JPH0352893A - Diffraction grating - Google Patents

Diffraction grating

Info

Publication number
JPH0352893A
JPH0352893A JP18763089A JP18763089A JPH0352893A JP H0352893 A JPH0352893 A JP H0352893A JP 18763089 A JP18763089 A JP 18763089A JP 18763089 A JP18763089 A JP 18763089A JP H0352893 A JPH0352893 A JP H0352893A
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction
angle
grating
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18763089A
Other languages
Japanese (ja)
Other versions
JP2922534B2 (en
Inventor
Hideo Maeda
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18763089A priority Critical patent/JP2922534B2/en
Publication of JPH0352893A publication Critical patent/JPH0352893A/en
Application granted granted Critical
Publication of JP2922534B2 publication Critical patent/JP2922534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain diffraction grating consisting of a double diffraction grating specified in several dimension or relative configuration of each diffraction grating and carried out in coexistence of high efficiency and dispersing properties at low angle of wavelength by making angle disperse of wavelength small. CONSTITUTION:The diffraction grating consisting of a double diffraction grating set so as to satisfy the formula (K1 is lattice constant on input side; K2 is lattice constant on output side; theta' is angle formed by two diffraction gratings; thetai' is diffraction angle by diffraction grating on input side; thetao is diffraction angle by diffraction grating on output side). Specifically, for example, diffraction gratings 1 and 2 having each the above-mentioned lattice constant is integrally formed in the obverse and reverse of wedge-shaped same substrate 4 having spread of the angle theta'.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種光学分野で用いられる回折格子に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a diffraction grating used in various optical fields.

従来の技術 回折格子は、光学素子として一般的かつ重要な素子の一
つである。このような回折格子については、例えば東海
大学出版会発行(昭和50.5.l5版)の文献「光学
の原理UJ  (M.ボルン、E.ウオルフ著、草川徹
、横田英嗣訳)中の「8.6.1 回折格子Jに記載さ
れており、回折格子とは、単一波長でない光を単一波長
毎に分ける素子である。
BACKGROUND OF THE INVENTION Diffraction gratings are one of the most common and important optical elements. Regarding such diffraction gratings, for example, "Principles of Optics UJ (written by M. Born and E. Wolf, translated by Toru Kusakawa and Hidetsugu Yokota)" published by Tokai University Press (1975.5.15 edition) 8.6.1 Diffraction grating J, and a diffraction grating is an element that separates light that is not of a single wavelength into single wavelengths.

このような回折格子として、代表的なものに表面レリー
フ型回折格子がある。これは、効率が非常に高く、原理
的に90%を越える高効率のものである。
A typical example of such a diffraction grating is a surface relief type diffraction grating. This has a very high efficiency, which in principle exceeds 90%.

発明が解決しようとする課題 ところが、このような回折格子において、高効率にする
ためには、格子ピッチを波長と同程度に小さくしてブラ
ッグ回折としなければならない。
Problem to be Solved by the Invention However, in order to achieve high efficiency in such a diffraction grating, the grating pitch must be made as small as the wavelength to achieve Bragg diffraction.

ところが、格子ピッチが小さいと角度分散性が大きくな
ってしまう。即ち、回折格子に対する入力角をOl1回
折角をOo、波長をλ、格子ピッチをAとすると、回折
格子の回折角特仕を示す式は、sinOi + sin
θ0=λ/A となる。そこで、例えば入力光に半導体レーザ光を想定
し、その波長λが0.77μm〜0.79pn+までモ
ードホップを持つとすると、回折角Ooも上式より、3
2.9’〜34.9゜までホップする(ただし、A=0
.7、Oiはブラッグ角とした)。このような回折角e
oの2゜もの大きな広がりは、用途によっては非常に大
きなものであり、実用に供し得ないことも多々ある。
However, if the grating pitch is small, the angular dispersion becomes large. That is, assuming that the input angle to the diffraction grating is Ol1, the diffraction angle is Oo, the wavelength is λ, and the grating pitch is A, the formula showing the diffraction angle characteristic of the diffraction grating is sinOi + sin
θ0=λ/A. Therefore, for example, assuming that the input light is a semiconductor laser beam and its wavelength λ has a mode hop from 0.77 μm to 0.79 pn+, the diffraction angle Oo will also be 3 from the above equation.
Hop from 2.9' to 34.9° (however, A=0
.. 7. Oi is Bragg angle). Such a diffraction angle e
A large spread of o of as much as 2 degrees is extremely large depending on the application, and is often impractical.

課題を解決するための手段 入力側の回折格子の格子定数をK,、出力側の回折格子
の格子定数をK,、2つの回折格子のなす角をΔθ′、
入力側の回折格子による回折角をOi′、出力側の回折
格子による回折角をl)oとした時、各回折格子の諸元
又は相対的な配置が、なる式を満足するように設定した
2重の回折格子により構成した。
Means for Solving the Problem Let the grating constant of the diffraction grating on the input side be K, the grating constant of the diffraction grating on the output side be K, and the angle between the two diffraction gratings be Δθ'.
When the diffraction angle by the input-side diffraction grating is Oi' and the diffraction angle by the output-side diffraction grating is l)o, the specifications or relative arrangement of each diffraction grating were set so as to satisfy the following formula. It was constructed with a double diffraction grating.

作用 回折格子を2重とし、その格子定数等の各諸元又は相対
的配置が、上記式を満足する場合には、波長の角度分散
が小さくなるので、高効率性と低角度分散機能とを両立
でき、回折角の広がりが問題となる用途においても支障
なく用い得ることになる。
When the working diffraction grating is made double and its respective specifications such as the lattice constant or relative arrangement satisfy the above formula, the angular dispersion of wavelength becomes small, so high efficiency and low angular dispersion function are achieved. This means that both can be compatible, and it can be used without any problem even in applications where broadening of the diffraction angle is a problem.

実施例 本発明の一実施例を第1図及び第2図に基づいて説明す
る。本実施例は高効率で低角度分散性を実現するため、
入力側に配置させた回折格子lと出力側に位置させた回
折格子2とを備えてなる透過型2重回折格子3としたこ
とを基本とする。ここに、各回折格子1,2の格子ピッ
チA,, A,は何れも波長程度を保持したままで高効
率とするが、そのピッチA,, A,は所定の関係とな
るように形或されている。この条件を、第2図に示す2
重回折格子3の回折ダイアグラムを参照して説明する。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 and 2. In this example, in order to achieve high efficiency and low angular dispersion,
Basically, it is a transmission type double diffraction grating 3 comprising a diffraction grating 1 placed on the input side and a diffraction grating 2 placed on the output side. Here, the grating pitches A,, A, of each of the diffraction gratings 1 and 2 are assumed to have high efficiency while maintaining the same wavelength, but the pitches A,, A, are shaped or shaped to have a predetermined relationship. has been done. This condition is expressed as 2 as shown in Figure 2.
This will be explained with reference to a diffraction diagram of the multiple diffraction grating 3.

ここに、入力側の回折格子lの格子定数をK(格子ビッ
チA1に相当)、出力側の回折格子2の格子定数をK,
  (格子ビッチA8に相当)、2つの回折格子1,2
のなす角をΔQ /、入力側の回折格子lに対する入射
角をOi、 その回折角をOi′、出力側の回折格子2
による回折角をOoとする。また、伝搬定数をκ.とす
る。すると、+c.sinOi + κ,sinOi’
 =K,   −−−−’−−−−−−−−=−−−−
(1)κ,sin(Oi’一△e’ )+ κ,sin
(Qo+Δ0’ )=K,・・・・・・・・・・・・・
・・・・・(2)なる関係が戒立する。これらの(1)
(2)式を解くと、 となる。
Here, the lattice constant of the input side diffraction grating l is K (corresponding to grating bit A1), the lattice constant of the output side diffraction grating 2 is K,
(corresponding to grating bit A8), two diffraction gratings 1 and 2
The angle formed by ΔQ /, the angle of incidence on the input side diffraction grating l is Oi, the diffraction angle is Oi', the output side diffraction grating 2
Let the diffraction angle by Oo be Oo. Also, the propagation constant is κ. shall be. Then +c. sinOi + κ, sinOi'
=K, −−−−'−−−−−−−−=−−−−
(1) κ, sin (Oi'1△e') + κ, sin
(Qo+Δ0')=K,・・・・・・・・・・・・
...(2) The relationship will be established. These (1)
Solving equation (2) yields the following.

よって、波長変化による角度分散を、 各 々Oi′ Ooとすると、 ・・・・・・・・・・・・・・・・・・・・・・・・・
・・(6)となる。ただし、n.は回折格子の中心屈折
率である。また、角度θi’,Ooは上記(3)(4)
式により求められる。
Therefore, if the angular dispersion due to wavelength change is Oi' Oo, then...
...(6). However, n. is the central refractive index of the diffraction grating. Also, the angles θi' and Oo are shown in (3) and (4) above.
It is determined by the formula.

ここに、2重回折格子3がl枚のみの回折格子より低角
度分散となるということは、Oi′〉Ooを意味するの
で、(5)(6)式に基づき、なる関係式を満足するよ
うに、各回折格子1. 2の諸元K,, K,、即ち格
子ピッチA,, A,又は相対的な配置を示す両者間の
角度ΔO′を設定すればよい。なお、上記格子ピッチA
,, A,は、A=2π/K,、A,=2π/K,とな
る。
Here, the fact that the double diffraction grating 3 has a lower angular dispersion than that of only l diffraction gratings means that Oi'〉Oo, so based on equations (5) and (6), the following relational expression is satisfied. Each diffraction grating 1. It is sufficient to set the dimensions K, , K, ie, the grating pitches A, , A, or the angle ΔO' between the two, which indicates the relative arrangement. In addition, the above-mentioned lattice pitch A
,, A, becomes A=2π/K, , A,=2π/K.

このように、本実施例の2重回折格子3によれば、高効
率、低角度分散が両立する。
In this way, the double diffraction grating 3 of this embodiment achieves both high efficiency and low angular dispersion.

なお、2重回折格子構造としては、例えば第3図に示す
ように、角度ΔO′の広がりを持つくさび状の同一基板
4の表裏に回折格子1,2を一体的に形成したものでも
よい。また、透過型2重構造に限らず、例えば第4図に
示すような反射型2重回折格子構造としてもよく、或い
は、第5図に示すような透過型十反射型による2重回折
構造としてもよい。
Note that the double diffraction grating structure may be one in which the diffraction gratings 1 and 2 are integrally formed on the front and back sides of the same wedge-shaped substrate 4 having a spread angle ΔO', as shown in FIG. 3, for example. . Furthermore, the structure is not limited to a transmission type double grating structure, but may also be a reflection type double diffraction grating structure as shown in FIG. 4, or a transmission type and reflection type double diffraction structure as shown in FIG. It may also be a structure.

発明の効果 本発明は、上述したように、入力側の回折格子の格子定
数をKl%出力側の回折格子の格子定数をK8、2つの
回折格子のなす角をΔo′、入力側の回折格子による回
折角をOi’、出力側の回折格子による回折角をθ0と
した時、各回折格子の諸元又は相対的な配置が、 なる式を満足するように設定した2重の回折格子よりな
るので、波長の角度分散を小さくし、1つの回折格子の
みでは不可能な高効率化と波長の低角度分散性とを両立
させることができる。
Effects of the Invention As described above, the present invention has the following advantages: the grating constant of the input side diffraction grating is Kl%, the grating constant of the output side diffraction grating is K8, the angle between the two diffraction gratings is Δo', and the input side diffraction grating is When the diffraction angle by the diffraction grating is Oi', and the diffraction angle by the output side diffraction grating is θ0, the specifications or relative arrangement of each diffraction grating consists of a double diffraction grating set so as to satisfy the following formula. Therefore, it is possible to reduce the angular dispersion of wavelength and achieve both high efficiency and low angular dispersion of wavelength, which is impossible with only one diffraction grating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略正面図、第2図は
2重回折格子の回折ダイアグラム、第3図ないし第5図
は各々異なる変形例を示す概略正而図である。 1・・・入力側の回折格子、 2・・・出力側の回折格子、 3・・・2重回折格子 出 願 人 株式会社 リ コ
FIG. 1 is a schematic front view showing one embodiment of the present invention, FIG. 2 is a diffraction diagram of a double diffraction grating, and FIGS. 3 to 5 are schematic diagrams showing different modifications. 1...Diffraction grating on the input side, 2...Diffraction grating on the output side, 3...Double diffraction grating Applicant Rico Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 入力側の回折格子の格子定数をK_1、出力側の回折格
子の格子定数をK_2、2つの回折格子のなす角をΔθ
′、入力側の回折格子による回折角をθi′、出力側の
回折格子による回折角をθoとした時、各回折格子の諸
元又は相対的な配置が、[K_2−{K_1cos(θ
i′−Δθ′)}/{cosθi′}]/[cos(θ
o+Δθ′)]<K_1/cosθi′なる式を満足す
るように設定した2重の回折格子からなることを特徴と
する回折格子。
The grating constant of the input side diffraction grating is K_1, the grating constant of the output side diffraction grating is K_2, and the angle between the two diffraction gratings is Δθ
', the diffraction angle by the input side diffraction grating is θi', and the diffraction angle by the output side diffraction grating is θo, the specifications or relative arrangement of each diffraction grating are [K_2-{K_1cos(θ
i′−Δθ′)}/{cosθi′}]/[cos(θ
o+Δθ')]<K_1/cosθi'.
JP18763089A 1989-07-20 1989-07-20 Wedge type double diffraction grating Expired - Lifetime JP2922534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18763089A JP2922534B2 (en) 1989-07-20 1989-07-20 Wedge type double diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18763089A JP2922534B2 (en) 1989-07-20 1989-07-20 Wedge type double diffraction grating

Publications (2)

Publication Number Publication Date
JPH0352893A true JPH0352893A (en) 1991-03-07
JP2922534B2 JP2922534B2 (en) 1999-07-26

Family

ID=16209473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18763089A Expired - Lifetime JP2922534B2 (en) 1989-07-20 1989-07-20 Wedge type double diffraction grating

Country Status (1)

Country Link
JP (1) JP2922534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271956B2 (en) 1995-08-29 2007-09-18 Olympus Corporation Diffractive optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271956B2 (en) 1995-08-29 2007-09-18 Olympus Corporation Diffractive optical element

Also Published As

Publication number Publication date
JP2922534B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
KR102655450B1 (en) Light guide optical assembly
JP2019536082A (en) Outer coupled gratings for augmented reality systems
Cao et al. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits
US5530565A (en) Holographic transmission bandpass filter
Lockyear et al. One-way diffraction grating
JPS6311822A (en) Diffraction grating
US8098430B2 (en) Grating structure for directing non-polarized light
JP2001004869A (en) Optically coupled device by using photonic crystal and optical coupling method
CN109212641B (en) Phase type diffraction grating
JPH03213802A (en) Diffraction grating
JPH0352893A (en) Diffraction grating
US9817165B2 (en) Cascade method and apparatus for generating increased duality modulation of electromagnetic radiation
US20130050829A1 (en) Beamsplitter and method of beamsplitting
JP2002277653A (en) Optical device
WO2019078081A1 (en) Waveguide sheet and photoelectric conversion device
TWI251681B (en) Tunable dispersive optical system
US10908355B2 (en) Wave plate and divided prism member
WO2023272690A1 (en) Ridge waveguide, micro-ring resonator, tunable optical delay line and chip
CN115629483B (en) Two-dimensional array spectrum synthesis device and synthesis method thereof
Yen et al. Narrowband transmission filter based on silicon waveguide gratings
WO2023017709A1 (en) Ring resonator
US7319558B2 (en) Wide-band wave plate and a controlling method thereof
Mohammad Design optimize interference dielectric edge filter
JPS5986010A (en) Light splitter
Lee et al. Flattened Broadband Filters With Strongly Modulated Gratings With Two Distinct Filling Factors Within One Identical Period