネシウム、酸化ニオブを適量秤量し、これ
をボールミルを用いて混合した。この粉体原料を
750℃〜850℃で仮焼した後、再びボールミルを用
いて粉砕し、この粉砕原料にポリビニールアルコ
ールを加えて造粒し、直径13mm、厚み0.8mmの円
板形状に成形した。その後920℃〜980℃の温度
で、マグネシウム質匡鉢中で焼成したのち、両面
に銀を主成分とする電極を付与し、誘電体試料と
した。このようにして作成した試料について電気
特性を測定した結果を次表に示す。ここで誘電率
εS及び誘電体損失tanδは周波数1kHzで25℃測定し
た。また絶縁抵抗IRは直流50Vを印加して、室温
中で測定した。なお表中の焼成温度は、焼結して
誘電体磁器を作成するための最低温度である。
The present invention is a composite perovskite compound containing Pb (Mg 1/4 Fe 1/4 W 1/2 ) O 3 and Pb (Mg 1/3
This relates to a ceramic composition whose main component is Nb 2/3 ) O 3 , and its purpose is to have a high dielectric constant, low dielectric loss, high insulation resistance, and
The object of the present invention is to provide a high dielectric constant ceramic composition that can be sintered at a low temperature of 1000°C or lower. Conventionally, the main component of high-permittivity porcelain is barium titanate BaTiO 3 , in addition to calcium zirconate CaZrO 3 and calcium titanate.
Products with improved properties by adding appropriate amounts of CaTiO 3 , calcium stannate CaSnO 3 , strontium titanate SrTiO 3 , etc. have been put into practical use. The sintering temperature of these porcelains was as high as approximately 1300°C to 1400°C. In recent years, with the development of the electronic equipment field, electronic equipment has become significantly smaller and lighter.In order to achieve large capacitance in a smaller size, the ceramic capacitors that were conventionally used in the form of disks have been replaced with multilayer ceramic capacitors that have a laminated structure to achieve large capacitance in a small size. has been developed and widely used. As shown in the drawing, a multilayer ceramic capacitor has a structure in which internal electrodes 2 are arranged above and below a ceramic dielectric 1, and many small single-plate capacitors are connected in parallel and stacked one on top of the other.
are alternately connected to either the left or right external electrode 3. In order to manufacture this multilayer ceramic capacitor, it is necessary to sinter the internal electrodes while embedding them in the ceramic dielectric, but as mentioned above, the firing temperature for conventional high dielectric constant ceramic compositions is 1300°C or higher. As a result, the internal electrodes had to be made of platinum, which is stable even at such high temperatures, or expensive noble metals such as palladium. accordingly
If we can develop a porcelain dielectric material that can be sintered at low temperatures below 1000°C and use it in multilayer ceramic capacitors, it will be possible to use inexpensive metal materials such as silver-based alloys and nickel-based alloys as internal electrode materials. This makes it possible to supply low-cost multilayer ceramic capacitors. Based on the above - mentioned background, the present invention was developed as a result of repeated research on various composite perovskite compounds. By using the compound represented by Mg 1/3 Nb 2/3 ) O 3 , we are developing a porcelain dielectric material that has a high dielectric constant, low dielectric loss, high insulation resistance, and can be sintered at low temperatures. It was a success. Examples of the present invention will be described in detail below. First, Pb (Mg 1/4 Fe 1/4 W 1/2 ) O 3 and Pb are sintered.
Weigh appropriate amounts of lead oxide, iron oxide, tungsten oxide, magnesium oxide, and niobium oxide so that the molar ratio of (Mg 1/3 Nb 2/3 ) O 3 is as shown in the table below, and then mill them using a ball mill. Mixed. This powder raw material
After calcining at 750° C. to 850° C., the material was pulverized again using a ball mill, and polyvinyl alcohol was added to the pulverized raw material to granulate it into a disk shape with a diameter of 13 mm and a thickness of 0.8 mm. After that, it was fired in a magnesium pot at a temperature of 920°C to 980°C, and electrodes containing silver as a main component were applied to both sides to prepare a dielectric sample. The results of measuring the electrical properties of the samples thus prepared are shown in the following table. Here, the dielectric constant ε S and the dielectric loss tan δ were measured at 25° C. at a frequency of 1 kHz. Insulation resistance IR was measured at room temperature by applying 50 V DC. Note that the firing temperature in the table is the lowest temperature for sintering to create dielectric ceramic.

【表】 * 比較例
表中試料No.1及び6は本発明の範囲外のもので
あり、比較のため示したものである。即ち、Pb
(Mg1/4Fe1/4W1/2)O3のモル比xが0.90を超える
と誘電体損支tanδが大きく実用的でなく、またx
が0.65未満では焼成温度が高くなり、さらに高価
な酸化ニオブの比率が大きくなるため、実用的で
ない。 以上詳述したように、本発明のPb(Mg1/4Fe1/4
W1/2)O3−Pb(Mg1/3Nb2/3)O3系磁器組成物を用
いれば誘電率εSが3510〜4850と大きく、誘電体損
失tanδが0.7〜26%と小さく、また絶縁抵抗IRが
5.1×1010Ω・cmと高い値を示し、温度による容量
変化率の小さい高性能の新規な誘電体磁器組成物
が得られる。さらに焼成温度が920℃〜980℃と低
温であるために積層セラミツクコンデンサに使用
した場合に内部電極として銀系合金、ニツケル系
合金などの安価な金属を用いることができるた
め、積層セラミツクコンデンサの低コスト化を図
る上で非常に有効な価値があるものである。加え
て、低温での焼結が可能なため、焼成に用いる電
気炉の保全が容易になるばかりでなく、使用電力
の上からも省エネルギー化が図れるものである。
従つて積層セラミツクコンデンサのみでなく従来
の円板形磁器コンデンサに応用した場合において
も、製造コスト上有利となるものである。
[Table] * Comparative Example Samples No. 1 and 6 in the table are outside the scope of the present invention and are shown for comparison. That is, Pb
(Mg 1/4 Fe 1/4 W 1/2 ) When the molar ratio x of O 3 exceeds 0.90, the dielectric loss tan δ becomes large and impractical;
If it is less than 0.65, the firing temperature will be high and the proportion of expensive niobium oxide will be large, which is not practical. As detailed above, Pb (Mg 1/4 Fe 1/4
If a W 1/2 ) O 3 −Pb (Mg 1/3 Nb 2/3 ) O 3 based ceramic composition is used, the dielectric constant ε S will be as high as 3510 to 4850, and the dielectric loss tan δ will be as small as 0.7 to 26%. , and the insulation resistance IR is
A new high-performance dielectric ceramic composition exhibiting a high value of 5.1×10 10 Ω·cm and a small rate of change in capacitance due to temperature can be obtained. Furthermore, since the firing temperature is as low as 920°C to 980°C, inexpensive metals such as silver-based alloys and nickel-based alloys can be used as internal electrodes when used in multilayer ceramic capacitors. This has a very effective value in reducing costs. In addition, since sintering can be performed at low temperatures, it is not only easier to maintain the electric furnace used for firing, but also energy saving can be achieved in terms of power consumption.
Therefore, it is advantageous in terms of manufacturing costs when applied not only to laminated ceramic capacitors but also to conventional disk-shaped ceramic capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

図面は積層セラミツクコンデンサの一例を示す
一部切欠斜視図である。 1……磁器誘電体、2……内部電極、3……外
部電極。
The drawing is a partially cutaway perspective view showing an example of a laminated ceramic capacitor. 1...Porcelain dielectric, 2...Internal electrode, 3...External electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウム・鉄・タングステン酸鉛Pb
(Mg1/4Fe1/4W1/2)O3及びマグネシウム・ニオブ
酸鉛Pb(Mg1/3Nb2/3)O3からなる二成分組成物を
Pb(Mg1/4Fe1/4W1/2)x(Mg1/3Nb2/31-xO3と表わ
した時に組成比xが0.65≦x≦0.90の範囲内にあ
ることを特徴とする磁器組成物。
1 Magnesium, iron, lead tungstate Pb
A binary composition consisting of (Mg 1/4 Fe 1/4 W 1/2 ) O 3 and magnesium lead niobate Pb (Mg 1/3 Nb 2/3 ) O 3
When expressed as Pb (Mg 1/4 Fe 1/4 W 1/2 ) x (Mg 1/3 Nb 2/3 ) 1-x O 3 , the composition ratio x must be within the range of 0.65≦x≦0.90. A porcelain composition characterized by.
JP57126951A 1982-07-20 1982-07-20 Ceramic composition Granted JPS5918154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126951A JPS5918154A (en) 1982-07-20 1982-07-20 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126951A JPS5918154A (en) 1982-07-20 1982-07-20 Ceramic composition

Publications (2)

Publication Number Publication Date
JPS5918154A JPS5918154A (en) 1984-01-30
JPH0353267B2 true JPH0353267B2 (en) 1991-08-14

Family

ID=14947927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126951A Granted JPS5918154A (en) 1982-07-20 1982-07-20 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS5918154A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831918A (en) * 1994-02-14 1998-11-03 Micron Technology, Inc. Circuit and method for varying a period of an internal control signal during a test mode

Also Published As

Publication number Publication date
JPS5918154A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
JPS597665B2 (en) High dielectric constant porcelain composition
JPH032814B2 (en)
JPH0583508B2 (en)
JPH0353267B2 (en)
JPS6128619B2 (en)
JPS6222942B2 (en)
JPS623569B2 (en)
JPS6116131B2 (en)
JPS6121183B2 (en)
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JPH0332162B2 (en)
JPH0453042B2 (en)
JPS6117087B2 (en)
JPS58217462A (en) High dielectric constant ceramic composition
JPS58217461A (en) High dielectric constant ceramic composition
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JPS61203506A (en) High dielectric ceramic composition
JPS6216481B2 (en)
JPS5849661A (en) High dielectric constant ceramic composition
JPH0457632B2 (en)
JPH0522667B2 (en)
JPS62132755A (en) Ceramic composition
JPH0566332B2 (en)
JPS6126207B2 (en)
JPH0566333B2 (en)