JPH0353262B2 - - Google Patents
Info
- Publication number
- JPH0353262B2 JPH0353262B2 JP59180115A JP18011584A JPH0353262B2 JP H0353262 B2 JPH0353262 B2 JP H0353262B2 JP 59180115 A JP59180115 A JP 59180115A JP 18011584 A JP18011584 A JP 18011584A JP H0353262 B2 JPH0353262 B2 JP H0353262B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- gas
- container
- carrier gas
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002994 raw material Substances 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 26
- 238000007664 blowing Methods 0.000 claims description 24
- 239000007791 liquid phase Substances 0.000 claims description 13
- 239000012071 phase Substances 0.000 claims description 10
- 239000005304 optical glass Substances 0.000 claims description 7
- 230000008016 vaporization Effects 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 description 28
- 239000007789 gas Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
- C23C16/4482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/80—Feeding the burner or the burner-heated deposition site
- C03B2207/85—Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
- C03B2207/86—Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光フアイバ用、イメージガイド用、ラ
イトガイド用、ロツドレンズ用など、各種光学系
の母材をつくる際の液体原料気化装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid raw material vaporization apparatus for producing base materials for various optical systems such as optical fibers, image guides, light guides, and rod lenses.
(従来の技術)
光フアイバで代表される上記光学製品の母材を
つくるとき、既知のMCVD法、VAD法などが採
用される。(Prior Art) When producing base materials for the above-mentioned optical products such as optical fibers, the known MCVD method, VAD method, etc. are employed.
これらの方法は気相原料を例えば火炎加水分解
反応させ、これにより得られたガラス微粒子を所
定の形状に堆積させるようにしている。 In these methods, a gas phase raw material is subjected to, for example, a flame hydrolysis reaction, and the glass fine particles obtained thereby are deposited in a predetermined shape.
SiCl4、GeCl4など、上記の方法に用いられる原
料は常温において液体であり、当該原料を反応系
へ供給するときはこれを気化するのが一般であ
る。 The raw materials used in the above method, such as SiCl 4 and GeCl 4 , are liquid at room temperature, and are generally vaporized when they are supplied to the reaction system.
第2図はその液体原料気化用の従来装置を示し
たもので、同図の1は恒温槽、2は恒温槽1内に
収納された容器、3は容器2内に収容された液体
原料(液相部)、4は容器2内の気相部、5は容
器2の液相部3に挿入されたガス導入管、6は容
器2の気相部4に連結されたガス導出管であり、
上記ガス導入管5の配管系には流量調整器7が備
なえられ、そのガス導入管5の吹出端には細孔を
有する吹出具8が装着されている。 Figure 2 shows a conventional device for vaporizing the liquid raw material. (liquid phase part), 4 is a gas phase part in the container 2, 5 is a gas introduction pipe inserted into the liquid phase part 3 of the container 2, and 6 is a gas outlet pipe connected to the gas phase part 4 of the container 2. ,
The piping system of the gas introduction pipe 5 is equipped with a flow rate regulator 7, and a blowing device 8 having a small hole is attached to the blowing end of the gas introduction pipe 5.
第2図の装置において容器2内の液体原料3を
気化するとき、ガス供給系からガス導入管5へ
Arなどのキヤリアガスが供給され、これが吹出
具8より液相部3へ吹出される。 When vaporizing the liquid raw material 3 in the container 2 in the apparatus shown in FIG.
A carrier gas such as Ar is supplied and is blown out from the blowing tool 8 into the liquid phase section 3 .
液相部3へ吹出されたキヤリアガスは気泡状態
となつて気相部4へと上昇するが、この間、キヤ
リアガスは蒸発した原料を担持し、気相部4から
ガス導出管6を経て反応系へと供給される。 The carrier gas blown into the liquid phase section 3 turns into bubbles and rises to the gas phase section 4. During this time, the carrier gas carries the evaporated raw materials and passes from the gas phase section 4 through the gas outlet pipe 6 to the reaction system. is supplied.
上記のようにして液体原料を気化させ、これを
反応系へ供給する場合、原料供給量をキヤリアガ
ス流量にて制御するのが一般であり、これはキヤ
リアガス流量と原料供給量との比例関係が成立す
ることに依存している。 When a liquid raw material is vaporized and supplied to a reaction system as described above, the raw material supply amount is generally controlled by the carrier gas flow rate, which means that there is a proportional relationship between the carrier gas flow rate and the raw material supply amount. depends on what you do.
さらに比例関係は液体原料とキヤリアガスとの
気液接触面積、気液接触時間により決定される。 Furthermore, the proportional relationship is determined by the gas-liquid contact area and gas-liquid contact time between the liquid raw material and the carrier gas.
これの事項を考慮した場合、この種の気化装置
にあつては吹出具から液体原料中へ吹出されるキ
ヤリアガスの微小化、液体原料中を上昇する気泡
群の路程の長さが重要であるといえる。 Taking this into consideration, it is important to minimize the size of the carrier gas blown into the liquid raw material from the blowing device and to lengthen the path of the bubbles rising in the liquid raw material in this type of vaporizer. I can say that.
ところで第2図に示した従来装置の場合、吹出
具として直径1mm程度とした多数の細孔を有する
石英製の球体を採用しているが、この吹出具の場
合はキヤリアガス気泡の微小化が十分でなく、キ
ヤリアガス流量、原料供給量相互の比例関係の成
立する範囲がきわめて狭くなつている。 By the way, in the case of the conventional device shown in Fig. 2, a quartz sphere with numerous pores with a diameter of about 1 mm is used as the blowing tool, but in the case of this blowing tool, the carrier gas bubbles are sufficiently miniaturized. Rather, the range in which the proportional relationship between the carrier gas flow rate and the raw material supply amount holds is extremely narrow.
ちなみに液体原料をSiCl4、キヤリアガスをAr
とし、恒温槽の温度を35℃とした従来装置の実験
例では、第3図の測定結果で明らかなようにキヤ
リアガス流量が1/分を越える付近から上記比
例関係が成立しなくなつている。 By the way, the liquid raw material is SiCl 4 and the carrier gas is Ar.
In an experimental example using a conventional device in which the temperature of the thermostatic chamber was set to 35° C., as is clear from the measurement results in FIG. 3, the above proportional relationship no longer holds when the carrier gas flow rate exceeds 1/min.
そのため従来装置では原料供給量の制御性が低
くなつてしまい、原料供給量を高めて母材製造時
の量産性をはかることも難しくなつている。 Therefore, in the conventional apparatus, the controllability of the amount of raw material supplied becomes low, and it becomes difficult to increase the amount of raw material supplied to achieve mass productivity when manufacturing the base material.
(発明が解決しようとする問題点)
本発明は上記の問題点に鑑み、キヤリアガス流
量と原料供給量との比例関係が広範囲わたつて成
立する光学ガラス用液体原料気化装置を提供しよ
うとするものである。(Problems to be Solved by the Invention) In view of the above-mentioned problems, the present invention seeks to provide a liquid raw material vaporization device for optical glass in which a proportional relationship between the carrier gas flow rate and the raw material supply amount is established over a wide range. be.
(問題を解決するための手段)
本発明に係る装置は、光学ガラス用の液体原料
を収容するための容器と、該容器内の液相部に挿
入されたガス導入管と、該容器の気相部に連結さ
れたガス導出管とを備なえ、上記ガス導入管のガ
ス吹出端に、孔径50μm以下の孔を多数有する多
孔性燒結体からなる吹出具が装着されていること
を特徴としている。(Means for Solving the Problems) The device according to the present invention includes a container for containing a liquid raw material for optical glass, a gas introduction pipe inserted into a liquid phase portion in the container, and a gas inlet pipe in the container. and a gas outlet pipe connected to the phase part, and a blowing tool made of a porous sintered body having a large number of pores with a diameter of 50 μm or less is attached to the gas blowing end of the gas introducing pipe. There is.
(作用)
本発明装置においてガス導入管から容器内の液
相部へキヤリアガスを吹出した場合、キヤリアガ
スは多孔性燒結体からなる吹出具を経て液体原料
と接触するようになる。(Function) In the device of the present invention, when carrier gas is blown out from the gas introduction pipe to the liquid phase portion in the container, the carrier gas comes into contact with the liquid raw material through the blowing tool made of a porous sintered body.
この吹出具は孔径約50μm以下の多数の微小孔
を有しているので、ここからキヤリアガスが吹出
されたとき、キヤリアガスは直径数十μmないし
それ以下の微小な気泡群となつて液体原料と接触
するようになり、したがつてキヤリアガスと液体
原料との気液接触面積が格段に向上する。 This blowing device has many micropores with a diameter of approximately 50 μm or less, so when the carrier gas is blown out from these, the carrier gas forms a group of microscopic bubbles with a diameter of several tens of μm or less and comes into contact with the liquid raw material. Therefore, the gas-liquid contact area between the carrier gas and the liquid raw material is significantly improved.
しかもこの際の気泡群は微小径であるゆえ浮揚
速度が遅速化されて液体原料中に長く滞留し、気
液接触時間も長くなる。 Moreover, since the bubble group at this time has a microscopic diameter, its floating speed is slowed down and it stays in the liquid raw material for a long time, resulting in a long gas-liquid contact time.
その結果、容器内の液相部に多量にキヤリアガ
スを導入した場合でも、そのキヤリアガスにより
蒸発原料が十分担持され、キヤリアガス流量と原
料供給量との比例関係が広範囲にわたつて成立す
るようになる。 As a result, even when a large amount of carrier gas is introduced into the liquid phase portion of the container, the evaporation raw material is sufficiently supported by the carrier gas, and a proportional relationship between the carrier gas flow rate and the raw material supply amount is established over a wide range.
(実施例)
以下本発明装置の実施例につき、図面を参照し
て説明する。(Example) Examples of the apparatus of the present invention will be described below with reference to the drawings.
第1図に例示した本発明装置において、11は
恒温槽、12は恒温槽11内に収納された容器で
ある。 In the apparatus of the present invention illustrated in FIG. 1, 11 is a constant temperature bath, and 12 is a container housed in the constant temperature bath 11.
13は容器12内収容された液体原料による液
相部、14は容器12内の気相部である。 Reference numeral 13 indicates a liquid phase portion formed by the liquid raw material contained in the container 12, and reference numeral 14 indicates a gas phase portion within the container 12.
15は容器12の液相部13に挿入されたガス
導入管であり、16は容器12の気相部14に連
結されたガス導出管である。 15 is a gas introduction pipe inserted into the liquid phase part 13 of the container 12, and 16 is a gas outlet pipe connected to the gas phase part 14 of the container 12.
ガス導入管15の配管系には流量調整器17が
備なえられ、そのガス導入管15の吹出端にはミ
クロン単位の微小孔を多数有する吹出具18が装
着されている。 The piping system of the gas introduction pipe 15 is equipped with a flow rate regulator 17, and a blowing tool 18 having a large number of micropores in micron units is attached to the blowing end of the gas introduction pipe 15.
上記における恒温槽11は石英ガラス製の場合
もあるが、主にステンレススチール製の円筒体が
用いられ、これの大きさは1例として直径150mm、
高さ300mmである。 Although the constant temperature chamber 11 mentioned above may be made of quartz glass, it is mainly made of a cylindrical body made of stainless steel, and its size is, for example, 150 mm in diameter.
The height is 300mm.
多孔製焼結体からなる吹出具18としてはステ
ンレススチール製のもの、ガラス製またはセラミ
ツク製のものなどが適宜に採用される。 As the blowing tool 18 made of a porous sintered body, one made of stainless steel, glass, or ceramic is appropriately employed.
ステンレススチール製の吹出具18は、該スチ
ール製細線の網を多層を重ねてこれを焼結するこ
とにより作製され、その微小孔の直径は50μm程
度である。 The blowing tool 18 made of stainless steel is manufactured by stacking and sintering multiple layers of the fine steel wire mesh, and the diameter of the micropores is about 50 μm.
ステンレススチール製とした吹出具18の場
合、その形状は1例として図示のごとく球面湾曲
した板状とする。 In the case of the blowing tool 18 made of stainless steel, its shape is, for example, a spherically curved plate shape as shown in the figure.
ガラス製の吹出具18は、ホウケイ酸ガラスを
酸浴し、酸化ホウ素成分を溶出するとこにより作
製され、その微小孔の直径は5μm程度である。 The blowing tool 18 made of glass is produced by subjecting borosilicate glass to an acid bath to elute the boron oxide component, and the diameter of its micropores is about 5 μm.
本発明装置において、容器12、吹出具18を
ステンレススチール製、液体原料をSiCl4、キヤ
リアガスをAr、恒温槽の温度を35℃として、キ
ヤリアガス流量と原料供給量と比例関係を測定し
たところ、12/分のキヤリアガス流量において
も上記比例関係が成立した。 In the apparatus of the present invention, the proportional relationship between the carrier gas flow rate and the raw material supply amount was measured with the container 12 and the blowing tool 18 made of stainless steel, the liquid raw material being SiCl 4 , the carrier gas being Ar, and the temperature of the constant temperature bath being 35°C. The above proportional relationship was also established at a carrier gas flow rate of /min.
さらに吹出具18をガラス製のものに換えて上
記と同じ測定を行なつたところ、キヤリアガス流
量を15/分とした場合でも所定の比例関係が成
立した。 Furthermore, when the same measurement as above was carried out by replacing the blowing tool 18 with a glass one, a predetermined proportional relationship was established even when the carrier gas flow rate was set to 15/min.
(発明の効果)
以上説明した通り、本発明装置によるときは、
液体原料が収容された容器にあつて、その容器内
の液相部に挿入されたガス導入管のガス吹出端
に、孔径50μm以下の孔を多数有する多孔性燒結
体からなる吹出具が装着されているから、容器内
の液相部に多量にキヤリアガスを導入した場合で
も、その吹出具を介してキヤリアガスが微小化さ
れた気泡群となり、キヤリアガスの気泡群により
蒸発原料が十分担持され、キヤリアガス流量と原
料供給量との広範囲にわたる比例関係が成立す
る。(Effect of the invention) As explained above, when using the device of the present invention,
In a container containing a liquid raw material, a blowing tool made of a porous sintered body having a large number of holes with a diameter of 50 μm or less is attached to the gas blowing end of a gas introduction pipe inserted into the liquid phase part of the container. Therefore, even when a large amount of carrier gas is introduced into the liquid phase in the container, the carrier gas becomes a group of miniaturized bubbles through the blowing tool, and the evaporation raw material is sufficiently supported by the carrier gas bubbles, and the carrier gas flow rate is reduced. There is a wide range of proportional relationship between
その結果、原料供給量の制御性が高まり、原料
供給量を高めて各種光学ガラス母材製造時の量産
性をはかることもできる。 As a result, the controllability of the amount of raw material supplied is improved, and by increasing the amount of raw material supplied, it is also possible to achieve mass productivity when manufacturing various optical glass base materials.
第1図は本発明装置の1実施例を示した略示説
明図、第2図は従来装置の略示説明図、第3図は
従来装置の特性図である。
12……容器、13……液相部、14……気相
部、15……ガス導入管、16……ガス導出管、
18……吹出具。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the device of the present invention, FIG. 2 is a schematic explanatory diagram of a conventional device, and FIG. 3 is a characteristic diagram of the conventional device. 12... Container, 13... Liquid phase part, 14... Gas phase part, 15... Gas inlet pipe, 16... Gas outlet pipe,
18... Blowout tool.
Claims (1)
器と、該容器内の液相部に挿入されたガス導入管
と、該容器の気相部に連結されたガス導出管とを
備え、上記ガス導入管のガス吹出端に、孔径50μ
m以下の孔を多数有する多孔性燒結体からなる吹
出具が装着されていることを特徴とする光学ガラ
ス用液体原料気化装置。 2 吹出具がステンレススチール製の多孔性燒結
体からなる特許請求の範囲第1項記載の光学ガラ
ス用液体原料気化装置。 3 吹出具がガラス製の多孔性燒結体からなる特
許請求の範囲第1項記載の光学ガラス用液体原料
気化装置。[Scope of Claims] 1. A container for containing a liquid raw material for optical glass, a gas introduction pipe inserted into a liquid phase part of the container, and a gas outlet pipe connected to a gas phase part of the container. and a hole diameter of 50μ at the gas outlet end of the gas introduction pipe.
1. A liquid raw material vaporizing device for optical glass, characterized in that a blowing tool made of a porous sintered body having a large number of holes of m or less in size is attached. 2. The liquid raw material vaporizing device for optical glass according to claim 1, wherein the blowing tool is made of a porous sintered body made of stainless steel. 3. The liquid raw material vaporizing device for optical glass according to claim 1, wherein the blowing tool is made of a porous sintered body made of glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18011584A JPS6158829A (en) | 1984-08-29 | 1984-08-29 | Vaporizing device for liquid raw material for optical glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18011584A JPS6158829A (en) | 1984-08-29 | 1984-08-29 | Vaporizing device for liquid raw material for optical glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6158829A JPS6158829A (en) | 1986-03-26 |
JPH0353262B2 true JPH0353262B2 (en) | 1991-08-14 |
Family
ID=16077678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18011584A Granted JPS6158829A (en) | 1984-08-29 | 1984-08-29 | Vaporizing device for liquid raw material for optical glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6158829A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006054249A (en) * | 2004-08-10 | 2006-02-23 | Sony Corp | Steam generator and oxidizing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60143744U (en) * | 1984-03-01 | 1985-09-24 | 古河電気工業株式会社 | Bubbler for supplying optical fiber raw materials |
-
1984
- 1984-08-29 JP JP18011584A patent/JPS6158829A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6158829A (en) | 1986-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5707415A (en) | Method of vaporizing reactants in a packed-bed, column, film evaporator | |
US8069690B2 (en) | Apparatus and method for fabricating glass bodies using an aerosol delivery system | |
US6837076B2 (en) | Method of producing oxide soot using a burner with a planar burner face | |
US4235829A (en) | Vapor delivery system and method of maintaining a constant level of liquid therein | |
CN1012641B (en) | Method for fabricating articles which include high silica glass bodies and articles formed thereby | |
CA2124683A1 (en) | Sol-gel process for forming a germania-doped silica glass rod | |
JPH0353262B2 (en) | ||
WO1998027018A1 (en) | Organometallics for lightwave optical circuit applications | |
JPH07155584A (en) | Raw gas feeder | |
JPS63134531A (en) | Device for synthesizing glass fine particle | |
JPH0250064B2 (en) | ||
JPH0218291B2 (en) | ||
JPS62108748A (en) | Preparation of glass fiber base material | |
JP4494741B2 (en) | Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method | |
JPH07112932B2 (en) | Method for producing functional quartz optical fiber base material | |
JPS62187133A (en) | Method and device for producing base material for optical fiber | |
KR20070064404A (en) | Apparatus and method for fabricating glass bodies using an aerosol delivery system | |
NL8103647A (en) | METHOD FOR THE CONTINUOUS MANUFACTURE OF AN OPTICAL FIBER PRECISE GLASS LAYERS ON A THORN. | |
JPS6120492B2 (en) | ||
JPH07300333A (en) | Production of optical fiber preform | |
JPS60231431A (en) | Manufacturing apparatus of optical porous glass base material | |
JPH05297235A (en) | Method of fabricating film for light waveguide | |
WO2002009933A1 (en) | Light weight porous glass structure | |
JPS6016826A (en) | Manufacture of optical fiber preform | |
JPS5911536B2 (en) | How to make a quartz glass tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |