JPH0353247B2 - - Google Patents

Info

Publication number
JPH0353247B2
JPH0353247B2 JP10552984A JP10552984A JPH0353247B2 JP H0353247 B2 JPH0353247 B2 JP H0353247B2 JP 10552984 A JP10552984 A JP 10552984A JP 10552984 A JP10552984 A JP 10552984A JP H0353247 B2 JPH0353247 B2 JP H0353247B2
Authority
JP
Japan
Prior art keywords
silicon
chlorine
weight
parts
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10552984A
Other languages
Japanese (ja)
Other versions
JPS60251116A (en
Inventor
Hideki Matsumura
Masayuki Shinoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10552984A priority Critical patent/JPS60251116A/en
Priority to DE19843442370 priority patent/DE3442370C2/en
Publication of JPS60251116A publication Critical patent/JPS60251116A/en
Publication of JPH0353247B2 publication Critical patent/JPH0353247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、四塩化珪素の製造方法、さらに詳し
くは、珪素含有鉱石、炭材及び塩素を高温下で反
応させる四塩化珪素の製造方法の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing silicon tetrachloride, more specifically, a method for producing silicon tetrachloride in which silicon-containing ore, carbonaceous material, and chlorine are reacted at high temperatures. Regarding improvements.

四塩化珪素は、微細シリカ、高純度合成石英、
窒化珪素あるいは種々の有機珪素化合物の合成原
料として有用であるだけでなく、太陽電池用シリ
コン又は半導体用シリコンの原料として重要なも
のである。
Silicon tetrachloride is fine silica, high purity synthetic quartz,
It is not only useful as a raw material for the synthesis of silicon nitride or various organic silicon compounds, but is also important as a raw material for silicon for solar cells or silicon for semiconductors.

〔従来の技術〕[Conventional technology]

従来、四塩化珪素の製法としては、例えば次の
方法が知られている。
Conventionally, as a method for producing silicon tetrachloride, for example, the following method is known.

(1) 金属珪素又は珪素鉄合金と塩素又は塩化水素
を反応させる方法。
(1) A method of reacting metallic silicon or silicon-iron alloy with chlorine or hydrogen chloride.

(2) 炭化珪素に塩素を反応させる方法。(2) A method of reacting silicon carbide with chlorine.

(3) 珪石と炭材の混合物に塩素を反応させる方
法。
(3) A method of reacting chlorine with a mixture of silica stone and carbonaceous material.

〔発明が解決しようとする問題点〕 (1)及び(2)の方法は原料費が高く、そのためコス
トが高くなるという欠点がある。一方、(3)の方法
は、珪素源として安価な珪石を使用するので、(1)
及び(2)の方法に比べて経済的に有利である反面、
反応速度が遅く反応温度が高くなるという欠点が
あつた。これを解決する方法として、珪石をオパ
ール質珪石としそれと炭材との混合物をペレツト
化して使用する方法があるが(特開昭58−217421
号公報)、ペレツト化するにはそれ相当の設備が
必要である。
[Problems to be Solved by the Invention] The methods (1) and (2) have the disadvantage that the cost of raw materials is high, which increases the cost. On the other hand, method (3) uses inexpensive silica stone as a silicon source, so (1)
Although it is economically advantageous compared to methods (2) and (2),
The drawbacks were that the reaction rate was slow and the reaction temperature was high. As a way to solve this problem, there is a method of using opal silica as silica stone and pelletizing a mixture of it and carbonaceous material (Japanese Patent Laid-Open No. 58-217421
(No. Publication), equivalent equipment is required to pelletize.

本発明者は、オパール質珪石と炭材との混合物
をペレツト化することなしに反応速度を高める方
法について種々検討した結果、少量の炭化珪素を
添加すればよいことを見い出し本発明を完成する
に至つたものである。
As a result of various studies on how to increase the reaction rate without pelletizing a mixture of opalescent silica stone and carbonaceous material, the present inventor found that it was sufficient to add a small amount of silicon carbide, and completed the present invention. It has been reached.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、珪素含有鉱石、炭材及び
塩素を高温下で反応させて四塩化珪素を製造する
にあたり、珪素含有鉱石としてオパール質珪石を
用い、かつ、そのオパール質珪石100重量部に対
して炭化珪素1〜20重量部添加することを特徴と
する四塩化珪素の製造方法である。
That is, in producing silicon tetrachloride by reacting a silicon-containing ore, a carbonaceous material, and chlorine at high temperature, the present invention uses opal silica stone as the silicon-containing ore, and This is a method for producing silicon tetrachloride, characterized in that 1 to 20 parts by weight of silicon carbide is added.

以下、さらに詳しく本発明について説明する。 The present invention will be explained in more detail below.

まず、原料について説明すると、オパール質珪
石とは、重量で、クリストバライト相30〜50%、
トリジマイト相5〜20%程度を含み残部が主とし
て非晶質からなるものである。国内では、例えば
硫黄島産がある。オパール質珪石のかわりに、シ
リカフラワーや鯖波珪石等のように、高非晶質も
しくはα−石英を主成分としたものを用いたので
は、高価であるかもしくは四塩化珪素への反応率
が悪くなる。一方、炭材と塩素については、従来
と同様なものでよく、炭材としてはコークス類、
無煙炭、木炭、カーボンブラツク等を、また、塩
素としては塩素の他にホスゲン等の塩素含有ガス
を用いることができる。炭化珪素は例えばコーク
スと珪砂とを高温反応させて得られるものが使用
され特殊なものである必要はない。粒径として
は、オパール質珪石と炭材については平均粒径
500μ以下、また、炭化珪素については10mm以下
が好ましい。粉砕には、ロールクラツシヤー、パ
ルベライザー、振動ミル等の粉砕機を用いる。
First, to explain the raw materials, opalescent silica stone consists of 30-50% cristobalite phase by weight.
It contains about 5 to 20% of tridymite phase, and the remainder is mainly amorphous. In Japan, for example, there is one produced on Iwo Jima. If a highly amorphous or α-quartz-based material such as silica flower or Sababa silica is used instead of opalescent silica, it will be expensive or the reaction rate to silicon tetrachloride will be low. becomes worse. On the other hand, the carbonaceous material and chlorine may be the same as before, and the carbonaceous material may be coke, etc.
Anthracite, charcoal, carbon black, etc. can be used, and as the chlorine, in addition to chlorine, a chlorine-containing gas such as phosgene can be used. Silicon carbide may be obtained by, for example, reacting coke and silica sand at a high temperature, and does not need to be a special material. Regarding particle size, for opalescent silica and carbonaceous materials, the average particle size is
The thickness is preferably 500μ or less, and preferably 10mm or less for silicon carbide. For pulverization, a pulverizer such as a roll crusher, pulverizer, or vibrating mill is used.

これらの原料の供給割合は、オパール質珪石
100重量部に対して炭材は量論上30〜60重量部が
好ましいが、炭化珪素は1〜20重量部好ましくは
5〜15重量部とする必要がある。1重量部未満で
は生成ガス中の四塩化珪素濃度は10容量%以下と
なつて反応率が悪くなり、また、20重量部をこえ
て添加しても反応率の顕著な向上はなく、むし
ろ、高価な炭化珪素を用いるので不経済となる。
塩素量については、オパール質珪石中の珪素分と
の量論量があればよく、具体的には、未反応塩素
が1%以下となる流量以上で、かつ、混合粉の散
失がなく、反応器内の圧が上昇しない程度の流量
が望ましい。
The supply ratio of these raw materials is
The carbon material is stoichiometrically preferably 30 to 60 parts by weight with respect to 100 parts by weight, but the silicon carbide needs to be 1 to 20 parts by weight, preferably 5 to 15 parts by weight. If it is less than 1 part by weight, the silicon tetrachloride concentration in the produced gas will be less than 10% by volume, resulting in a poor reaction rate, and if it is added in excess of 20 parts by weight, there will be no significant improvement in the reaction rate; Since expensive silicon carbide is used, it is uneconomical.
Regarding the amount of chlorine, it is sufficient that it is stoichiometric with the silicon content in the opal silica stone. Specifically, the flow rate is higher than that at which unreacted chlorine is 1% or less, there is no scattering of the mixed powder, and reaction is possible. It is desirable to have a flow rate that does not increase the pressure inside the vessel.

反応器としては、特に制限はなく、連続式、バ
ツチ式のいずれであつてもよい。連続式とは、例
えば上部からオパール質珪石、炭材及び炭化珪素
の混合物を、下部から塩素を連続的に供給し、上
部から反応生成ガスを取り出せるものである。反
応器材は高温の塩素雰囲気下で耐え得る材料例え
ば黒鉛質が好ましい。反応温度としては、1000〜
1600℃が好ましく、さらに好ましくは1100〜1450
℃である。1000℃未満では反応速度が十分でな
く、また、1600℃をこえると熱的に不経済となる
ばかりでなく反応器の寿命が短くなる。
There are no particular limitations on the reactor, and it may be of either a continuous type or a batch type. The continuous type is one in which, for example, a mixture of opalescent silica, carbonaceous material, and silicon carbide is continuously supplied from the upper part, chlorine is continuously supplied from the lower part, and the reaction product gas is taken out from the upper part. The reaction equipment is preferably made of a material that can withstand a high temperature chlorine atmosphere, such as graphite. The reaction temperature is 1000~
Preferably 1600℃, more preferably 1100-1450
It is ℃. If the temperature is less than 1000°C, the reaction rate will not be sufficient, and if it exceeds 1600°C, it will not only become thermally uneconomical but also shorten the life of the reactor.

〔実施例〕〔Example〕

以下、実施例、比較例をあげてさらに具体的に
説明する。
Hereinafter, a more specific explanation will be given with reference to Examples and Comparative Examples.

実施例 平均粒径30μのオパール質珪石(クリストバラ
イト相40%)、トリジマイト相10%、非晶質50%)
100重量部、平均粒径50μのコークス40重量部及
び平均粒径30μの炭化珪素9.1重量部の混合物を容
積400mlの反応器に400g充てんし、下部より塩素
を毎分80ml供給しながら1300℃で反応させた。反
応開始後5時間の反応生成ガスをガスクロマトグ
ラフイーで分析した結果、容量で、一酸化炭素
66.6%、塩素0.2%、四塩化珪素33.2%であつた。
Example Opal silica with an average grain size of 30μ (40% cristobalite phase, 10% tridymite phase, 50% amorphous)
A mixture of 100 parts by weight, 40 parts by weight of coke with an average particle size of 50μ, and 9.1 parts by weight of silicon carbide with an average particle size of 30μ was filled into a reactor with a volume of 400ml, and heated at 1300℃ while supplying chlorine at 80ml per minute from the bottom. Made it react. As a result of gas chromatography analysis of the reaction product gas 5 hours after the start of the reaction, it was found that carbon monoxide by volume.
66.6%, chlorine 0.2%, and silicon tetrachloride 33.2%.

比較例 1 実施例の混合原料から炭化珪素を除いた以外は
同様にして反応させその生成ガスを分析した。そ
の結果、一酸化炭素5.7%、塩素85.7%、ホスゲ
ン3.8%、四塩化珪素4.8%であつた。
Comparative Example 1 A reaction was carried out in the same manner as in Example except that silicon carbide was removed from the mixed raw materials, and the resulting gas was analyzed. The results were 5.7% carbon monoxide, 85.7% chlorine, 3.8% phosgene, and 4.8% silicon tetrachloride.

比較例 2 オパール質珪石のかわりに平均粒径30μの鯖波
珪石(主成分α−石英)を用いた以外は実施例と
同様にして反応させその生成ガスを分析した。そ
の結果、一酸化炭素14.3%、塩素74.2%、ホスゲ
ン2.5%、四塩化珪素8.4%であつた。
Comparative Example 2 A reaction was carried out in the same manner as in Example except that Sababa silica stone (main component α-quartz) having an average particle size of 30 μm was used instead of opal silica stone, and the resulting gas was analyzed. As a result, carbon monoxide was 14.3%, chlorine was 74.2%, phosgene was 2.5%, and silicon tetrachloride was 8.4%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、オパール質珪石と炭材とをペ
レツト化しなくても反応速度が向上し高収率で四
塩化珪素を製造できるという効果を奏する。
According to the present invention, the reaction rate is improved and silicon tetrachloride can be produced in high yield without pelletizing opalescent silica stone and carbonaceous material.

Claims (1)

【特許請求の範囲】[Claims] 1 珪素含有鉱石、炭材及び塩素を高温下で反応
させて四塩化珪素を製造するにあたり、珪素含有
鉱石としてオパール質珪石を用い、かつ、そのオ
パール質珪石100重量部に対して炭化珪素1〜20
重量部添加することを特徴とする四塩化珪素の製
造方法。
1. When producing silicon tetrachloride by reacting a silicon-containing ore, a carbonaceous material, and chlorine at high temperatures, an opalescent silica stone is used as the silicon-containing ore, and 1 to 100 parts by weight of silicon carbide is added to 100 parts by weight of the opal silica stone. 20
A method for producing silicon tetrachloride, which comprises adding parts by weight.
JP10552984A 1983-11-21 1984-05-24 Manufacture of silicon tetrachloride Granted JPS60251116A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10552984A JPS60251116A (en) 1984-05-24 1984-05-24 Manufacture of silicon tetrachloride
DE19843442370 DE3442370C2 (en) 1983-11-21 1984-11-20 Process for the production of silicon tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10552984A JPS60251116A (en) 1984-05-24 1984-05-24 Manufacture of silicon tetrachloride

Publications (2)

Publication Number Publication Date
JPS60251116A JPS60251116A (en) 1985-12-11
JPH0353247B2 true JPH0353247B2 (en) 1991-08-14

Family

ID=14410114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10552984A Granted JPS60251116A (en) 1983-11-21 1984-05-24 Manufacture of silicon tetrachloride

Country Status (1)

Country Link
JP (1) JPS60251116A (en)

Also Published As

Publication number Publication date
JPS60251116A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
US4676967A (en) High purity silane and silicon production
CA1159630A (en) Process for the preparation of silicon from quartz and carbon in an electric furnace
CA1228220A (en) Process for the production of silicon
RU1838236C (en) Method of trichloromonosilane synthesis
JPS5869713A (en) Manufacture of silicon from silica-containing powder material
EP0302604B1 (en) Process for the production of silicon tetrachloride
Okutani Utilization of silica in rice hulls as raw materials for silicon semiconductors
US2877254A (en) Process for preparing organohalosilanes
JPS60112610A (en) Preparation of silicon tetrachloride
JPH0353247B2 (en)
JPS58161915A (en) Manufacture of trichlorosilane
JPS5934643B2 (en) Method for producing silicon tetrachloride
JPH0357047B2 (en)
JPH0645449B2 (en) Method for producing silicon tetrachloride
US4069301A (en) Method of making titanium disulfide
JPH0643247B2 (en) Rice husk combustion ash composition and method for producing the same
JPS6021808A (en) Manufacture of silicon tetrachloride
US3681036A (en) Method of making silicon halides
JPH0297415A (en) Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
SU1333229A3 (en) Method of producing silicon
JPH0645450B2 (en) Method for producing silicon tetrachloride
JPH0692250B2 (en) Method for producing silicon tetrachloride
JPS59227706A (en) Production of silicon carbide fine powder
US20090304568A1 (en) Process for Producing Silane
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane