JPH0353196A - Atomic power generation system and its constructing method - Google Patents

Atomic power generation system and its constructing method

Info

Publication number
JPH0353196A
JPH0353196A JP1189219A JP18921989A JPH0353196A JP H0353196 A JPH0353196 A JP H0353196A JP 1189219 A JP1189219 A JP 1189219A JP 18921989 A JP18921989 A JP 18921989A JP H0353196 A JPH0353196 A JP H0353196A
Authority
JP
Japan
Prior art keywords
water
underground
reactor
pipe
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1189219A
Other languages
Japanese (ja)
Other versions
JP2522703B2 (en
Inventor
Moritaka Ishimaru
石丸 守孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAKI BUNKA KENKYUSHO KK
Original Assignee
MAKI BUNKA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAKI BUNKA KENKYUSHO KK filed Critical MAKI BUNKA KENKYUSHO KK
Priority to JP1189219A priority Critical patent/JP2522703B2/en
Publication of JPH0353196A publication Critical patent/JPH0353196A/en
Application granted granted Critical
Publication of JP2522703B2 publication Critical patent/JP2522703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To construct a system under the ground by providing a nuclear reactor installed in a concrete wall below an underground dam, evaporative cooling towers one of which is connected to cooling water of the nuclear reactor and the other of which is connected to a pipe through which water stored in the underground dam is led in, etc. CONSTITUTION:A pipe is perpendicularly driven into the ground and cement or the like is charged through this pipe to fill up gaps of a water-permeable layer 1, thereby constructing a stop wall 5. A metallic storage vessel 10 is installed in a concrete shielding body, and a nuclear reactor 8 where an uranium oxide reacts to generate heat is installed in the vessel 10. The nuclear reactor 8 is provided with a circulation entrance 12 is primary cooling water, which cools the heat generated by nuclear reaction, and an exit 14 through which primary cooling water evaporated by the heat is discharged from the nuclear reactor 8. An evaporative cooling tower 20 has an air discharge port 22 in the upper part and has an air inlet port 24 in the side face part, and a pipe in which primary cooling water passes is coiled in this tower. A sprinkler 30 to sprinkle water led from the stop wall 5 through a pipe 26 and a tank 28 is installed on the tower. A large-sized fan 32 which sucks air from on the ground and discharges vapor is installed in the vicinity of the air inlet port 24.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、地下に建設した地下ダムを利用した原子力発
電システムに関するものである.地層には不透水層や透
水層があり、さらにこれら不透水層や透水層は断層を形
成しているところが多く、地下水を清める地質構造(地
下水盆)がいくつも分布している. 従って地上に降った雨のうち40%の水が地下に潜るが
、この水は透水層にしみ込み、不透水層の上に溜り、海
に向けて流れ下る. しかし地下の水は自由に流れるのではなく前述したよう
に地層にいくつもの断層が形成されている為に、断層に
遮られ、断層線に沿って流れている. 透水層の間隙率は通常20〜45%であり、透水層は沢
山の水(地層の体積の10〜20%)を貯水する潜在能
力をもっている. 最近では、地下水盆の出口付近に長さ500m ,高さ
 16.5mの止水壁を作り70万トンの水を貯水する
地下ダムが沖縄に1979年に作られ、その後以下の表
に示すような地下ダムが次々に作られている。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a nuclear power generation system using an underground dam constructed underground. Geological strata include impermeable and permeable layers, and these impermeable and permeable layers often form faults, resulting in a number of geological structures (groundwater basins) that purify groundwater. Therefore, 40% of the water that falls on the ground goes underground; this water soaks into the permeable layer, collects on the impermeable layer, and flows down to the sea. However, underground water does not flow freely, but as mentioned above, many faults are formed in the strata, so it is blocked by the faults and flows along the fault lines. The porosity of a permeable layer is usually 20-45%, and the permeable layer has the potential to store a large amount of water (10-20% of the volume of the stratum). Recently, an underground dam was built in Okinawa in 1979, with a cut-off wall 500 m long and 16.5 m high near the outlet of the groundwater basin to store 700,000 tons of water. Underground dams are being built one after another.

これらのダムは主に飲料水又は潅既用水を目的とするも
のであるが、1日に取水できる量は樺島ダムの場合、総
貯水量の40分の1にあたる250m’程度である. 従  来  技  術 従来わが国における原子力発電システムは、BER(沸
騰水型)又はPWR(加圧木型)の濃縮炉において3%
程度に濃縮された酸化ウランを燃料として高温の水蒸気
を作り出し、該水蒸気でもって発電機のタービンをまわ
す方式のものが地上に設置され利用されている. 原子力発電では一般的に50万Kwの出力を得るために
 150万Kwのエネルギーを消費し、50万Kwが電
気エネルギーに変換され、残りは熱エネルギーとなる. 原子炉から発生する中性子の減速材として1次冷却水を
用い、同時に該冷却水を炉・ら内に循環させることによ
り炉心内で発生する熱を外に運び出す役割を果たしてい
る. 熱を帯びた1次冷却水の水は復水器を介して2次冷却水
の海水と熱交換させることにより、冷却されて炉心に戻
るように設計されている.この2次冷却水に使用する海
水は、50万Kw出力の発電タイプで18万m”/bが
必要で、1日換算432万m A 7日にもなる. 2次冷却水に使われた水は、通常7゜C程度温度上昇し
、海に放流される. 従って海水により奪われるエネルギーは次の通りとなる
. Q+ ” 432X 10”X 7 cal/日− 1
46万K賀/秒 発明が解決しようとする問題点 しかしながら、かかる従来の原子発電システムの場合は
、海水を2次冷却水として利用しているが放流される量
が非常に多く、また海水がかなり遠くの沖合で放流され
るように設計されていない為に海が温暖化し、赤潮の発
生.くらげの異常発生等の問題が起こっている. 二次冷却水として利用する海水は、塩分を多量に含む為
に吸水口,復水機,パイプ等が腐食しやずいといった問
題もある. 原子力発電所は地震が発生しにくい所を選んで設置して
いるが、地上に設置している関係で地震が発生した時に
、地震の影響で原子炉等にひずみが生じやすいといった
欠点も有している.電力発電所の立地条件としては、電
力需要の多い都心から近ければ近い程良いが、原子力発
電所の場合は一般に電力の需要地から遠い所に設置され
ている為に、エネルギー効率が悪いといった不都合もあ
る. さらに海水を2次冷却水として利用しているが毎秒20
0m”の水を例えば海抜10mの高さの原子炉まで汲み
上げる場合に消費されるエネルギーE+が、El − 
 200X 9. 8X 10瑚1.8万K%#となり
、原子力発電効率が悪いといった不都合もある,また海
水の干満の差が激しいところには設置しにくいといった
問題もある. そこで本発、明はかかる従来技術の欠点に鑑み、地震に
よる影響を受けにくく、海水を使用しないで済むと共に
、比較的都心に近い所でも設置できるような地下型原子
力発電システムを提供することを目的とする. 問題点を解決するための手段 地下水盆に止水壁を設けることにより形成された地下ダ
ムと、該地下ダムの下方で岩盤上でコンクリートの壁内
に設置された原子炉と、一方が前記原子炉の一次冷却水
と接続され、他方が前記地下ダムに貯溜された水を引き
込むパイプと接続された蒸発型冷却塔とからなり、該冷
却塔の蒸気排出口及び空気吸入口がそれぞれ煙突を介し
て地上と連通した原子力発電システムにより本目的を達
成する. また上記原子力発電システムは、以下に示すような方法
にて作り上げる. 地質調査により希望にあった地下水盆を探索する. 地下水盆の出口付近にコンクリート又は水ガラス(ケイ
酸ナトリウム)等を注入することにより所定の高さ,長
さからなる止水壁を断層に対して略垂直に設置する. 地下ダムの下方で岩盤上に原子炉を設置すると共に、該
原子炉をコンクリートの遮蔽壁で覆う.原子炉の隣に蒸
発型冷却塔を設置し、該冷却塔の蒸発口に煙突を介して
地上と連通させると共に該冷却塔の空気吸入口と地上と
を煙突を介して連通させる. さらに原子炉の1次冷却水を冷却塔に導くと共に地下ダ
ムの水も冷却塔に導く. そして冷却に使用したダムの水は、地下に戻すことなく
全て蒸発させてしまうように構成する.尚、地下ダムの
貯水量は原子力発電の出力に合わせるが、蒸発型冷却塔
方式の場合は、出力50万Kw/hで2.016m”/
hが必要であり、1日に換算すると48. 384−の
水を必要とするので、100@換算で総貯水量が500
万m l以上のものを建設する.作     用 以下に本発明を図面に示されたー実施例に従って詳細に
説明する. 第1図は、地層面の概略断面図であり主に透水層1と不
透水層2とからなり、これらの層1,2は不連統線3,
4で示される部分において断層を形成している. そしてこの透水層1に水がたまり、不透水層2に沿って
地下水盆として水は流れる. そこで第1図及び第2図に示すように不透水層の上であ
って断層の不連続線に対してほぼ垂直に止水壁5を設け
る. この止水壁5は、地面に垂直にパイプを打ち込み、その
パイプを通じてセメントを水で溶かしたセメントミルク
やセメントミルクに粘土を混合させたものや水ガラス(
ケイ酸ナトリウム)等を注入し、透水層の隙間を埋めて
作るものである.6は、止水壁5の下方で岩盤7上に設
けた原子炉の生体遮蔽のためのコンクリート遮蔽体であ
り、該コンクリート遮蔽体6内には金属性格納容器10
が設置され、さらに該格納容器10内に酸化ウラニウム
を反応させて発熱させる原子炉8が設置されている. 原子炉8には、核反応により生じた熱を冷却するための
1次冷却水の循環入口12と、熱により気化された1次
冷却水を原子炉8から排出するための出口14が設けら
れ、該原子炉8が異常に熱くならないように制御してい
る. 原子炉8の上記排出口14から出た蒸気は、パイプ手段
を介して発電用タービン16に導かれ、そこでタービン
l6を駆動することにより発電を行なうが、タービン1
6から排出された後は、蒸発冷却塔20において凝縮さ
れ気体から液体に戻された後、給水ボンプ18,浄化装
置19を介して原子炉B内に戻される. この1次冷却水は、原子炉8内において放射能を浴びて
いる関係で、閉鎖回路内で循環するように構成されてい
る. 蒸発冷却塔20は、第3図に示すように上方に排気口2
2、側面部に吸気口24を有し、内部に1次冷却水が通
過するための熱伝導管からなるパイプがコイル状に巻か
れ、その上方には止水壁5からバイヅ26、タンク28
を介して導かれた水を散水するためのスプリンクラー3
0が設置されており、さらに吸気口24付近には地上か
らの空気を吸い込むと共に地上に向けて蒸気を吐き出す
ための大型ファン32が設置されている. この蒸発型冷却塔20は、水の蒸発潜熱を利用して1次
冷却水のエネルギーを吸熱しようとするもので、少ない
2次冷却水で大量のエネルギーを吸熱することができる
. 34は蒸発型冷却塔20の排気口に接続された地上へ蒸
気を排出するための煙突であり、36は吸気口24と接
続された煙突である. これら煙突の径は、原子炉8の出力及び冷却水の量及び
送風量との関係で決定されるもので、比較的大きな径の
ものが好ましい. 第3図において38は止水壁5の上方に設けた地下ダム
に湧き出る水の量と地下ダムから吸水される水の量との
差で生じるオーバーフローの水を放流するための才−バ
ーフローバイプであり、該才一バーフローパイブは、3
0〜50mの落差の位置に設置された水力発電タービン
40を回して発電機41で発電するようにしている. 発電に利用された水は、前記地下ダムの下方の地下水盆
に設置された止水壁42でせきとめられた第2地下ダム
に放流される. この第2地下ダムの水は、第1地下ダムにポンブ43を
介して揚水できるように構成されている.揚水は原子力
発電の深夜の余剰電力を用いて行なう. これは第1地下ダムの貯水量が著しく減少して2次冷却
の必要量に満たなくなった場合に揚水により補うための
ものである. 二次冷却水の取水バイプ26および才一バーフローバイ
プ38は、上方の地下ダムの止水壁5付近に掘られた取
水井戸44にその口が設けられている.尚本実施例では
、地下に第2地下ダムを設置するように構成したがこれ
に限定されるものではなく、オーバーフローした水を透
水層中の地下水脈に強制的に放流するように構或しても
良い.39は使用済み燃料を収納するために地下1.0
00m以上のところに設置された収納庫である.因みに
、蒸発型冷却塔では世力50万K賢の原子力発電におい
て必要な2次冷却水の量は、1分間に33. 6m’必
要で1日換算48. 384m”になる.従って、エネ
ルギー損失がないとして15°Cの水が蒸発する場合に
奪う熱量Q,は1日当り以下の通りとなる. Q.−85℃X 48. 384rn″XIO“+53
9X 4g. 384+11”X10”− 3. 02
X 10’ ”cal/日−146万K賀/秒 さらに送風空気が加熱されることにより熱エネルギーを
吸収する. 蒸発型冷却塔は、2次冷却水の内30%を蒸発させて冷
却し、70%を液体として冷却に用いる.従って地下式
原子力発電の発電量は、地下水の総貯水量、湧き出す量
及び使用量との関係から算出することができるが安全性
から総貯水量は多目に設定するのが良い. 上記数値より出力10万.50万,又ほ 100万Kw
における必要な蒸発式冷却塔が必要とする2次冷却水の
量と要する地下水ダムの総貯水量との関係を示すと表−
2に示す通りとなる. 表−2 必要貯水量は、1日の取水量の百倍として換算.原子力
発電の発電出力を50万Kwとした時に、通常地下ダム
に1日に湧き出す水の量を96.768m”として、こ
の余剰水を水力発電に使用するとした場合の理論水力発
電量Qは、 Q = 9.8X O.56m”/sX 40m(落差
)= 219Kw           トtt ル.
本実施例では、地下水ダムで溢れた水を水力発電に利用
するように構成したがこれに限定されるものではなく、
地下水を汲み上げて地上の植物の潅厩用水として使用し
、該植物を酸性雨等の状況をはかるためのバロメーター
として利用するようにしても良い. 効     果 以上説明したように本発明にかかる原子力発電システム
では、地下に豊富に埋蔵されている地下水を地下ダムの
形成により必要量取水するように#l或し発電するよう
に構成したので、必要な地下水盆を有するところならど
こでも設置することができ、地下水を汲み上げる必要も
ないのでエネルギー効率が良い. 原子力発電システムを地下に設置するように構成したの
で、従来地上に設置した設備のものより地震のS波(横
波)の影響が極端に減衰されるために耐震性に数段優れ
る. さらに地下数十メートルのところに原子炉を設置するよ
うに構成したので、異常時に原子炉から放射能が発生し
たとしてもコンクリート及び地層中の非透水層等が生体
遮蔽を行なう為に、安全性に優れる. また従来の方式と異なり2次冷却水を海水ではなく、地
下水を利用するようにしたのでバイブ等の機器が腐食し
にくく耐久性に優れる.地下に湧き出る水を渇水させる
ことなく利用すると共に、冷却に使用した水を地下水脈
に戻さないように構成したので、地下水が汚染されるこ
ともない.
These dams are mainly intended for drinking water or irrigation water, but in the case of Kabashima Dam, the amount of water that can be taken in a day is about 250 m', which is one-fourtieth of the total water storage capacity. Conventional technology Until now, nuclear power generation systems in Japan had a BER (boiling water type) or PWR (pressurized wood type) concentrator with a
There are systems installed and used on the ground that use highly enriched uranium oxide as fuel to produce high-temperature steam, and use the steam to turn a generator turbine. In general, nuclear power generation consumes 1.5 million Kw of energy to obtain an output of 500,000 Kw, 500,000 Kw is converted into electrical energy, and the rest becomes thermal energy. The primary cooling water is used as a moderator for the neutrons generated by the reactor, and at the same time, by circulating the cooling water within the reactor, it plays the role of transporting the heat generated within the reactor core to the outside. The design is such that the heated primary cooling water is cooled and returned to the core by exchanging heat with the seawater of the secondary cooling water through a condenser. The seawater used for this secondary cooling water is 180,000m"/b for a power generation type with an output of 500,000Kw, which is equivalent to 4.32 million mA 7 days per day. The temperature of water is usually raised by about 7°C before it is discharged into the sea. Therefore, the energy taken by seawater is as follows: Q+ "432X 10"X 7 cal/day - 1
460,000 K/sec Problems to be Solved by the Invention However, in the case of such conventional nuclear power generation systems, seawater is used as secondary cooling water, but the amount discharged is extremely large; Because it was not designed to be released far offshore, the ocean warms and red tides occur. Problems such as abnormal occurrence of jellyfish are occurring. Seawater used as secondary cooling water has the problem of being susceptible to corrosion of water intakes, condensers, pipes, etc. because it contains a large amount of salt. Nuclear power plants are installed in locations where earthquakes are unlikely to occur, but because they are installed on the ground, they also have the disadvantage that in the event of an earthquake, the nuclear reactor is susceptible to distortion. ing. In terms of location conditions for power plants, the closer they are to urban centers where there is a lot of power demand, the better, but nuclear power plants are generally located far from areas of power demand, so they have the disadvantage of poor energy efficiency. There is also. Furthermore, seawater is used as secondary cooling water, but at a rate of 20% per second.
For example, the energy E+ consumed when pumping water at a height of 10 m above sea level to a nuclear reactor at a height of 10 m above sea level is El −
200X 9. 8X 10G = 18,000K%#, which has the disadvantage of low nuclear power generation efficiency and the difficulty of installing it in areas with large tidal differences in seawater. Therefore, in view of the shortcomings of the conventional technology, the present invention is to provide an underground nuclear power generation system that is not easily affected by earthquakes, does not require the use of seawater, and can be installed relatively close to the city center. Purpose. Means for Solving the Problems: An underground dam is formed by providing a cut-off wall in an underground water basin; a nuclear reactor is installed in a concrete wall on the bedrock below the underground dam; It consists of an evaporative cooling tower connected to the primary cooling water of the furnace, and the other connected to a pipe that draws water stored in the underground dam, and the steam outlet and air intake of the cooling tower are connected to each other through a chimney. This objective will be achieved through a nuclear power generation system connected to the ground. The above nuclear power generation system is constructed using the method shown below. Search for the desired underground water basin through geological surveys. A cutoff wall of a predetermined height and length is installed approximately perpendicular to the fault by injecting concrete or water glass (sodium silicate) near the outlet of the groundwater basin. A nuclear reactor is installed on the bedrock below the underground dam, and the reactor is covered with a concrete shielding wall. An evaporative cooling tower is installed next to the reactor, and the evaporator of the cooling tower is communicated with the ground through a chimney, and the air intake of the cooling tower is communicated with the ground through the chimney. Furthermore, the primary cooling water of the reactor is guided to the cooling tower, and the water from the underground dam is also guided to the cooling tower. The structure is designed so that all of the dam water used for cooling evaporates without returning to the ground. The amount of water stored in the underground dam is adjusted to the output of nuclear power generation, but in the case of an evaporative cooling tower system, the amount of water stored in the underground dam is 2.016 m"/
h is required, which is equivalent to 48.h per day. Since it requires 384 - of water, the total water storage amount is 500 in 100 @ conversion.
Build more than 10,000ml. Function The present invention will be explained in detail below according to embodiments shown in the drawings. Figure 1 is a schematic cross-sectional view of the strata surface, which mainly consists of a permeable layer 1 and an impermeable layer 2, and these layers 1 and 2 are connected to a discontinuity line 3,
A fault is formed in the part indicated by 4. Water accumulates in this permeable layer 1 and flows along the impermeable layer 2 as a groundwater basin. Therefore, as shown in Figures 1 and 2, a cutoff wall 5 is provided above the impermeable layer and approximately perpendicular to the discontinuity line of the fault. This water stop wall 5 is made by driving a pipe perpendicularly into the ground and passing it through the pipe using cement milk made by dissolving cement in water, cement milk mixed with clay, or water glass (
It is created by injecting materials such as sodium silicate to fill the gaps in the permeable layer. Reference numeral 6 denotes a concrete shield for biological shielding of the nuclear reactor, which is provided on the bedrock 7 below the water stop wall 5. Inside the concrete shield 6, there is a metal containment vessel 10.
A nuclear reactor 8 is installed inside the containment vessel 10 to react with uranium oxide and generate heat. The reactor 8 is provided with a primary cooling water circulation inlet 12 for cooling the heat generated by the nuclear reaction, and an outlet 14 for discharging the primary cooling water vaporized by the heat from the reactor 8. , the reactor 8 is controlled so that it does not become abnormally hot. The steam discharged from the exhaust port 14 of the nuclear reactor 8 is led to the power generation turbine 16 via pipe means, where power generation is performed by driving the turbine 16.
After being discharged from the reactor B, it is condensed in the evaporative cooling tower 20 and returned from gas to liquid, and then returned to the reactor B via the water supply pump 18 and the purification device 19. Since this primary cooling water is exposed to radioactivity within the reactor 8, it is configured to circulate within a closed circuit. The evaporative cooling tower 20 has an exhaust port 2 at the top as shown in FIG.
2. A pipe consisting of a heat conduction pipe having an intake port 24 on the side surface and through which primary cooling water passes is wound in a coil shape, and above it there are pipes from the water stop wall 5 to the pipe 26 and the tank 28.
Sprinkler 3 for sprinkling water guided through
Furthermore, a large fan 32 is installed near the intake port 24 to suck in air from the ground and discharge steam toward the ground. This evaporative cooling tower 20 attempts to absorb the energy of primary cooling water using the latent heat of vaporization of water, and can absorb a large amount of energy with a small amount of secondary cooling water. 34 is a chimney connected to the exhaust port of the evaporative cooling tower 20 for discharging steam to the ground, and 36 is a chimney connected to the intake port 24. The diameters of these chimneys are determined in relation to the output of the reactor 8, the amount of cooling water, and the amount of air blown, and a relatively large diameter is preferable. In Fig. 3, 38 is a bar flow pipe for discharging overflow water generated by the difference between the amount of water gushing out into the underground dam installed above the water stop wall 5 and the amount of water absorbed from the underground dam. , and the Saiichi bar flow pipe is 3
A hydroelectric turbine 40 installed at a height of 0 to 50 m is rotated to generate electricity by a generator 41. The water used for power generation is discharged into a second underground dam, which is stopped by a water-stop wall 42 installed in an underground water basin below the underground dam. The water from the second underground dam is configured to be pumped to the first underground dam via a pump 43. Pumping is performed using surplus electricity from nuclear power generation late at night. This is to compensate by pumping up water when the amount of water stored in the first subsurface dam decreases so much that it no longer meets the requirements for secondary cooling. The intake pipe 26 and the bar flow pipe 38 for the secondary cooling water have their mouths provided in a water intake well 44 dug near the cutoff wall 5 of the underground dam above. In this embodiment, the second subterranean dam is installed underground, but the structure is not limited to this, and the overflow water may be forcibly discharged into the groundwater vein in the permeable layer. It's okay. 39 is underground 1.0 to store spent fuel.
This is a storage space installed at a distance of 00m or more. By the way, with an evaporative cooling tower, the amount of secondary cooling water required for nuclear power generation with a world power of 500,000 K is 33. 6m' required, equivalent to 48. 384m". Therefore, assuming that there is no energy loss, the amount of heat Q taken away when water at 15°C evaporates is as follows per day. Q. -85°CX 48. 384rn"XIO"+53
9X 4g. 384+11"X10"-3. 02
X 10' cal/day - 1,460,000 kcal/sec The blown air is further heated and absorbs thermal energy. Evaporative cooling towers cool by evaporating 30% of the secondary cooling water. 70% is used as liquid for cooling.Therefore, the amount of power generated by underground nuclear power generation can be calculated from the relationship between the total amount of underground water storage, the amount of water that gushes out, and the amount of water used, but for safety reasons, the total amount of water storage is often considered. It is better to set it to
Table 1 shows the relationship between the amount of secondary cooling water required by the evaporative cooling tower and the total amount of water stored in the groundwater dam.
As shown in 2. Table 2 Required water storage amount is calculated as 100 times the daily water intake amount. When the power output of nuclear power generation is 500,000 Kw, the amount of water that normally gushes out of an underground dam in a day is 96.768 m'', and if this surplus water is used for hydroelectric power generation, the theoretical amount of hydroelectric power generation Q is , Q = 9.8X 0.56m"/sX 40m (Head) = 219Kw Tortt.
In this embodiment, water overflowing from a groundwater dam is configured to be used for hydroelectric power generation, but the present invention is not limited to this.
Groundwater may be pumped up and used as irrigation water for plants above ground, and the plants may be used as a barometer for measuring conditions such as acid rain. Effects As explained above, the nuclear power generation system according to the present invention is configured to take in the necessary amount of groundwater, which is abundant underground, by forming an underground dam, or to generate electricity. It can be installed anywhere that has an underground water basin, and it is energy efficient because there is no need to pump up groundwater. Since the nuclear power generation system is configured to be installed underground, the effects of earthquake S waves (transverse waves) are significantly attenuated compared to conventional equipment installed above ground, making it much better in earthquake resistance. Furthermore, since the reactor is installed several tens of meters underground, even if radioactivity is generated from the reactor in the event of an abnormality, the concrete and non-permeable layers in the geological formations will shield living organisms, ensuring safety. Excellent in Also, unlike the conventional method, the secondary cooling water is not seawater but underground water, which makes the vibrator and other equipment less likely to corrode and has excellent durability. In addition to using the water that springs up underground without running out of water, the system also prevents the water used for cooling from returning to the groundwater vein, so the groundwater will not be contaminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は地層における透水層と非透水層との関係を示す
断面図,第2図は地下に設けた地下水ダムの断面図,第
3図は本発明にかかる実施例を示すシステムの概略断面
図である. 工・・・透水層      2・・・非透水層3,4・
・・断層     5・・・止水壁6・・・遮蔽体  
    8・・・原子炉lO・・・金属性格納容器  
l2・・・循環入口14・・・出口       16
・・・発電用タービンl8・・・給水ポンプ    1
9・・・浄化装置20・・・蒸発冷却W     22
・・・排気口24・・・吸気口      26・・・
パイプ28・・・タンク      30・・・スプリ
ンクラー32・・・大型ファン    34.36・・
・煙突38・・・オーバーフローバイフ39・・・収納
,140・・・水力発電タービン 43・・・発is 42・・・止水壁 44・・・取水井戸
Figure 1 is a cross-sectional view showing the relationship between permeable layers and non-permeable layers in the geological formations, Figure 2 is a cross-sectional view of a groundwater dam installed underground, and Figure 3 is a schematic cross-sectional view of a system showing an embodiment of the present invention. This is a diagram. Construction... Permeable layer 2... Non-permeable layer 3, 4.
... Fault 5 ... Water stop wall 6 ... Shielding body
8...Reactor lO...Metallic containment vessel
l2...Circulation inlet 14...Outlet 16
...Power generation turbine l8...Water pump 1
9... Purifier 20... Evaporative cooling W 22
...Exhaust port 24...Intake port 26...
Pipe 28...Tank 30...Sprinkler 32...Large fan 34.36...
・Chimney 38...Overflow life 39...Storage, 140...Hydroelectric power generation turbine 43...Is 42...Water stop wall 44...Water intake well

Claims (2)

【特許請求の範囲】[Claims] (1)地下水盆に止水壁を設けることにより形成された
地下ダムと、該地下ダムの下方で岩盤上でコンクリート
の壁内に設置された原子炉と、内部に前記原子炉の一次
冷却水の導水パイプが施設されと共に前記地下ダムに貯
溜された水を引き込むパイプが接続された蒸発型冷却塔
とからなり、該冷却塔の蒸気排出口及び空気吸入口がそ
れぞれ煙突を介して地上と連通させた原子力発電システ
ム。
(1) An underground dam formed by installing a water stop wall in an underground water basin, a nuclear reactor installed within a concrete wall on bedrock below the underground dam, and a primary cooling water for the reactor inside. It consists of an evaporative cooling tower to which a water conveying pipe is installed and a pipe for drawing water stored in the underground dam is connected, and the steam outlet and air intake of the cooling tower are each communicated with the ground through a chimney. nuclear power generation system.
(2)以下の各工程からなる地下原子力発電システムの
建設方法。 a)地質調査により希望にあった貯水量を有する地下水
盆を探索する工程、 b)地下水盆の出口付近にコンクリート又は水ガラス(
ケイ酸ナトリウム)等を注入することにより所定の高さ
、長さからなる止水壁を断層に対して略垂直に設置し地
下ダムを形成する工程、 c)地下ダムの下方で岩盤上に原子炉を設置すると共に
、該原子炉をコンクリートの遮蔽体で覆う工程、 d)原子炉の隣に蒸発型冷却塔を設置し、該冷却塔の蒸
発口に煙突を介して地上と連通させると共に該冷却塔の
空気吸入口と地上とを煙突を介して連通させる工程、 e)さらに原子炉の1次冷却水を冷却塔に導くと共に地
下ダムの水も冷却塔に導く工程、
(2) A construction method for an underground nuclear power generation system consisting of the following steps. a) Searching for a groundwater basin with the desired amount of water storage through geological survey; b) Installing concrete or water glass near the outlet of the groundwater basin.
c) Forming a subterranean dam by installing a cutoff wall of a predetermined height and length approximately perpendicular to the fault by injecting sodium silicate, etc.; installing a reactor and covering the reactor with a concrete shield; d) installing an evaporative cooling tower next to the reactor, communicating the evaporation port of the cooling tower with the ground via a chimney; a step of communicating the air intake of the cooling tower with the ground via a chimney; e) a step of further guiding the primary cooling water of the reactor to the cooling tower and also guiding water from the underground dam to the cooling tower;
JP1189219A 1989-07-21 1989-07-21 Nuclear power generation system and construction method thereof Expired - Fee Related JP2522703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189219A JP2522703B2 (en) 1989-07-21 1989-07-21 Nuclear power generation system and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189219A JP2522703B2 (en) 1989-07-21 1989-07-21 Nuclear power generation system and construction method thereof

Publications (2)

Publication Number Publication Date
JPH0353196A true JPH0353196A (en) 1991-03-07
JP2522703B2 JP2522703B2 (en) 1996-08-07

Family

ID=16237560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189219A Expired - Fee Related JP2522703B2 (en) 1989-07-21 1989-07-21 Nuclear power generation system and construction method thereof

Country Status (1)

Country Link
JP (1) JP2522703B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495103A1 (en) * 1990-08-14 1992-07-22 ISHIMARU, Moritaka Atomic power generation system and its construction method
JP2008522155A (en) * 2004-11-24 2008-06-26 オイスター・インターナショナル・ナムローゼ・フエンノートシャップ Nuclear power generation facility and construction method thereof
JP2010101144A (en) * 2008-10-21 2010-05-06 Sumitomo Fudosan Kk Energy supply system reusing existing underground cavity
JP2013002838A (en) * 2011-06-13 2013-01-07 Fujita Corp Nuclear plant installation structure
JP2014525033A (en) * 2011-07-02 2014-09-25 ルンプ,ビヨルン・ジイグート Safe reactor plant construction method and corresponding reactor plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316187A (en) * 1976-07-30 1978-02-14 Kraftwerk Union Ag Reactor facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316187A (en) * 1976-07-30 1978-02-14 Kraftwerk Union Ag Reactor facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495103A1 (en) * 1990-08-14 1992-07-22 ISHIMARU, Moritaka Atomic power generation system and its construction method
JP2008522155A (en) * 2004-11-24 2008-06-26 オイスター・インターナショナル・ナムローゼ・フエンノートシャップ Nuclear power generation facility and construction method thereof
JP2010101144A (en) * 2008-10-21 2010-05-06 Sumitomo Fudosan Kk Energy supply system reusing existing underground cavity
JP2013002838A (en) * 2011-06-13 2013-01-07 Fujita Corp Nuclear plant installation structure
JP2014525033A (en) * 2011-07-02 2014-09-25 ルンプ,ビヨルン・ジイグート Safe reactor plant construction method and corresponding reactor plant

Also Published As

Publication number Publication date
JP2522703B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
CN102956275A (en) Pressurized water reactor with compact passive safety systems
US5223208A (en) Nuclear power generation system and its construction method
CN205177415U (en) Active heat pipe cooling system of spent fuel pool of nuclear power plant non -
JP5842218B2 (en) Powerless reactor cooling system
CN109461506A (en) A kind of swimming pool formula region low temperature heating reactor
US20200335233A1 (en) Apparatus for passively cooling a nuclear plant coolant reservoir
CN105118534B (en) Passive Spent Fuel Pool cooling and water charging system
CN105427910B (en) A kind of integrated cooling water source system based on massif deep embeded type nuclear power station
CN205810388U (en) A kind of deep-wall type normal pressure supplying heat nuclear reactor
Mochizuki et al. Prevention possibility of nuclear power reactor meltdown by use of heat pipes for passive cooling of spent fuel
JPH0353196A (en) Atomic power generation system and its constructing method
Hannerz Towards intrinsically safe light-water reactors
CN105374408A (en) Deep well type atmospheric pressure heat supply nuclear reactor
CN205230606U (en) Integrated cooling water source system based on massif deeply buried type nuclear power station
JPH10319169A (en) Helium cooled fast breeder reactor
CN106340330B (en) A kind of underground nuclear power station main building group step layout design method
CN205541975U (en) Deep well formula ordinary pressure nuclear heating system
Crastan Power Generation
JP4974258B1 (en) Nuclear power plant with radioactive decontamination facility
CN111063462A (en) Self-generating cooling system after spent fuel pool accident
Jiafu et al. Deep pool reactors for nuclear district heating
JP2003270383A (en) Atomic power using heat supply system
Ishida et al. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside
US20150047355A1 (en) Ciudad Sinergia: a production and research facility in the southwestern United States for electrical power and fresh water, and for processing burnable waste, without the use of nuclear fission, coal or oil
Zhu et al. Co-generation of electricity and desalted water by gas turbine MHTGR

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees