JPH0352733A - Wire net - Google Patents
Wire netInfo
- Publication number
- JPH0352733A JPH0352733A JP18938689A JP18938689A JPH0352733A JP H0352733 A JPH0352733 A JP H0352733A JP 18938689 A JP18938689 A JP 18938689A JP 18938689 A JP18938689 A JP 18938689A JP H0352733 A JPH0352733 A JP H0352733A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- wires
- ultra
- fine
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 claims abstract description 43
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 10
- 238000005520 cutting process Methods 0.000 claims abstract description 3
- 239000011247 coating layer Substances 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 27
- 229920005989 resin Polymers 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910000885 Dual-phase steel Inorganic materials 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 21
- 230000007797 corrosion Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 10
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- 239000010935 stainless steel Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 238000005491 wire drawing Methods 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910001111 Fine metal Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000010622 cold drawing Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Wire Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば繊維強化樹脂(FRP),繊維強化金
属(FRM)等の補強部材として、又は金属板への印刷
用源板として採用される金網に関し、特に金網を構或す
る極細線自体の活性度を抑制して該極細線の撚り合わせ
加工時の焼失,断線を防止できるとともに、金網を形成
する際の加工性を向上でき、かつ耐蝕性を向上でき、し
かも樹脂コーティングする場合の密着性,接着性を向上
できるようにした構造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used as a reinforcing member for fiber reinforced resin (FRP), fiber reinforced metal (FRM), etc., or as a source plate for printing on metal plates. Regarding the wire mesh, in particular, it is possible to suppress the activity of the ultra-fine wires themselves constituting the wire mesh to prevent burnout and disconnection during the twisting process of the ultra-fine wires, and improve workability when forming the wire mesh, and The present invention relates to a structure that can improve corrosion resistance and also improve adhesion and adhesion when resin coating is applied.
例えば、FRP,FRM等の補強用金網として、金属単
線を縦線.横線に用いてこれを編み合わせたものがあり
、この金属単線としては従来、焼きなまし材が用いられ
ている。しかしこの焼きなまし材の場合は、引張強度が
低いことから充分を補強機能が得られない。この場合、
焼きなまし材の線径を大きくすれば、それだけ金網自体
の引張強度を向上できるが、線径が大きくなると金網用
織,り機による編み合わせ作業が困難になもとと・もに
金網が大型化するという問題がある。For example, as a reinforcing wire mesh for FRP, FRM, etc., a single metal wire can be used as a vertical line. There are some that are used as horizontal wires and are woven together, and conventionally annealed materials have been used for these single metal wires. However, in the case of this annealed material, sufficient reinforcing function cannot be obtained due to its low tensile strength. in this case,
Increasing the wire diameter of the annealed material can improve the tensile strength of the wire mesh itself, but as the wire diameter increases, it becomes difficult to knit together using wire mesh weaving and riving machines, and the wire mesh becomes larger to begin with. There is a problem with doing so.
ところで、FRP等の補強用金網としては、その用途上
、金網の強度を可能な限り高くするとともに、金網用織
り機による編み合わせ作業を行う際の作業性を向上する
ことが要求されている。そのためには金網を構成する縦
線,横線の引張強度を大幅に向上しながら、例えば線径
を160μm以下にする必要がある。By the way, for reinforcing wire mesh such as FRP, it is required to make the strength of the wire mesh as high as possible and to improve workability when performing knitting work using a wire mesh loom. To this end, it is necessary to greatly improve the tensile strength of the vertical and horizontal wires that make up the wire mesh, while reducing the wire diameter to, for example, 160 μm or less.
ところが本件発明者等の実験研究により、線径160μ
m以下の金属極細線を採用する場合、以下の問題を解決
しなければならないことが判明した。However, through experimental research by the inventors, the wire diameter was 160μ.
It has been found that the following problems must be solved when using ultrafine metal wires with a diameter of less than m.
i.金属線を160μm以下に極細化すると、ボリュー
ムに対する表面積の比が極めて大きくなることから、該
極細線の表面の活性度が異常に高くなり、その結果極細
化する際のダイスとの摩擦,あるいは撚り線化する際の
極細線同士の摩擦による発熱により焼失あるいは断線す
るおそれがある。i. When a metal wire is ultra-fine to 160 μm or less, the ratio of surface area to volume becomes extremely large, so the surface activity of the ultra-fine wire becomes abnormally high, resulting in friction with the die or twisting when ultra-fine. There is a risk of burnout or wire breakage due to heat generation due to friction between the ultra-fine wires when wire-forming.
従って極細線自体の活性度を抑制する必要がある。Therefore, it is necessary to suppress the activity of the ultrafine wire itself.
ii.また、上記極細線を金網用編み機にかけたへ、り
、撚り線加工したりする際の加工性を確保するために、
極細線自体に自己潤滑性を付与する必要がある。ii. In addition, in order to ensure workability when the above-mentioned ultra-fine wire is subjected to wire mesh knitting machine, twisted wire processing, etc.,
It is necessary to provide self-lubricating properties to the ultrafine wire itself.
iii .さらに、上記極細線は鋼であるから錆が発生
し易く、しかも極細であるから錆びが発生するとその影
響が大きく、致命的に特性が悪化する。iii. Furthermore, since the above-mentioned ultra-fine wire is made of steel, it is susceptible to rust, and since it is ultra-fine, if rust occurs, the effect will be large and the characteristics will be fatally deteriorated.
従って錆の発生を防止するため耐蝕性を付与する必要が
ある。Therefore, it is necessary to provide corrosion resistance to prevent the occurrence of rust.
iv.さらにまた、上記極細線の撚り線の外表面に樹脂
をコーティングする場合、該樹脂被覆層と極細線との密
着性,接着性を向上させる必要がある。これは密着性等
が不十分であると引張りやねじりによって上記極細線が
樹脂から抜けてしまい、極細線の特性を有効に作用させ
ることができないおそれがあるからである。iv. Furthermore, when coating the outer surface of the stranded ultra-fine wires with a resin, it is necessary to improve the adhesion and adhesion between the resin coating layer and the ultra-fine wires. This is because if the adhesion is insufficient, the ultra-fine wire may come off from the resin due to tension or twisting, and the characteristics of the ultra-fine wire may not be utilized effectively.
本発明の目的は、上述した線径160μm以下の金属極
細線を採用する場合の各問題点を解決できる金網を提供
することにある。An object of the present invention is to provide a wire mesh that can solve the problems described above when using ultrafine metal wires with a wire diameter of 160 μm or less.
そこで本願第1項の発明は、縦線と横線とを、該横線を
端部で切断することなく反転させて編み合わせた金網に
おいて、上記縦線及び横線の少なくとも一方が、線径1
60μm以下のピアノ線,ステンレス線あるいは低炭素
二相組織鋼線からなる極細線又は該極細線を複数本撚り
合わせてなる撚り線からなり、上記極細線の外表面にN
iめっき被覆層が形成されていることを特徴としている
。Therefore, the invention of item 1 of the present application provides a wire mesh in which a vertical line and a horizontal line are knitted together by reversing the horizontal line without cutting the horizontal line at the end, in which at least one of the vertical line and the horizontal line has a wire diameter of 1.
It consists of an ultra-fine wire made of piano wire, stainless steel wire, or low-carbon dual-phase steel wire of 60 μm or less, or a stranded wire made by twisting a plurality of these ultra-fine wires, and N is applied to the outer surface of the ultra-fine wire.
It is characterized in that an i-plated coating layer is formed.
また、第2項の発明は、上記極細線又は撚り線の表面に
樹脂被覆層を形成したことを特徴とし、さらに第3項は
、上記Niめっき被覆層に塑性加工による加工歪を形成
したことを特徴としている。The invention set forth in item 2 is characterized in that a resin coating layer is formed on the surface of the ultrafine wire or stranded wire, and the invention in item 3 is characterized in that a processing strain is formed in the Ni plating coating layer by plastic working. It is characterized by
以下、本発明において上記構或を採用した理由を詳細に
説明する。Hereinafter, the reason for adopting the above structure in the present invention will be explained in detail.
l.極細線として、ピアノ線,ステンレス線あるいは低
炭素二相組織鋼線を採用した理由金網の縦線.横線を構
或する極細線は、高強度で、延性に優れていることが必
要であり、かつ線径160μm以下でこれらの特性を満
足させるにはピアノ線.ステンレス線あるいは低炭素二
相組織鋼線が最適である。ここで、上記極細線に低炭素
二組織鋼線を採用した場合は、ピアノ線等よりさらに線
径を小さくしなから引張強度を向上できる。l. Why piano wire, stainless steel wire, or low carbon dual-phase steel wire was used as the ultra-fine wire Vertical lines of wire mesh. The ultra-fine wire that makes up the horizontal wire must have high strength and excellent ductility, and in order to satisfy these characteristics with a wire diameter of 160 μm or less, piano wire. Stainless steel wire or low carbon duplex steel wire is most suitable. Here, when a low carbon dual structure steel wire is employed as the ultra-fine wire, the tensile strength can be improved without making the wire diameter even smaller than that of a piano wire or the like.
この低炭素二相m織鋼線は、本件発明者らが研究開発し
たもので、以下の点を見出して完威したものである。即
ち、Fe−C−Si−Mn系鉄基合金で、かつ針状マル
テンサイト,ペイナイト又はこれらの混合組織からなる
低温変態生或相がフエライト相中に均一に分散されてな
る複合金属組織を有する鋼線材が強加工に優れており、
このような金属組織を有する線材を用いれば冷間伸線に
まり線径100μm以下の極細線を容易確実に得ること
ができる。そしてこのような鋼線材を冷間伸線により加
工歪み4以上に強加工すれば、上記フエライト相と低温
変態生或相とが複合してなる複合組織(二相組織)が一
方向に延びる均一な繊維状微細金属組織が形成され、こ
のような金属組織を有する極細線は引張強度が300
kg/ w”以上と飛躍的に向上し、かつ靭性はピアノ
線,ステンレス線程度である。This low carbon duplex m-weave steel wire was researched and developed by the inventors of the present invention, and was achieved by discovering the following points. That is, it is an Fe-C-Si-Mn iron-based alloy and has a composite metal structure in which a low-temperature transformed phase consisting of acicular martensite, paynite, or a mixed structure thereof is uniformly dispersed in a ferrite phase. Steel wire material is excellent in strong processing,
By using a wire having such a metal structure, it is possible to easily and reliably obtain an ultrafine wire having a wire diameter of 100 μm or less by cold drawing. If such a steel wire rod is strongly worked to a working strain of 4 or more by cold wire drawing, a composite structure (two-phase structure) consisting of the above-mentioned ferrite phase and a low-temperature transformation phase will be formed, extending in one direction. A fibrous fine metal structure is formed, and the ultrafine wire with such a metal structure has a tensile strength of 300
kg/w”, and the toughness is comparable to that of piano wire or stainless steel wire.
このような繊維状微細金属線は、従来知られていない全
く新規な組織である。本件発明者らは、上記金属組織が
引張強度を向上させる主因になっているとの観点から、
その強化メカニズムについてさらに研究を重ねた結果、
上述の如き超高強度を有する金属組織では、上記繊維の
間隔が50〜1000人であり、かつ該繊維状をなす上
記複合組織が5〜100人の超微細セルから構成されて
いることを見出した。Such a fibrous fine metal wire has a completely new structure that has not been previously known. The present inventors believe that the above-mentioned metal structure is the main cause of improving tensile strength,
As a result of further research into the strengthening mechanism,
It was discovered that in the metal structure having ultra-high strength as described above, the spacing between the fibers is 50 to 1000 cells, and the fibrous composite structure is composed of ultrafine cells of 5 to 100 cells. Ta.
次に上記低炭素二相組織鋼線の製造方法について説明す
る。Next, a method for manufacturing the above-mentioned low carbon dual-phase steel wire will be explained.
まず、重量%でC : 0.01〜0.5%、Si:3
.0%以下、Mn:5.O%以下、残部Fe及び不可避
的不純物よりなる線径3.5n以下の線材を700〜1
100℃の範囲の温度に加熱した後、冷却して(この加
熱.冷却は複数回にわたって行ってもよい)一部残留オ
ーステナイトを含有してもよいマルテンサイト,ペイナ
イト又はこれらの混合組織からなる低温変態生或相がフ
エライト相中に体積率で15〜75%の範囲にて均一に
分散されてなる複合組織を有する線材を製造する。なお
、上記かかる製造方法は、特開昭62−20824号公
報に記載されている。First, C: 0.01-0.5%, Si: 3 in weight%
.. 0% or less, Mn: 5. 0% or less, the balance is Fe and unavoidable impurities, and the wire diameter is 3.5n or less.
After being heated to a temperature in the range of 100°C, it is cooled (this heating and cooling may be performed multiple times) to produce a low-temperature structure consisting of martensite, paynite, or a mixed structure thereof that may contain some residual austenite. A wire rod having a composite structure in which a certain phase of transformation is uniformly dispersed in a ferrite phase at a volume ratio of 15 to 75% is manufactured. The above-mentioned manufacturing method is described in Japanese Patent Laid-Open No. 62-20824.
次に、このようにして得られた複合組織線材を冷間伸線
加工により、加工歪み4以上、好ましくは5以上に強加
工し、上記フエライト相と低温変態生威相とを複合化し
、金属組織として一方向に連続して延びる微細な繊維状
組織を形成させる。Next, the thus obtained composite textured wire rod is subjected to strong processing by cold wire drawing to a working strain of 4 or more, preferably 5 or more, to combine the ferrite phase and the low-temperature transformed biophase, and to form a metal. Forms a fine fibrous structure that extends continuously in one direction.
このように加工度を高めることにより、上記繊維状&I
l織はさらに微細化し、繊維間隔は狭くなり、ついには
上述のとおり加工にて生じたセルの大きさ,繊維間隔が
それぞれ5〜100人,50〜1000人である繊維状
微細金属組織となる。なお、加工歪みが4以上よりも小
さい伸線加工によって得られた細線では、繊維状組織の
発達の途中にあってその組織が不完全であり、従って強
度も低い。By increasing the degree of processing in this way, the above fibrous &I
The weave is further refined, the fiber spacing becomes narrower, and finally it becomes a fibrous fine metal structure with cell size and fiber spacing of 5 to 100 cells and 50 to 1000 cells, respectively, which are produced during processing as described above. . Note that in a thin wire obtained by wire drawing with a processing strain of 4 or less, the fibrous structure is still in the process of development and the structure is incomplete, and therefore the strength is low.
■.極細線の外表面にNiめっき被覆層を形成した理由
上記Niめっき被覆層を形或するのは、素線の活性度の
抑制,自己潤滑性及び耐蝕性の付与.樹脂との密着性.
接着性の改善を図るためである。■. Reason for forming the Ni-plated coating layer on the outer surface of the ultra-fine wire The Ni-plated coating layer is formed to suppress the activity of the wire and provide self-lubricating properties and corrosion resistance. Adhesion with resin.
This is to improve adhesion.
上述のように、ピアノ線,低炭素二相組M&網線等の素
線を極細化するとボリューム,表面積比が極めて大きく
なってその活性度が異常上昇する。As mentioned above, when wires such as piano wires and low carbon two-phase M&wire wires are made extremely fine, their volume and surface area ratios become extremely large, and their activity increases abnormally.
これに対して本発明者等の研究により、Niが活性度の
極めて低い金属であることから、これを素線表面に被覆
することにより、極細線自体の活性度を抑制できること
が判明した。On the other hand, research conducted by the present inventors has revealed that since Ni is a metal with extremely low activity, by coating the surface of the wire with Ni, the activity of the ultrafine wire itself can be suppressed.
また、Niを被覆すれば、耐蝕性等通常の特性付与だけ
でなく、伸線加工性,撚り線加工等の威形性を向上でき
る自己潤滑性が得られ、さらに他の被覆金属に比してN
iは樹脂とのなじみが非常に良く、樹脂との密着性を向
上できることが判明した。In addition, coating with Ni not only imparts normal properties such as corrosion resistance, but also provides self-lubricating properties that improve formability in wire drawability and wire stranding, and is also superior to other coated metals. TeN
It was found that i has very good compatibility with the resin and can improve adhesion to the resin.
第1表は、金属細線に各種の金属(Ni,Cu,Zn,
Cu−Zn, Aj!, Au, Ag, Cr)を
表面被覆した場合の各特性(ダイス寿命改善,防錆,酸
化性,接着性,表面処理性,耐蝕性,自己潤滑性.装飾
性.及び導電性)を比較したものを示す。同表からも明
らかなように、Niは、自己潤滑性が高いことからダイ
ス寿命を改善でき、防錆,酸化防止等耐蝕性が高く、ま
た樹脂との接着性に優れ、さらに表面処理性も高い。こ
のように総合的にも、また上述の各特性から見てもNi
が一番優れていることがわかる。従ってNiを被覆する
ことによって、上述のi = ivO問題を解決できる
ことがわかる。Table 1 shows various metals (Ni, Cu, Zn,
Cu-Zn, Aj! , Au, Ag, Cr) were compared for each property (improved die life, rust prevention, oxidation, adhesion, surface treatment, corrosion resistance, self-lubricating, decorative, and electrical conductivity). show something As is clear from the table, Ni can improve die life due to its high self-lubricating properties, has high corrosion resistance such as rust prevention and oxidation prevention, has excellent adhesiveness with resin, and has excellent surface treatment properties. expensive. In this way, both comprehensively and from the above-mentioned characteristics, Ni
is found to be the best. Therefore, it can be seen that the above-mentioned i=ivO problem can be solved by coating with Ni.
なお、上記Niの被覆方法は、電気めっき,溶融めっき
.等の湿式めっき法, pco,cvo,スパッタリン
グ等の乾式めっき法等の一般に用いられている手段が採
用できる。勿論、ここで言うNiめっきには、純粋なN
iだけではなく、上述の必要特性を阻害しない範囲内で
の第1表に例示した金属,あるいはその他の金属と合金
化したNiめっきも含まれる。また、上記極細線に対す
るNiの被覆量については、極細線1 kg当たりIg
未満では防錆効果等の上記各被覆効果を発揮させるのが
難しく、また100gを越えても被覆効果の向上は望め
ず、逆に厚目付による加工時のバウダリング等の副次的
なデメリソトが生しるため好ましくない。The above-mentioned Ni coating method is electroplating, hot-dip plating. Commonly used means such as wet plating methods such as PCO, CVO, and dry plating methods such as sputtering can be employed. Of course, the Ni plating mentioned here includes pure N.
In addition to i, Ni plating alloyed with the metals listed in Table 1 or other metals is also included within a range that does not impede the above-mentioned necessary properties. In addition, regarding the amount of Ni coating on the above-mentioned ultra-fine wire, Ig per 1 kg of ultra-fine wire.
If it is less than 100g, it is difficult to achieve the above-mentioned coating effects such as rust prevention, and if it exceeds 100g, no improvement in the coating effect can be expected, and on the contrary, secondary disadvantages such as bordering during processing due to thick weight may occur. Undesirable because of the sign.
従って、極細線1 kg当たりl〜100gの範囲内が
適当である。Therefore, a range of 1 to 100 g per 1 kg of ultrafine wire is appropriate.
■.上記Niめっき被覆層に塑性加工による加工歪を付
与した理由
これは、めっき処理しただけのNiめっき被覆層は、無
数のビス、ホールを有するポーラス状になへ′
っており、そのためめっき処理工程時に発生する水素が
上記Ni被覆層内に吸蔵され、あるいは上記ボーラス内
に空気が残留することとなり、この吸蔵された水素,残
留空気が樹脂被覆する際の熱で放出され、あるいは膨張
して樹脂被覆層とNiめっき被覆層との境界に溜まり、
その結果両者の密着性.接着性に悪影響を与えるものと
考えられる。■. The reason why the processing strain was applied to the above Ni plating coating layer by plastic working is that the Ni plating coating layer that has just been plated has a porous shape with countless screws and holes, so the plating process Hydrogen that is generated during this time is occluded in the Ni coating layer, or air remains in the bolus, and the occluded hydrogen and residual air are released by the heat during resin coating, or expand and cause the resin to evaporate. Accumulates at the boundary between the coating layer and the Ni plating coating layer,
As a result, the adhesion between the two. This is thought to have an adverse effect on adhesion.
一方、上記Niめっき被覆層に加工歪を付与すると、該
被覆層内のピンホールが潰されてなくなる点、及び例え
ば伸線時の加工熱によって上記水素及び残留空気が放出
される点から、水素,残留空気をほとんど含まない良好
なNiめっき被覆層が得られることになる。その結果、
上記極細線と樹脂とを一体化した場合の、両者の密着性
,接着性をさらに向上できる。なお、上記加工歪を形戒
するには、例えば上記極細線の製造過程において、冷間
伸線加工する前の素禅に予めNiめっき処理を施し、こ
れを伸線加工することにより実現できる。On the other hand, when processing strain is applied to the Ni plating coating layer, the pinholes in the coating layer are crushed and disappear, and the hydrogen and residual air are released due to processing heat during wire drawing. , a good Ni plating coating layer containing almost no residual air can be obtained. the result,
When the ultrafine wire and the resin are integrated, the adhesion and adhesion between the two can be further improved. In order to suppress the processing distortion, for example, in the manufacturing process of the ultra-fine wire, Ni plating is applied to the wire before cold wire drawing, and then the wire is drawn.
本願第1項の発明に係る金網によれば、縦線横線に採用
される極細線にピアノ線,ステンレス線.低炭素二相組
織網線を採用したので、160μm以下の線径で所定の
引張強度,延性を確保できる。特に低炭素二相組織鋼線
を採用した場合は、上述の強化メカニズムで説明したよ
うに、100μm以下のものを容易に得ることができ、
しかも3oO〜600 kgf/tm”の超高強度を有
する。従って、ピアノ線,ステンレス線の場合に比べさ
らに引張強度を向上できる。According to the wire mesh according to the invention of item 1 of the present application, the ultra-fine wires used for the vertical and horizontal lines include piano wire and stainless steel wire. Since a low-carbon dual-phase network wire is used, predetermined tensile strength and ductility can be ensured with a wire diameter of 160 μm or less. In particular, when a low carbon duplex steel wire is used, as explained in the strengthening mechanism above, wires with a diameter of 100 μm or less can be easily obtained.
Moreover, it has an ultra-high strength of 3oO to 600 kgf/tm''. Therefore, the tensile strength can be further improved compared to piano wire and stainless steel wire.
また、上記極細線にNiめっき被覆層を形成したので、
極細化したことによる活性度の異常上昇を抑制できるか
ら、撚り線化する際の摩擦等によって発熱しても焼失や
断線を回避できる。またN11
iめっきを被覆したことにより、自己潤滑性が得られる
から、金網用編み機にかけて横線の端部を反転させる加
工や複数本の極細線を撚り線加工する際の加工性を向上
でき、さらに耐蝕性を向上でき、錆びの発生を防止でき
る。In addition, since a Ni plating coating layer was formed on the ultra-fine wire,
Since it is possible to suppress an abnormal increase in activity due to ultra-thin wires, burnout and wire breakage can be avoided even if heat is generated due to friction during twisting. In addition, the coating with N11 i plating provides self-lubricating properties, which improves workability when turning the ends of horizontal wires on a wire mesh knitting machine or when twisting multiple ultra-fine wires. Corrosion resistance can be improved and rust can be prevented.
さらに、Niめっき被覆層を形成したので、第2項の発
明のように、極細線,撚り線に樹脂を被覆した場合、こ
のNiめっき被覆層により両者の密着性,接着性を向上
でき、引張等による抜けを確実に防止できる。さらにま
た第3項の発明では、上記Niめっき被覆層に加工歪を
形成したので、該被覆層と樹脂被覆層との間に水素.残
留空気が溜まることなく、さらに密着性.接着性を向上
できる。Furthermore, since the Ni plating coating layer is formed, when ultrafine wires or stranded wires are coated with resin as in the invention described in item 2, this Ni plating coating layer can improve the adhesion and adhesion between the two, and the tensile strength It is possible to reliably prevent it from coming off due to etc. Furthermore, in the third aspect of the invention, since a processing strain is formed in the Ni plating coating layer, hydrogen is generated between the coating layer and the resin coating layer. Better adhesion without residual air remaining. Adhesion can be improved.
以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図ないし第4図は本発明の一実施例による金網を説
明するための図である。1 to 4 are diagrams for explaining a wire mesh according to an embodiment of the present invention.
図において、1は平織り構造の金網であり、これは縦撚
り線2と横撚り線3とを編み合わせたも12
のである。この縦.横撚り線2.3は、それぞれ線径1
60μm以下の極細線4を2〜100本撚り合わせて撚
り線7を形成し、さらにこれの外表面に樹脂被覆層6を
形成して構成されており、いずれの撚り線7も波形状に
曲げ形成されて、かつ所定の網目間隔になるように編ま
れている。また、図示していないが、上記横撚り線3は
該金網1の左,右端において内方に反転されており、該
反転部分は切断されることなく連続されている。In the figure, reference numeral 1 denotes a wire mesh with a plain weave structure, which is made by interweaving vertically twisted wires 2 and horizontally twisted wires 3. This vertical. The horizontally twisted wires 2.3 each have a wire diameter of 1
It is constructed by twisting 2 to 100 ultra-fine wires 4 of 60 μm or less together to form a strand 7, and further forming a resin coating layer 6 on the outer surface of the strand 7. Each strand 7 is bent into a wave shape. It is formed and knitted at a predetermined mesh interval. Although not shown, the horizontally twisted wires 3 are inverted inward at the left and right ends of the wire mesh 1, and the inverted portions are continuous without being cut.
上記極細線4は低炭素二相組織tiR線からなり、これ
は重量%7 C : 0.01−0.50%、Si:3
.0%以下、Mn:5.0%以下、残部Fe及び不可避
的不純物からなる線径3.0〜6.0mmの線材を一次
熱処理、一次冷間伸線、二次熱処理及び二次冷間伸線に
より線径15〜100μmに強加工して製造されたもの
である。この極細線4は上記強加工により生じた加工セ
ルが一方向に繊維状に配列された繊維状微細金属組織を
形成しており、かつ上記加工セルの大きさ,繊維間隔が
それぞれ5〜loo人,50〜1000人であり、さら
に引張強力が300〜600kgf/關2である。The ultrafine wire 4 is made of a low carbon two-phase structure TiR wire, which has a weight percentage of 7 C: 0.01-0.50%, Si: 3
.. 0% or less, Mn: 5.0% or less, balance Fe and unavoidable impurities. A wire rod with a diameter of 3.0 to 6.0 mm is subjected to primary heat treatment, primary cold wire drawing, secondary heat treatment, and secondary cold drawing. It is manufactured by strongly processing the wire to have a wire diameter of 15 to 100 μm. This ultra-fine wire 4 forms a fibrous fine metal structure in which processed cells produced by the above-mentioned strong processing are arranged in a fibrous shape in one direction, and the size of the processed cells and the fiber spacing are 5 to 100 mil, respectively. , 50 to 1000 people, and the tensile strength is 300 to 600 kgf/2.
そして、上記各極細線4の外表面にはN1めっき被覆層
5が形成されている。このNiめっき被覆層5は、上記
線材にめっき処理を行い、しかる後冷間伸線加工する際
に同時に塑性加工されたもので、これにより加工歪を有
している。即ち、上f
記Niめっき被覆層5は、伸線加工の前工程において線
材にめっき処理を施して4μm程度の被覆層を形成し、
これを一次,二次冷間伸線することにより、1μm程度
の厚さに引き延ばしてなるものである。これにより、め
っき処理時に生じていたピンホールが潰されて、欠陥の
ない良好な被覆層となっている。An N1 plating coating layer 5 is formed on the outer surface of each of the ultrafine wires 4. This Ni plating coating layer 5 is plastically worked at the same time when the wire rod is plated and then subjected to cold wire drawing, and therefore has a working strain. That is, the above Ni plating coating layer 5 is formed by plating the wire rod in a pre-processing process of wire drawing to form a coating layer of about 4 μm.
This is drawn to a thickness of approximately 1 μm by primary and secondary cold drawing. As a result, the pinholes that had occurred during the plating process were crushed, resulting in a good coating layer with no defects.
このように本実施例の金mlによれば、縦撚り線2.横
撚り線3に採用される各極細線4にNiめっき被覆層5
を形成したので、極細線自体の活性度を下げることがで
き、発熱による焼失を回避できる。また、上記Niめっ
き被覆層5を形成したことにより、自己潤滑性を向上で
き、金網用編み機にけかる際の反転加工,あるいは極細
線4を撚り線化する際の撚り合わせ加工を容易化でき、
しかも酸化による錆びを防止できる。その結果、線径1
60μm以下の金属極細線を採用した金網化が可能とな
る。As described above, according to the gold ml of this example, the vertically twisted wire 2. A Ni plating coating layer 5 is applied to each ultrafine wire 4 used in the horizontally twisted wire 3.
, the activity of the ultrafine wire itself can be lowered, and burning out due to heat generation can be avoided. Furthermore, by forming the Ni plating coating layer 5, self-lubricating properties can be improved, and it is possible to facilitate the reversing process when applying to a wire mesh knitting machine or the twisting process when making the ultra-fine wire 4 into strands. ,
Moreover, it can prevent rust caused by oxidation. As a result, the wire diameter is 1
It becomes possible to create a wire mesh using ultrafine metal wires of 60 μm or less.
また、本実施例では上記Niめっき被覆層5を形或する
とともに、これに加工歪を生しさせたので、該加工歪に
よってピンホール等のない構造となっており、ほとんど
水素,残留空気を含有していないので、上記極細線7の
外表面に樹脂被覆層6を形成する際の密着性,接着性を
大幅に向上でき、上記極細線4に引張りやねじり等の応
力が作用した場合の、樹脂からの抜けを防止できる。In addition, in this example, the Ni plating coating layer 5 was shaped and subjected to processing strain, so that the structure was free of pinholes etc. due to the processing strain, and almost all hydrogen and residual air were removed. Since the resin coating layer 6 is formed on the outer surface of the ultra-fine wire 7, the adhesion and adhesion can be greatly improved, and when stress such as tension or twisting is applied to the ultra-fine wire 4. , can prevent it from coming off from the resin.
さらに、本実施例では極細線4に低炭素二相組織鋼線を
採用したので、線径10〜100μmで引張強度300
〜600 kgf/tm”と極めて高強度を有しており
、金網1としての引張強度,延性を大幅に向上でき、さ
らに極細線4を複数本撚り線化したから、この場合は延
性,引張強度を向上できる。Furthermore, in this example, a low carbon dual-phase steel wire is used as the ultra-fine wire 4, so the wire diameter is 10 to 100 μm and the tensile strength is 300 μm.
It has an extremely high strength of ~600 kgf/tm", and can significantly improve the tensile strength and ductility of the wire mesh 1. Furthermore, since multiple ultra-thin wires 4 are stranded, the ductility and tensile strength of the wire mesh 1 can be significantly improved. can be improved.
なお、上記実施例では極細線4に低炭素二相組織鋼線を
採用した場合を例にとって説明したが、1 コ
本発明の極細線は、他にピアノ線.ステンレス線が採用
でき、これらの場合もNiめっき被覆層を形成すること
により不活性.潤滑性,耐蝕性及び密着性.接着性を向
上できる。In addition, in the above embodiment, the case where a low carbon dual-phase steel wire is adopted as the ultra-fine wire 4 has been explained as an example, but the ultra-fine wire of the present invention may also be a piano wire. Stainless steel wires can be used, and in these cases, they can also be made inert by forming a Ni plating layer. Lubricity, corrosion resistance and adhesion. Adhesion can be improved.
また、上記実施例では、極細線4を複数本撚り線化し、
これに樹脂被覆層6を形成した場合を例にとって説明し
したが、本発明は必ずしも樹脂層を形成する必要はない
。さらに、上記Niめっき被覆層5に加工歪を形成した
が、本発明ではこの加工歪のない場合でも、密着性,接
着性を向上できる。Further, in the above embodiment, a plurality of ultra-fine wires 4 are twisted,
Although the case where the resin coating layer 6 is formed on this is explained as an example, the present invention does not necessarily require forming the resin layer. Furthermore, although processing distortion was formed in the Ni plating coating layer 5, the present invention can improve adhesion and adhesion even in the absence of processing distortion.
さらにまた、上記実施例では、極細線を撚り線化し、こ
れを縦線,横線として採用したが、本発明の金網は極細
線を単線で金網化してもよく、また縦線,横線のいずれ
か一方のみ極細線で構成し、他方は他の金属線、例えば
チタン線5高マンガン鋼線等を使用することも可能であ
り、さらに本発明の極細線と他の金属線とを混合して撚
り線化してもよく、このようにした複合金網の場合は、
それぞれの有する長所を合わせ持つことができる。Furthermore, in the above embodiments, the ultra-fine wires were twisted and used as vertical lines and horizontal lines, but the wire mesh of the present invention may be made of a single line of ultra-fine wires, and either vertical lines or horizontal lines may be used. It is also possible to use only one side of the ultra-fine wire and the other metal wire, such as a titanium wire or 5-high manganese steel wire, or to mix and twist the ultra-fine wire of the present invention with another metal wire. In the case of composite wire mesh made in this way,
It is possible to combine the advantages of each.
16
ここで、本実施例の極細線にNiめっき被覆層を形成し
たことによる樹脂との接着力向上効果を確認するために
行った実験について説明する。16 Here, an experiment conducted to confirm the effect of improving adhesive strength with resin by forming a Ni plating coating layer on the ultrafine wire of this example will be described.
この実験は、第5図に示すように、本実施例の極細線a
の一部分を、エポキシ系樹脂をベースとしてこれに炭素
繊維.ガラス繊維を混合してなる複合試料片bに埋め込
み、この複合試料片bを固定した状態で上記極細線aの
上部をこれが抜けるか、又は断線するまで引張って、両
者の密着性,接着性を調べた。なお、上記複合試料片b
の埋め込み長さLは、極細線aの線径d(■)×50と
なるようにした。In this experiment, as shown in FIG.
A part of it is made of epoxy resin as a base and carbon fiber is added to it. Embed it in a composite sample piece b made of a mixture of glass fibers, and with this composite sample piece b fixed, pull the top of the ultra-thin wire a until it passes through or breaks, to check the adhesion and adhesion between the two. Examined. In addition, the above composite sample piece b
The embedded length L was set to be the wire diameter d (■) of the ultra-fine wire a x 50.
そして、第2表に示すように、ます線径5oμmの極細
線を4本用意し、この各極細線にNiめっきを形成しな
い場合(1’hl)、Niめっき被覆層を形成した後伸
線加工により加工歪を付与した場合(Nll2)、さら
にこれの表面に樹脂コーティングした場合(t’h3)
、Niめっきを被覆しただけの場合(NIl4)につい
て引抜き試験を行った。また、線径100μmの極細線
も採用し、これもNiめっきを被覆しただけの場合(1
’h5 ) 、さらにこれに伸線加工により加工歪を付
与した場合(隘6)についても同様の引抜き試験を行っ
た。表中、×印は極細線aが複合試料片bから抜けた場
合を示し、○印は該極細線aが断線した場合を示す。As shown in Table 2, if four ultra-fine wires with a square wire diameter of 50 μm are prepared and Ni plating is not formed on each of these ultra-fine wires (1'hl), the Ni plating coating layer is formed and then the wire is drawn. When processing distortion is applied by processing (Nll2), and when the surface is further coated with resin (t'h3)
A pullout test was conducted on the case (NIl4) coated only with Ni plating. We also adopted an ultra-fine wire with a wire diameter of 100 μm, which was also coated with Ni plating (1
'h5), and a similar drawing test was also conducted for the case where processing strain was applied to this by wire drawing (6). In the table, the x mark indicates the case where the ultra-thin wire a has come off from the composite sample piece b, and the o mark indicates the case where the ultra-fine wire a has broken.
表からも明らかなように、線径50μmでNtめっきを
被覆しない場合(M1)は抜けており、両者の接着力は
上記極細線の破断力未満であった。As is clear from the table, the case (M1) with a wire diameter of 50 μm and no Nt plating was removed, and the adhesive strength between the two was less than the breaking force of the ultrafine wire.
これに対して、Niめっきを被覆し(lt4)、さらに
これに加工歪を付与し(阻2)、さらにまたこれに樹脂
コーティングした(隘3)場合は、いずれも抜ける前に
断線しており、両者の接着力は極細線の破断力以上であ
ることがわかる。On the other hand, when Ni plating was applied (lt4), processing strain was applied to this (inhibition 2), and resin coating was applied again (inhibition 3), the wire broke before it could be pulled out. It can be seen that the adhesive force between the two is greater than the breaking force of the ultra-fine wire.
一方、線径100μmでNiめっき被覆層を形成しただ
けの場合(M5)は、断線する前に抜けている。これは
線径が大きい分引張力も高いことから、接着力がこの高
い引張力には及ばなかったものと考えられる。しかしこ
れに加工歪を付与した場合(M6)は断線しており、こ
れにより加工歪により接着力が向上することが理解でき
るとともに、比較的太い線径の場合は極細線自体の引張
力が大きくなっているから、加工歪を付与することによ
りこの大きな引張力に対応できる接着力が得られ、その
効果はより大きいことがわかる。On the other hand, in the case (M5) in which the wire diameter is 100 μm and only the Ni plating layer is formed, the wire comes off before it breaks. This is because the tensile force is also high because the wire diameter is large, so it is thought that the adhesive strength was not as strong as this high tensile force. However, when machining strain was applied to this (M6), the wire broke, which shows that machining strain improves adhesive strength, and when the wire diameter is relatively thick, the tensile force of the ultra-thin wire itself is large. Therefore, it can be seen that by applying processing strain, an adhesive force that can cope with this large tensile force can be obtained, and the effect is even greater.
以上のように本願第1項の発明に係る金網によれば、縦
線,横線を構成するピアノ線,ステンレス線あるいは低
炭素二相組織鋼線からなる極細線の表面にNiめっき被
覆層を形成したので、線径160μm以下の極細線を使
用する際の活性度を抑制できるとともに、撚り線加工を
容易化するための自己潤滑性を付与でき、かつ酸化に対
する耐蝕性を向上でき、さらには樹脂被覆する場合の密
着性,接着性を向上できる効果があり、また、第3項の
発明では、上記Niめっき被覆層に加工歪を形或したの
で、さらに樹脂との密着性を向上できる。As described above, according to the wire mesh according to the invention of item 1 of the present application, a Ni plating coating layer is formed on the surface of the ultrafine wire made of piano wire, stainless steel wire, or low carbon dual-phase steel wire that constitutes the vertical and horizontal wires. Therefore, it is possible to suppress the activity when using ultrafine wires with a wire diameter of 160 μm or less, provide self-lubricating properties to facilitate stranding processing, improve corrosion resistance against oxidation, and further improve resin This has the effect of improving the adhesion and adhesion when coating, and in the third aspect of the invention, since processing strain is formed in the Ni plating coating layer, the adhesion with the resin can be further improved.
l9 20l9 20
第1図ないし第4図は本発明の一実施例による金網を説
明するための図であり、第1図はその拡大平面図、第2
図はその拡大断面図、第3図はその撚り線の断面図、第
4図はその撚り線化した状態を示す模式図、第5図は本
実施例の効果を確認するために行った実験方法を示す図
である。
図において、1は金網、2は縦撚り線、3は横撚り線、
4は極細線、5はNiめっき被覆層、6は樹脂被覆層、
7は撚り線である。1 to 4 are diagrams for explaining a wire mesh according to an embodiment of the present invention, and FIG. 1 is an enlarged plan view thereof, and FIG.
The figure is an enlarged cross-sectional view, Figure 3 is a cross-sectional view of the stranded wire, Figure 4 is a schematic diagram showing the twisted wire state, and Figure 5 is an experiment conducted to confirm the effect of this example. FIG. 2 is a diagram illustrating the method. In the figure, 1 is wire mesh, 2 is vertically twisted wire, 3 is horizontally twisted wire,
4 is an ultra-fine wire, 5 is a Ni plating coating layer, 6 is a resin coating layer,
7 is a twisted wire.
Claims (3)
く反転させて編み合わせた金網において、上記縦線及び
横線の少なくとも一方が、線径160μm以下のピアノ
線、ステンレス線あるいは引張強度300kg/mm^
2以上の低炭素二相組織鋼線のいずれかからなる極細線
又は該極細線を複数本撚り合わせてなる撚り線から構成
され、かつ上記極細線の外表面にNiめっき被覆層が形
成されていることを特徴とする金網。(1) In a wire mesh in which vertical lines and horizontal lines are woven together by reversing the horizontal lines without cutting the horizontal lines at the ends, at least one of the vertical lines and the horizontal lines is made of piano wire, stainless steel wire, or the like with a wire diameter of 160 μm or less. Tensile strength 300kg/mm^
It is composed of an ultra-fine wire made of any of two or more low carbon dual-phase steel wires or a stranded wire made by twisting a plurality of the ultra-fine wires, and a Ni plating coating layer is formed on the outer surface of the ultra-fine wire. A wire mesh characterized by the presence of
成されていることを特徴とする特許請求の範囲第1項記
載の金網。(2) The wire mesh according to claim 1, wherein a resin coating layer is formed on the outer surface of the ultrafine wire or stranded wire.
を有していることを特徴とする特許請求の範囲第1項又
は第2項記載の金網。(3) The wire mesh according to claim 1 or 2, wherein the Ni plating coating layer has processing strain due to plastic deformation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18938689A JPH0352733A (en) | 1989-07-20 | 1989-07-20 | Wire net |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18938689A JPH0352733A (en) | 1989-07-20 | 1989-07-20 | Wire net |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0352733A true JPH0352733A (en) | 1991-03-06 |
Family
ID=16240445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18938689A Pending JPH0352733A (en) | 1989-07-20 | 1989-07-20 | Wire net |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0352733A (en) |
-
1989
- 1989-07-20 JP JP18938689A patent/JPH0352733A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0907018B1 (en) | COPPER ROD OR WIRE AND METHOD FOR PRODUCING ROD OR WIRE | |
JPH02210078A (en) | Fishing line | |
WO2020158683A1 (en) | Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same | |
JPWO2019188452A1 (en) | Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same | |
KR930005075B1 (en) | Super high strength super fine wire | |
US20080203064A1 (en) | Bundle Drawn Metal Fiber with Three Layers | |
JP2002256395A (en) | High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof | |
JPH0352733A (en) | Wire net | |
JPH0352754A (en) | Fiber reinforcing member | |
EP0169587A1 (en) | High-performance carbon steel wire | |
JPS63227748A (en) | High strength steel wire for spring and its production | |
JPH0359138A (en) | Woven fabric | |
JPH07268787A (en) | Highly strong steel wire excellent in fatigue characteristic and steel cord using the steel wire and rubber product using the steel wire or the steel cord | |
JPH0351537A (en) | Fine thin spring | |
JPH0394013A (en) | Metallic extra fine wire | |
JPH0356788A (en) | Extra-high pressure hose | |
JPH07211143A (en) | Low thermal expansion and high strength conductor for transmission line, and low loosening cable using same | |
JPH0364812A (en) | Telecommunication cable | |
JP2017128745A (en) | High strength ultra fine steel wire and manufacturing method therefor | |
JP3520109B2 (en) | High strength galvanized steel wire and method of manufacturing the same | |
JPH0365328A (en) | Hollow material | |
JPH0351057A (en) | Medical extra fine tube | |
JPH0359183A (en) | Tire | |
US3632455A (en) | Ductile ultrahigh strength steel mainly consisting of quenched and tempered steel and a method of manufacturing the same | |
JPH0352932A (en) | Reinforcing material having excellent adhesion and adhesive property to resin |