JPH0351537A - Fine thin spring - Google Patents
Fine thin springInfo
- Publication number
- JPH0351537A JPH0351537A JP18938589A JP18938589A JPH0351537A JP H0351537 A JPH0351537 A JP H0351537A JP 18938589 A JP18938589 A JP 18938589A JP 18938589 A JP18938589 A JP 18938589A JP H0351537 A JPH0351537 A JP H0351537A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- fine
- spring
- diameter
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 238000004804 winding Methods 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011247 coating layer Substances 0.000 claims description 25
- 229910000885 Dual-phase steel Inorganic materials 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 8
- 238000005491 wire drawing Methods 0.000 abstract description 15
- 230000007797 corrosion Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 10
- 238000007493 shaping process Methods 0.000 abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 21
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 229910001111 Fine metal Inorganic materials 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
- Springs (AREA)
- Wire Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、コンタクトプローブ.光センサ医僚機器,カ
セットテープ,あるいはスーパーコンピュータのICチ
ェソカー等に採用され、これらの超小型化に貢献ずる微
細な巻線径を有する微細ばねに関し、特に線径160μ
m以下の金属極細線をスパイラル加工する際の加工性を
向上できるとともに、該極細線自体の活性度を抑制でき
、さらには錆びの発生を防止できるようにした構造に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a contact probe. Regarding micro springs with a fine winding diameter, which are used in optical sensors, medical equipment, cassette tapes, and supercomputer IC chess cards, etc., and which contribute to the miniaturization of these devices, we are particularly interested in micro springs with a wire diameter of 160μ.
The present invention relates to a structure that can improve the workability when spirally processing an ultra-fine metal wire with a diameter of less than m, suppress the activity of the ultra-fine wire itself, and further prevent the occurrence of rust.
例えば、プリント回路基板の通電検査用コンタクトプロ
ーブは、接触子を微細ばねで弾性状態に支持しておき、
この接触子を回路パターンの被検査部に接触させる構造
になっている。近年、この回路パターンの微細化に伴っ
てこのコンタクトプローブも超小型化が要請されており
、従って接触子を弾性支持する微細ばねの微小化がまず
ます要請されている。そのためには、素線の引張強度を
保持しながら、線径を例えば160μm以下にする必要
がある。For example, a contact probe for testing electrical current on a printed circuit board has a contact element supported in an elastic state by a fine spring.
The structure is such that this contactor is brought into contact with the portion to be inspected of the circuit pattern. In recent years, with the miniaturization of circuit patterns, there has been a demand for ultra-miniaturization of contact probes, and therefore, there has been an increasing demand for miniaturization of fine springs that elastically support the contacts. For this purpose, it is necessary to reduce the wire diameter to, for example, 160 μm or less while maintaining the tensile strength of the wire.
ところが、本件発明者等の実験研究により、線径160
μm以下の金属極細線を採用して微細ばねを形戒ずる場
合、以下の問題を解決しなければならないことが判明し
た。However, through experimental research by the present inventors, wire diameter 160
It has been found that the following problems must be solved when using ultrafine metal wires of micrometers or less to form fine springs.
.金属線を上記極細線に伸線加工する場合、及び該極細
線をコイル状に或形する場合の加工性を改善する必要が
ある。その理由は、素線が極細であることから、例えば
コイル状にスバイラル加工する場合に、そのままでは或
形治具との摩擦等による影響が大きく、所定の形状.大
きさに精度よく加工するのは困難であり、その結果巻線
径等にばらつきが生しるおそれがあるからである。.. It is necessary to improve the workability when drawing a metal wire into the above-mentioned ultra-fine wire and when forming the ultra-fine wire into a coil shape. The reason for this is that the strands are extremely thin, so when spirally processing them into a coil shape, for example, they are susceptible to friction with a certain shape jig, etc., and cannot be shaped into a predetermined shape. This is because it is difficult to process the wire with high accuracy, and as a result, there is a risk that variations in the winding diameter, etc. may occur.
ii.また、上記金属線を極細化すると、ボリュムに対
する表面積の比が極めて大きくなることから、該極細線
自体の表面の活性度が異常上昇し、その結果、例えば上
記伸線加工の際のダイスとの摩擦により、あるいは上記
コイル状戒形加工時の摩擦によって発熱し、極端な場合
は焼失3断線するおそれがある。従って極細線自体の活
性度を抑制する必要がある。ii. Furthermore, when the metal wire is made ultra-fine, the ratio of surface area to volume becomes extremely large, so the activity of the surface of the ultra-fine wire itself increases abnormally, resulting in, for example, interference with the die during the wire drawing process. Heat is generated due to friction or due to friction during the above-mentioned coil forming process, and in extreme cases, there is a risk of burnout or wire breakage. Therefore, it is necessary to suppress the activity of the ultrafine wire itself.
iii .さらに、上記金属極細線は鋼であるからその
性質上錆びが発生し易く、しかも極細であるから錆が発
生すると特性を致命的に悪化させるおそれがある。従っ
て錆の発生を防止するため耐蝕性を付与する必要がある
。iii. Furthermore, since the above-mentioned ultra-fine metal wire is made of steel, it is susceptible to rust due to its nature, and furthermore, since it is ultra-fine, if rust occurs, there is a risk that the characteristics will be fatally deteriorated. Therefore, it is necessary to provide corrosion resistance to prevent the occurrence of rust.
また、例えばスーパーコンピュータ等のICチェソカー
に使用される微細ばねにおいては、環境温度が約180
゜Cにも上昇する場合があることから、このような高温
雰囲気中で微細ばねを使用するとばね圧が劣化し易く、
このばね圧の持続性が要請されている。In addition, for example, in the case of fine springs used in IC chess cards such as supercomputers, the environmental temperature is approximately 180°C.
Since the temperature may rise to as high as °C, if a fine spring is used in such a high-temperature atmosphere, the spring pressure is likely to deteriorate.
Sustainability of this spring pressure is required.
本発明の目的は、上述した線径160 μm以下の金属
極細線を採用する場合の各問題点を解決できる微細ばね
、さらに高@雰囲気中におけるばね圧の持続性を向上で
きる微細ばねを提供することにある。The purpose of the present invention is to provide a fine spring that can solve the above-mentioned problems when using ultrafine metal wires with a wire diameter of 160 μm or less, and furthermore, to provide a fine spring that can improve the sustainability of spring pressure in a high atmosphere. There is a particular thing.
そこで本願第1項の発明は、素線を巻線径1n以下のコ
イル状に巻回してなる微細ばねにおいて、上記素線が、
線径160μm以下のピアノ線,ステンレス線あるいは
低炭素二相組織鋼線のいずれかからなる金属極細線であ
り、かつ外表面にNiめっき被覆層が形成されているこ
とを特徴としている。また、第2項は上記素線の断面を
、これのばね軸方向が長径となるよう楕円状に形成した
ことを特徴としている。Therefore, the invention of item 1 of the present application provides a fine spring formed by winding a wire into a coil shape with a winding diameter of 1n or less, in which the wire is
It is an ultrafine metal wire made of piano wire, stainless steel wire, or low carbon dual-phase steel wire with a wire diameter of 160 μm or less, and is characterized by having a Ni plating coating layer formed on its outer surface. Furthermore, the second feature is characterized in that the cross section of the wire is formed into an elliptical shape so that the major axis is in the direction of the spring axis.
以下、本発明において上記構或を採用した理由を詳細に
説明する。Hereinafter, the reason for adopting the above structure in the present invention will be explained in detail.
■.極細線として、160 μm以下のピアノ線ステン
レス線あるいは低炭素二相組織鋼線を採用した理由
微細ばねに要求される特性は、耐久性,特に疲労強度.
耐へたり性が高いことが要求されており、そのためには
引張強度に優れた素線を採用する必要があり、かつ線径
160 μm以下でこれらの特性を満足させるにはピア
ノ線,ステンレス線あるいは低炭素二相Mi織鋼線が最
適である。ここで、上記極細線6こ低炭素二相組ms+
線を採用した場合は、ピアノ線等よりさらに綿径を小さ
くしなから引張強度を向上できる。この低炭素二相組織
鋼線は、本件発明者らが研究開発したもので、以下の点
を見出して完威したものである。即ち、Fe−C3i−
Mn系鉄基合金で、かつ針状マルテンサイト,ヘイナイ
ト又はこれらの混合組織からなる低温変態生威相がフエ
ライト相中に均一に分散されてなる複合金属組織を有す
る鋼線材が強加工に優れており、このような金属組織を
有する線材を用いれば冷間伸線により線径100μm以
下の極細線を容易確実に得ることができる。そしてこの
ような鋼線材を冷間伸線により加工歪み4以上に強加工
すれば、上記フエライト相と低温変態生威相とが複合し
てなる複合}J1織(二相組織)が一方向に延びる均一
な繊維状微細金属組織が形成され、このような金属組織
を有する極細線は引張強度が303 ky/ m”以上
と飛躍的に向上し、かつ靭性はピアノ線.ステンレス線
程度である。■. Reasons why piano wire stainless steel wire or low-carbon dual-phase steel wire with a diameter of 160 μm or less was adopted as the ultra-fine wire The characteristics required of a fine spring are durability, especially fatigue strength.
High resistance to fatigue is required, and for this purpose it is necessary to use strands with excellent tensile strength.To satisfy these characteristics with a wire diameter of 160 μm or less, piano wire and stainless steel wire are required. Alternatively, a low carbon dual phase Mi woven steel wire is optimal. Here, the six ultra-fine wires are low carbon two-phase ms+
If wire is used, the tensile strength can be improved without making the cotton diameter even smaller than piano wire or the like. This low-carbon dual-phase steel wire was researched and developed by the inventors of the present invention, and was achieved by discovering the following points. That is, Fe-C3i-
A steel wire material that is made of an Mn-based iron-based alloy and has a composite metal structure in which a low-temperature transformed biophase consisting of acicular martensite, haynite, or a mixed structure of these is uniformly dispersed in a ferrite phase is excellent in strong processing. Therefore, if a wire having such a metal structure is used, an ultrafine wire with a wire diameter of 100 μm or less can be easily and reliably obtained by cold wire drawing. If such a steel wire rod is subjected to strong processing with a working strain of 4 or more by cold wire drawing, a composite J1 weave (two-phase structure) consisting of the ferrite phase and the low-temperature transformed biophase will be formed in one direction. An elongated, uniform fibrous fine metal structure is formed, and the ultrafine wire with such a metal structure has a tensile strength that is dramatically improved to 303 ky/m'' or more, and has a toughness comparable to that of piano wire or stainless steel wire.
このような繊維状微細金属線は、従来知られていない全
く新規なm織である。本件発明者らは、上記金属組織が
引張強度を向上させる主因になっているとの観点から、
その強化メカニズムについてさらに研究を重ねた結果、
上述の如き超高強度を有する金属組織では、上記繊維の
間隔が50〜1000人であり、かつ該繊維状をなす上
記複合Mi織が5〜100人の超微細セルから構威され
ていることを見出した。Such a fibrous fine metal wire has a completely new m-weave that has not been known in the past. The present inventors believe that the above-mentioned metal structure is the main cause of improving tensile strength,
As a result of further research into the strengthening mechanism,
In the metal structure having ultra-high strength as described above, the spacing between the fibers is 50 to 1000 cells, and the composite Mi weave in the fibrous form is composed of ultrafine cells of 5 to 100 cells. I found out.
ここで上記低炭素二相組織鋼線の製造方法について説明
する。Here, a method for manufacturing the above-mentioned low carbon dual phase steel wire will be explained.
まず、重量%でC : 0.01〜0.5%、Si:3
.0%以下、Mn:5.O%以下、残部Fe及び不可避
的不純物よりなる線径3.5mm以下の線材を700〜
1100’Cの範囲の温度に加熱した後、冷却して(こ
の加熱,冷却は複数回にわたって行ってもよい)一部残
留オーステナイトを含有してもよいマルテンサイト,ヘ
イナイト又はこれらの混合組織からなる低温変態生或相
がフエライト相中に体積率で15〜75%の範囲にて均
一に分散されてなる複合Mi織を有する線材を製造する
。なお、上記かかる製造方法は、特開昭62−2082
4号公報に記載されている。First, C: 0.01-0.5%, Si: 3 in weight%
.. 0% or less, Mn: 5. 0% or less, the balance is Fe and unavoidable impurities, and the wire diameter is 3.5 mm or less.
After being heated to a temperature in the range of 1100'C, it is cooled (this heating and cooling may be performed multiple times) and is made of martensite, haynite, or a mixed structure thereof, which may contain some retained austenite. A wire rod having a composite Mi weave in which a low-temperature transformed phase is uniformly dispersed in a ferrite phase in a volume fraction range of 15 to 75% is manufactured. The above manufacturing method is disclosed in Japanese Patent Application Laid-Open No. 62-2082.
It is described in Publication No. 4.
次に、このようにして得られた複合組織線材を冷間伸線
加工により、加工歪み4以上、好ましくは5以上に強加
工し、上記フエライト相と低温変態生威相とを複合化し
、金属組織として一方向に連続して延びる微細な繊維状
Mi織を形或させる。Next, the thus obtained composite textured wire rod is subjected to strong processing by cold wire drawing to a working strain of 4 or more, preferably 5 or more, to combine the ferrite phase and the low-temperature transformed biophase, and to form a metal. A fine fibrous Mi weave is formed that extends continuously in one direction.
このように加工度を高めることにより、上記繊維状組織
はさらに微細化し、繊維間隔は狭くなり、ついには上述
のとおり加工にて生したセルの大きさ,繊維間隔がそれ
ぞれ5〜100 人,50〜1000人である繊維状微
細金属組織となる。なお、加工歪みが4以上よりも小さ
い伸線加工によって得られた細線では、繊維状組織の発
達の途中にあってその組織が不完全であり、従って強度
も低い。By increasing the degree of processing in this way, the fibrous structure becomes finer and the fiber spacing becomes narrower, until finally, as mentioned above, the cell size and fiber spacing produced by processing are 5 to 100 and 50 to 50,000,000,000,000,000,000,000,000,000,000 It becomes a fibrous fine metal structure with a thickness of ~1000. Note that in a thin wire obtained by wire drawing with a processing strain of 4 or less, the fibrous structure is still in the process of development and the structure is incomplete, and therefore the strength is low.
■.極細線の外表面にNiめっき被覆層を形或した理由
上記Niめっき被覆層を形或するのは、耐蝕性等の通常
の特性付与は当然として、自己潤滑性の付与、活性度の
抑制を図るためである。■. Reason for forming the Ni-plated coating layer on the outer surface of the ultra-fine wire The reason for forming the Ni-plated coating layer is not only to impart normal properties such as corrosion resistance, but also to impart self-lubricity and suppress activity. This is for the purpose of achieving this goal.
上述のように、伸線加工,コイル威形加工においては、
素線表面の性状によっては加工性が低く、特に極細線の
場合はその影響が大きい。これに対して素線表面にNi
めっき被覆層を形成すれば素線に自己潤滑性を付与でき
、上記各加工性を改善できる。As mentioned above, in wire drawing processing and coil shaping processing,
Processability is low depending on the surface properties of the wire, and this effect is particularly large in the case of ultra-fine wires. On the other hand, Ni on the surface of the wire
By forming a plating coating layer, self-lubricating properties can be imparted to the wire, and the above-mentioned processability can be improved.
また、上述のように上記金属極細線は活性度が非常に高
く、加工時の摩擦熱等によって焼失のおそれがあるが、
本発明者等の研究によりNlめっき被覆層を形或するこ
とによって極細線自体の活性度を大幅に抑制できること
が判明した。この活性度抑制は上記自己潤滑性の付与と
同時に実現されるので、その効果は大きい。In addition, as mentioned above, the above-mentioned ultra-fine metal wire has a very high degree of activity, and there is a risk of it being burned out due to frictional heat during processing.
Research conducted by the present inventors has revealed that the activity of the ultrafine wire itself can be significantly suppressed by forming an Nl plating coating layer. This activity suppression is achieved at the same time as the above-mentioned self-lubricating property is provided, so the effect is great.
表は、金属細線に各種の金属(Ni.Cu,Zn,Cu
−Zn,A+!,Au,Ag,Cr)を表面被覆した場
合の各特性(ダイス寿命改善,防錆,酸化性.接着性,
表面処理性,耐蝕性,自己潤滑性、装飾性,及び導電性
)を比較した結果を示す。The table shows various metals (Ni.Cu, Zn, Cu
-Zn,A+! , Au, Ag, Cr) on the surface (improved die life, rust prevention, oxidation, adhesion,
The results of a comparison of surface treatment properties, corrosion resistance, self-lubricating properties, decorative properties, and electrical conductivity are shown below.
同表からも明らかなように、N1は、自己潤滑性が高い
ことからダイス寿命を改善でき、防錆.酸化防止等耐蝕
性が高く、さらに表面処理性も高い。As is clear from the table, N1 has high self-lubricating properties, improves die life, and provides excellent rust prevention. It has high corrosion resistance such as oxidation prevention, and also has high surface treatment properties.
このように総合的に見ても、また上記特性を付与する点
から見てもNiが一番優れていることがわかる。従って
、Niを被覆することによって、極細化する場合の伸線
加工、及び極細線をコイル状に威形加工する際の自己潤
滑性を向上できるとともに活性度の異常」二昇を抑制で
き、かつ錆びの発生を防止できる。In this way, it can be seen that Ni is the most excellent both comprehensively and in terms of imparting the above characteristics. Therefore, by coating with Ni, it is possible to improve the self-lubricating property when drawing ultra-fine wires and shaping ultra-fine wires into coil shapes, and to suppress abnormalities in the activity level. Can prevent rust from occurring.
なお、上記Niの被覆方法は、電気めっき.溶融めっき
,等の湿式めっき法, PCD,CVD.スバノタリン
グ等の乾式めっき法等の一般に用いられている手段が採
用できる。勿論、ここで言うNiめっきには、純粋なN
iだけではなく、上述の必要特性を阻害しない範囲内で
の表に例示した金属又は他の金属と合金化したNiめっ
きも含まれる。また、上記極細線に対するNiの被覆量
については、極細線1 kg当たり1g未満では上記各
被覆効果を発揮させるのが難しく、また100gを越え
ても被覆効果の向上は望めず、逆に厚目付による加工時
のパウダリング等の副次的なデメリ・ノトが生しるため
好ましくない。従って、極細線1 kg当たり1〜to
o gの範囲内が適当である。The above Ni coating method is electroplating. Wet plating methods such as hot-dip plating, PCD, CVD. Commonly used means such as dry plating methods such as Subanotaling can be employed. Of course, the Ni plating mentioned here includes pure N.
In addition to i, Ni plating alloyed with the metals listed in the table or other metals is also included within a range that does not impede the above-mentioned necessary properties. Regarding the amount of Ni coated on the ultra-fine wire, if it is less than 1 g per 1 kg of the ultra-fine wire, it is difficult to achieve the above-mentioned coating effects, and even if it exceeds 100 g, no improvement in the coating effect can be expected; This is undesirable because it causes secondary disadvantages such as powdering during processing. Therefore, 1 to 1 kg of ultrafine wire
A value within the range of og is appropriate.
ここで、上記Niめっき被覆層に塑性加工による加工歪
を付与することが望ましい。Here, it is desirable to apply processing strain to the Ni plating coating layer by plastic working.
これは、めっき処理しただけのNiめっき被覆層は、無
数のビンホールを有するボーラス状になっており、その
ためめっき処理工程時に発生する水素が上記Ni被覆層
内に吸蔵され、あるいは上記ボーラス内に空気が残留す
ることとなり、その結果、この吸蔵された水素.残留空
気が品質に悪影響を与えることが考えられる。This is because the Ni plating coating layer that has just been plated has a bolus shape with countless via holes, so hydrogen generated during the plating process is occluded in the Ni coating layer, or air is trapped in the bolus. As a result, this occluded hydrogen. It is possible that residual air may have a negative impact on quality.
一方、上記N1めっき被覆層に加工歪を付与すると、該
被覆層内のピンホールが潰されてなくなる点、及び例え
ば伸線時の力l工熱によって上記水素及び残留空気が放
出される点から、水素5残留空気をほとんど含まない良
好なNiめっき被覆層が得られることになり、上述の懸
念を解消できる。On the other hand, if processing strain is applied to the N1 plating coating layer, the pinholes in the coating layer will be crushed and disappear, and the hydrogen and residual air will be released due to the force and heat during wire drawing. , a good Ni plating coating layer containing almost no hydrogen 5 residual air can be obtained, and the above-mentioned concerns can be resolved.
なお、上記加工歪を形戒するには、例えば上記極細線の
製造過程において、冷間伸線加工する前の素線に予めN
iめっき処理を施し、これを伸線加工することにより実
現できる。In addition, in order to formalize the above-mentioned processing distortion, for example, in the manufacturing process of the above-mentioned ultra-fine wire, N is added to the wire before cold wire drawing.
This can be achieved by applying i-plating treatment and then wire drawing.
■.上記素線の断面を楕円状に形成した理由これは巻線
径を大きくすることなく、ばね圧を堆大させ、かつこの
ばね圧の持続性を向上させるためである。即ち、微細ば
ねにおいて、ばね圧及びその持続性を大きくするには、
素線自体の線径を大きくして引張強度,弾性係数を増大
させることが考えられるが、このようにすると巻線径も
それだけ大きくなることから限度がある。これに対して
、ばね軸方向を長径とする楕円状断面の素線を採用して
断面係数を大きくすることにより、巻線径を変えずにば
ね圧及びその持続性を大きくできる。なお、上記素線の
断面における短径と長径との比は、1:1.3にするの
が好ましい。■. The reason why the cross section of the wire is formed into an elliptical shape is to increase the spring pressure without increasing the winding diameter and to improve the sustainability of this spring pressure. That is, in order to increase the spring pressure and its sustainability in a fine spring,
It is conceivable to increase the tensile strength and elastic modulus by increasing the wire diameter of the strand itself, but there is a limit to this since the winding diameter also increases accordingly. On the other hand, by increasing the section modulus by employing a wire having an elliptical cross section with its major axis in the direction of the spring axis, it is possible to increase the spring pressure and its sustainability without changing the winding diameter. Note that the ratio of the short axis to the long axis in the cross section of the wire is preferably 1:1.3.
本願第1項の発明に係る黴細ばねによれば、ピアノ線,
ステンレス線あるいは低炭素二相組m鋼線を採用したの
で、160μm以下の線径で所定の引張強度を確保でき
る。特に低炭素二相組織#iI線を採用した場合は、上
述の強化メカニズムで説明したように、100 μm以
下のものを容易に得ることができ、しかも300〜60
0 kgf/m璽2の超高強度を有する。従って、ピア
ノ線,ステンレス線の場合に比べさらに引張強度を向上
できる。また上記線径160μm以下の金属極細線の外
表面にNiめっき被覆層を形成したので、自己潤滑性を
付与することかでき、極細化する際の伸線加工及び極細
線をコイル状に戒形する際のスバイラル加工の加工性を
向上できる。また、Niめっき被覆層の形或により、極
細線自体の活性度が抑制され、威形加工時の発熱等によ
る焼失の問題を解消でき、さらに耐蝕性を向上して、錆
びの発生を防止できる。According to the molded spring according to the invention of item 1 of the present application, piano wire,
Since a stainless steel wire or a low carbon two-phase steel wire is used, a predetermined tensile strength can be secured with a wire diameter of 160 μm or less. In particular, when the low carbon two-phase structure #iI line is adopted, as explained in the strengthening mechanism above, it is possible to easily obtain a structure with a diameter of 100 μm or less, and a thickness of 300 to 60 μm
It has an ultra-high strength of 0 kgf/m2. Therefore, the tensile strength can be further improved compared to the case of piano wire or stainless steel wire. In addition, since a Ni plating coating layer is formed on the outer surface of the above-mentioned ultra-fine metal wire with a wire diameter of 160 μm or less, self-lubricating properties can be imparted. The processability of spiral processing can be improved when processing. In addition, the shape of the Ni plating coating layer suppresses the activity of the ultrafine wire itself, eliminating the problem of burnout due to heat generation during shaping, and further improving corrosion resistance and preventing the occurrence of rust. .
また本願第2項の発明では、上記素線の断面形状をばね
軸方向が長径となる楕円状にしたので、巻線径を変える
ことなくばね圧を増大でき、かつ高温雰囲気中において
もばね圧の低下を回避でき、持続性を向上できる。In addition, in the invention of item 2 of the present application, since the cross-sectional shape of the wire is made into an ellipse shape with the major axis in the direction of the spring axis, the spring pressure can be increased without changing the winding diameter, and the spring pressure can be increased even in a high temperature atmosphere. It is possible to avoid a decrease in the amount of water and improve sustainability.
以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図及び第2図は本発明の一実施例による微細ばねを
説明するための図である。FIGS. 1 and 2 are diagrams for explaining a fine spring according to an embodiment of the present invention.
図において、1はプリント回路基板の通電検査用コンタ
クトプローブであり、これは筒状の本体2の先端部に接
触子3を進退自在に配設するとともに、該接触子3を徽
細ばね4で弾性的に支持して構威されている。In the figure, reference numeral 1 denotes a contact probe for testing electrical conductivity of a printed circuit board, and this has a contact 3 disposed at the tip of a cylindrical body 2 so as to be able to move forward and backward, and the contact 3 is supported by a narrow spring 4. It is constructed with elastic support.
19
12
上記微細ばね4は、線径160μm以下の横断面円形の
金属極細線5を巻線径1u以下のコイル状に巻回したも
のである。この極細線5は低炭素二相組織鋼線からなり
、これは重量%でC : 0.01〜0.50%、Si
:3.O%以下、Mn:5.O%以下、残部Fe及び不
可避的不純物からなる線径3.0〜6.011の線材を
一次熱処理、一次冷間伸線、二次熱処理及び二次冷間伸
線により線径15〜100μmに強加工して製造された
ものである。この極細線5は上記強加工により生じた加
工セルが一方向に繊維状に配列された繊維状微細金属組
織を形成しており、かつ上記加工セルの大きさ.繊維間
隔がそれぞれ5〜100人.50−1000人であり、
さらに引張強力が300 〜600 kgf/m”であ
る。19 12 The fine spring 4 is made by winding an ultrafine metal wire 5 with a circular cross section and a wire diameter of 160 μm or less into a coil shape with a winding diameter of 1 u or less. The ultrafine wire 5 is made of a low carbon dual-phase steel wire, which contains C: 0.01 to 0.50% and Si
:3. O% or less, Mn: 5. A wire rod with a wire diameter of 3.0 to 6.011 consisting of 0% or less, the balance Fe and unavoidable impurities is made into a wire diameter of 15 to 100 μm by primary heat treatment, primary cold wire drawing, secondary heat treatment, and secondary cold wire drawing. It is manufactured through strong processing. This ultra-fine wire 5 forms a fibrous fine metal structure in which processed cells generated by the above-mentioned strong processing are arranged in a fibrous shape in one direction, and the size of the processed cells is 1. The fiber spacing is 5 to 100 people each. 50-1000 people,
Furthermore, the tensile strength is 300 to 600 kgf/m''.
そして、上記極細線5の外表面にはNiめっき被覆層6
が形成されている。このNiめっき被覆層6は、上記線
材にめっき処理を行い、しかる後冷間伸線加工する際に
同時に塑性加工されたもので、これにより加工歪を有し
ている。即ち、上記Niめっき被覆層6は、伸線加工の
前工程におい14
て線材にめっき処理を施して4μm程度の被覆層を形成
し、これを一次.二次冷間伸線することにより、1μm
程度の厚さに引き延ばしてなるものである。これにより
、めっき処理時に生していたピンホールが潰されて、欠
陥のない良好な被覆層となっている。The outer surface of the ultrafine wire 5 is coated with a Ni plating layer 6.
is formed. This Ni plating coating layer 6 is plastically worked at the same time when the wire rod is plated and then subjected to cold wire drawing, and thus has a working strain. That is, the above-mentioned Ni plating coating layer 6 is formed by plating the wire rod in the pre-drawing step 14 to form a coating layer of about 4 μm, and then applying this to the primary coating layer. 1μm by secondary cold drawing
It is made by stretching it to a certain thickness. As a result, the pinholes created during the plating process are crushed, resulting in a good coating layer with no defects.
このように本実施例の微細ばね1によれば、極細線5は
、表面に形成されたNiめっき被覆層6によって自己潤
滑性が付与されている。そのため伸線加工によって極細
化する際及びこの極細線をコイル状に巻回加工する際の
加工性を向上できる。As described above, according to the fine spring 1 of this embodiment, the fine wire 5 is provided with self-lubricating properties by the Ni plating coating layer 6 formed on the surface. Therefore, workability can be improved when making the wire ultra-fine by wire drawing and when winding this ultra-fine wire into a coil.
また、上記Niめっき被覆層6を形成したことにより、
極細線自体の活性度を下げることができ、或形加工時の
発熟による焼失や断線を防止できる。Furthermore, by forming the Ni plating coating layer 6,
The activity of the ultra-fine wire itself can be lowered, and burnout or wire breakage due to ripening during processing into a certain shape can be prevented.
また上記N1めっきによって耐蝕性が向上し、錆びの発
生を防止できる。Furthermore, the N1 plating improves corrosion resistance and prevents rust from occurring.
さらに、本実施例では極細線5に低炭素二相組織鋼線を
採用したので、線径10〜100 μmで引張強度30
0〜600 kgf/m2と極めて高強度を有している
。従って、微細ばね1の弾性限度が向上してl5
疲労強度,耐へたり性が改善され、耐久性が大幅に向上
する。Furthermore, in this example, a low carbon dual-phase steel wire is used as the ultra-fine wire 5, so the wire diameter is 10 to 100 μm and the tensile strength is 30.
It has an extremely high strength of 0 to 600 kgf/m2. Therefore, the elastic limit of the fine spring 1 is improved, the fatigue strength and fatigue resistance are improved, and the durability is greatly improved.
さらにまた、本実施例では上記Niめっき被覆層6に加
工歪を生じさせたので、該加工歪によってピンホール等
のない構造となっており、ほとんど水素,残留空気を含
有していないので、品質への悪影響を回避できる。Furthermore, in this example, processing distortion was caused in the Ni plating coating layer 6, so that the structure was free of pinholes etc. due to the processing distortion, and since it contained almost no hydrogen or residual air, the quality was improved. can avoid negative effects on
第3図は上記微細ばねの変形例を示す。この例では、微
細ばね14を構或する極細線5の断面形状は、該微細ば
ね14のばね軸方向における長径Lと軸直交方向の短径
lとの比率が1.3 : 1となる楕円形になってい
る。FIG. 3 shows a modification of the fine spring. In this example, the cross-sectional shape of the microscopic wire 5 constituting the microspring 14 is an ellipse in which the ratio of the long axis L in the spring axis direction of the microspring 14 to the short axis l in the direction orthogonal to the axis is 1.3:1. It's in shape.
この実施例では極細線5の断面を、ばね軸方向が長径と
なる楕円状にしたので、巻線径を変えることなくばね圧
を増大できる。またこのばね圧の持続性を向上でき、高
温雰囲気中での劣化を回避できる。In this embodiment, the cross section of the ultra-thin wire 5 is made into an ellipse with the major axis in the direction of the spring axis, so that the spring pressure can be increased without changing the winding diameter. Furthermore, the sustainability of this spring pressure can be improved, and deterioration in a high temperature atmosphere can be avoided.
ちなみに、スーパーコンピュータのICヂエソカーに採
用される微細ばねの条件は、ばね外径250μm,ばね
圧30−50g,ばね長さ4.5m,巻数32〜16
34が要求されている。本実施例の場合は極細線の短径
を50μm.長径を60μmにすることにより上記条件
を満足することができる。Incidentally, the conditions for a fine spring used in a supercomputer's IC processor are as follows: spring outer diameter 250 μm, spring pressure 30-50 g, spring length 4.5 m, and number of turns 32-1634. In the case of this example, the short diameter of the ultrafine wire is 50 μm. The above conditions can be satisfied by setting the major axis to 60 μm.
なお、上記各実施例では極細線5に低炭素二相組織鋼線
を採用した場合を例にとって説明したが、本発明の極細
線は、他にピアノ線,ステンレス線が採用でき、これら
の場合もN1めっき被覆層を形或することにより活性度
を抑制でき、自己潤滑性及び耐蝕性を向上できる。In each of the above embodiments, the case where a low-carbon dual-phase steel wire is used as the ultra-fine wire 5 has been explained as an example, but the ultra-fine wire of the present invention can also be a piano wire or a stainless steel wire, and in these cases. By forming the N1 plated coating layer, the activity can be suppressed and self-lubricating properties and corrosion resistance can be improved.
以上のように本願第1項の発明に係る微細ばねによれば
、線径160μm以下のピアノ線,ステンレス線あるい
は低炭素二相組織鋼線からなる金属極細線の外表面にN
iめっき被覆層を形成したので、伸線加工,コイル威形
加工時の加工性を向上できるとともに、極細線自体の活
性度を抑制して威形時の焼失等を回避でき、かつ耐蝕性
を向上して錆の発生を防止できる効果があり、本願第2
項の発明では、上記素線の断面形状をばね軸方向が長径
となる楕円状にしたので、巻線径を大きくす17
ることなくばね圧を増大でき、かつ高温雰囲気中におけ
るばね圧の劣化を阻止して持続性を向上できる効果があ
る。As described above, according to the fine spring according to the invention of item 1 of the present application, N
By forming an i-plated coating layer, it is possible to improve the workability during wire drawing and coil shaping processing, suppress the activity of the ultra-fine wire itself, avoid burnout during shaping, and improve corrosion resistance. It has the effect of improving the rust and preventing the occurrence of rust.
In the invention described in Section 1, the cross-sectional shape of the wire is made into an ellipse shape with the major axis in the direction of the spring axis, so that the spring pressure can be increased without increasing the winding diameter, and the deterioration of the spring pressure in a high temperature atmosphere can be avoided. It has the effect of preventing this and improving sustainability.
1 81 8
第1図falは本発明の一実施例による微細ばねを示す
側面図、第1図(blはその断面図、第2母はその微細
ばねを採用したコンタクトプローブの断面側面図、第3
図は素線形状の変形例を示す断面図である。
図において、4,14は微細ばね、5は極細線、6はN
iめっき被覆層である。Fig. 1 fal is a side view showing a fine spring according to an embodiment of the present invention;
The figure is a sectional view showing a modified example of the wire shape. In the figure, 4 and 14 are fine springs, 5 is an ultra-fine wire, and 6 is N
This is an i-plated coating layer.
Claims (2)
る微細ばねにおいて、上記素線が、線径160μm以下
のピアノ線、ステンレス線あるいは引張強度300kg
/mm^2以上の低炭素二相組織鋼線のいずれかからな
る金属極細線であり、かつ外表面にNiめっき被覆層が
形成されていることを特徴とする微細ばね。(1) In a fine spring formed by winding a wire into a coil shape with a winding diameter of 1 mm or less, the wire is a piano wire with a wire diameter of 160 μm or less, a stainless steel wire, or a tensile strength of 300 kg.
1. A fine spring characterized in that it is an ultrafine metal wire made of any of low carbon dual phase steel wires with a diameter of /mm^2 or more, and has a Ni plating coating layer formed on its outer surface.
を有することを特徴とする特許請求の範囲第1項記載の
微細ばね。(2) The fine spring according to claim 1, wherein the wire has an elliptical cross section with the major axis in the direction of the spring axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18938589A JPH0351537A (en) | 1989-07-20 | 1989-07-20 | Fine thin spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18938589A JPH0351537A (en) | 1989-07-20 | 1989-07-20 | Fine thin spring |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0351537A true JPH0351537A (en) | 1991-03-05 |
Family
ID=16240430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18938589A Pending JPH0351537A (en) | 1989-07-20 | 1989-07-20 | Fine thin spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0351537A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6044281A (en) * | 1995-11-28 | 2000-03-28 | Uniden Corporation | Cordless telephone set having charging terminal configured for holding handset |
DE10114940C2 (en) * | 2000-03-27 | 2003-06-26 | Fuji Photo Optical Co Ltd | Forceps for an endoscope and manufacturing method for forceps |
JP2006248844A (en) * | 2005-03-10 | 2006-09-21 | Toshiba Corp | Ozonizer |
JP2013032796A (en) * | 2011-08-01 | 2013-02-14 | Nissei Kinzoku Kogyo Kk | Coil spring |
CN103671665A (en) * | 2013-11-05 | 2014-03-26 | 大连众和盛弹簧制品有限公司 | Acid and alkali corrosion resistance spring mechanism |
-
1989
- 1989-07-20 JP JP18938589A patent/JPH0351537A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6044281A (en) * | 1995-11-28 | 2000-03-28 | Uniden Corporation | Cordless telephone set having charging terminal configured for holding handset |
DE10114940C2 (en) * | 2000-03-27 | 2003-06-26 | Fuji Photo Optical Co Ltd | Forceps for an endoscope and manufacturing method for forceps |
US6740106B2 (en) | 2000-03-27 | 2004-05-25 | Fuji Photo Optical Co., Ltd. | Forceps for endoscope and manufacturing method of forceps |
JP2006248844A (en) * | 2005-03-10 | 2006-09-21 | Toshiba Corp | Ozonizer |
JP2013032796A (en) * | 2011-08-01 | 2013-02-14 | Nissei Kinzoku Kogyo Kk | Coil spring |
CN103671665A (en) * | 2013-11-05 | 2014-03-26 | 大连众和盛弹簧制品有限公司 | Acid and alkali corrosion resistance spring mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950008547B1 (en) | Fishing line | |
JP2921978B2 (en) | Manufacturing method of high strength and high ductility ultrafine steel wire | |
KR950004618B1 (en) | Inspection probe | |
JPH10168525A (en) | Production of microalloyed high carbon steel and high tensile strength filament | |
KR100312438B1 (en) | Manufacturing method of patterned steel | |
KR930005075B1 (en) | Super high strength super fine wire | |
JP4068556B2 (en) | Stainless steel fiber by focused drawing | |
US20080203064A1 (en) | Bundle Drawn Metal Fiber with Three Layers | |
JPH0351537A (en) | Fine thin spring | |
CN111684095B (en) | Copper-clad steel wire and canted coil spring | |
JPS63227748A (en) | High strength steel wire for spring and its production | |
US20240029914A1 (en) | Electrically conductive wire | |
JPH03180769A (en) | Probe for examination | |
US7604860B2 (en) | High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor | |
JPH07211143A (en) | Low thermal expansion and high strength conductor for transmission line, and low loosening cable using same | |
JPH0359138A (en) | Woven fabric | |
JPH0365328A (en) | Hollow material | |
JPH0359184A (en) | Minirope | |
JP2002180199A (en) | Steel for spring having excellent permanent set resistance, steel wire for spring and spring | |
JPH0394013A (en) | Metallic extra fine wire | |
JP3586380B2 (en) | Multi-layer welding method | |
JP3340233B2 (en) | High strength steel wire excellent in twisting characteristics and method for producing the same | |
JP7259959B2 (en) | Copper coated steel wire, stranded wire, insulated wire and cable | |
JP4340073B2 (en) | Lead material for loom baskets and paddy products using the lead materials | |
JPH0351057A (en) | Medical extra fine tube |