JPH0352361B2 - - Google Patents

Info

Publication number
JPH0352361B2
JPH0352361B2 JP57134754A JP13475482A JPH0352361B2 JP H0352361 B2 JPH0352361 B2 JP H0352361B2 JP 57134754 A JP57134754 A JP 57134754A JP 13475482 A JP13475482 A JP 13475482A JP H0352361 B2 JPH0352361 B2 JP H0352361B2
Authority
JP
Japan
Prior art keywords
rubber pad
annular rubber
rigid core
tire
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57134754A
Other languages
Japanese (ja)
Other versions
JPS5926308A (en
Inventor
Toshisaburo Hirase
Yukio Fukura
Yukihiro Ando
Kenji Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP57134754A priority Critical patent/JPS5926308A/en
Publication of JPS5926308A publication Critical patent/JPS5926308A/en
Publication of JPH0352361B2 publication Critical patent/JPH0352361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency
    • B60C17/041Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency characterised by coupling or locking means between rim and support

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、軌道走行車両用ランフラツトタイ
ヤ車輪に関し、ここに軌道走行車両というのは、
例えばモノレール、ガイドウエイの如き専用走行
路(軌道という)が比較的短い距離(例えば数Km
ないし十数Km程度)にわたつて敷設され、互いに
離隔する複数の地点間をつないで上記軌道上を往
復ないし循環運行する、多くの場合列車方式によ
る大量輸送手段としての、いわゆる新交通システ
ムに供されるような車両の指すものとし、またラ
ンフラツトは、この種の車両に必要とされる優れ
た乗心地を確保するのに都合のよい、空気入りタ
イヤ車輪の走行中不所望に生じる可能性のあるエ
ヤー洩れ(例えばパンクによる)に基づく、車輪
荷重の内圧による負担の能力喪失の下でもなお修
復施設に到達するまでの近距離(例えば20Km程
度)にわたる運行継続に事実上の支障を伴わない
走行機能を、意味し、この発明は、このランフラ
ツト条件下での継続運行を、円滑に確保すること
ができるように改良した、軌道走行車両用ランフ
ラツトタイヤ車輪を提案しようとするものであ
る。 (従来の技術) この種のランフラツトタイヤ車輪については、
例えば、特開昭54−6205号公報に先行事例を見る
ことができる。 しかしこの場合、タイヤ用保持リングとしての
剛性クラウンとリムとの中間に配置される弾性物
質の中実環状部材は、剛性クラウンの内径にほぼ
等しい外径を有し、またタイヤの設置後にこの環
状部材の弾性物質の圧縮によつてリム上の剛性ク
ラウンとこの環状部材とからなる組立体の固定が
保証される如き内径と幅を有することのような、
主としてサイズ上の特徴に言及されているがラン
フラツト条件下での車両の継続運行を必要な走行
距離にわたつて円滑に確保するためにより重要
な、弾性物質の物性には触れられていない。 (発明が解決しようとする課題) この発明は、軌道走行車両用ランフラツトタイ
ヤ車輪としてその使命を有利に成就することすな
わち、ランフラツト条件が生じた際に車両の継続
運行とその後の回送に何らの支障なくして、エア
ー洩れ故障の修復施設に到達させ得るのはもとよ
りのこと、この継続運行の下に車輪タイヤの損傷
をひき起すことなく、従つてそのタイヤの両使用
の下でのランフラツト機能を容易に回復させるこ
とのできる、軌道走行車両用ランフラツトタイヤ
車輪を提案することがこの発明の目的である。 (課題を解決するための手段) この発明はチユーブレスタイプの空気入りタイ
ヤと、フラツトベースタイプのリムと、上記タイ
ヤの一対のビード部内面相互間にわたつて上記リ
ムのフラツトベースにはめ合わせた環状ゴムパツ
ド及び、この環状ゴムパツドのまわりにI型断面
の金属製セグメントを円環状に連結して上記リム
と上記環状ゴムパツドを介し一体化した剛性コア
との組立体よりなるランフラツトタイヤ車輪にお
いて、上記環状ゴムパツドは、その外周面に剛性
コアの内周フランジを緊密にはめ合わせる周溝を
そなえて剛性コアを安定に保持するとともに、
JIS硬度が60〜90°、20℃−2%の測定条件下での
動的弾性率が50〜200Kgf/cm2、同じく損失正接が
0.125〜0.350の各範囲内を占める、物性値を有す
るものであることを特徴とする軌道走行車両用ラ
ンフラツトタイヤ車輪である。 第1図にこの発明に従う軌道走行車両用ランフ
ラツトタイヤ車輪を、その回転軸を含む断面で示
し、図中1はいわゆる重荷重用ラジアルタイヤと
くにチユーブレスタイヤの空気入りタイヤであ
り、2は剛性コア、また3は環状ゴムパツド、そ
してRは空気入りタイヤ1を組付ける、とくにフ
ラツトベースタイプのリムである。 空気入りタイヤ1はその補強のための手段は慣
例通りのままでよく、従つてその断面内にあらわ
れる補強要素のすべてについて図示を省略してあ
る。 剛性コア2はI形断面の金属製セグメントを円
環状に連結してなり、空気入りタイヤ1のトレツ
ド部内径より小さい外径でその内部空洞中を占め
る。 そして3はあとで詳しく述べる環状ゴムパツド
であり、またRはフラツトベースR1の両端に固
定フランジF1と組合わせフランジF2とを有する
リムである。 さて環状ゴムパツド3はその内径dをリムRの
フラツトベースR1の外径Dに対して97.4〜99.8
%、より好ましくは98%〜99.6%の範囲に設定し
てリムRのフラツトベースにはめ合わせる。それ
というのは、97.4%未満では組立時に困難を伴う
一方、99.8%をこえると、環状ゴムパツドの外周
又は内周にシワが発生し易くなつてその耐久性を
低下させ、また剛性コア2を精度よく固定できな
いからである。 次に環状ゴムパツド3の幅wはリム組み後の空
気入りタイヤ1のビード部の内面間距離Wに対し
100〜112%、より好ましくは102〜110%の範囲に
設定し、それというのは100%未満ではランフラ
ツト走行中にビード部の動きが生じやすくなつて
結果的にランフラツト走行性能を低下させ、これ
に反し112%をこえると組立が困難になるからで
ある。 さらに環状ゴムパツド3のシート部厚み、すな
わち後述の周溝底における残厚t1は、剛性コア2
の高さHの6〜18%、より好ましくは8〜15%の
範囲に設定し、それというのは6%未満ては緩衝
効果が不充分でランフラツト走行性能に悪影響を
生じ、また組立も困難になり、これに反し18%を
こえるランフラツト走行中における剛性コア2に
働く外力下での変位が大きくて、これによる発熱
を伴うため、環状ゴムパツド3の寿命および空気
入りタイヤ1のビード部内面に悪影響を与えるか
らである。 環状ゴムパツド3にはその幅方向中央の外周面
に剛性コア2の内周フランジ2′を緊密にはめ合
わせる周溝3′を備え、周溝3′は剛性コア2を安
定に保持するように内周フランジ2′と対応する
幅bと深さgを有する。 この周溝3′は、リム組みに先立つて剛性コア
2を空気入りタイヤ1のビード部内面間、つまり
リムRのフラツトベースR1の中央区域における
剛性コア2の正確な位置決めの下での容易な組立
てと安定な保持固定とに役立ち、またランフラツ
ト走行時に剛性コア2の左右への移動を阻止し
て、環状ゴムパツド3の耐久性を維持し、ランフ
ラツト走行性能を向上させるために不可欠であ
る。 ここに最適な周溝3′の幅bは環状ゴムパツド
3の幅の59.5〜65.2%より好ましくは60.5〜,
64.5%で、かつ剛性コア2の内周フランジ2′の
幅Bの98〜100.5%、より好ましくは99〜100%の
範囲にすべきであり、それというのは98%未満で
は内周フランジ2′の納まりが悪く固定が不安定
になり易いのでランフラツトタ走行性能に悪影響
をおよぼし、これに反し100.5%をこえるとラン
フラツト走行中、横方向の力が加わつたときに剛
性コア2の変位が大きくなり、そのため環状ゴム
パツド3の耐久性を低下させるほか、組立時にも
剛性コア2の固定が困難となる。 剛性コア2はアルミニウム合金のような軽合金
製とすることが好ましく、剛性コア2は例えば周
上5分割した形のI型断面セグメントを、レール
継目板にやや似た弧状側板4の一対でボルト5に
よりねじ止め固定するを可とする。 剛性コア2の外周フランジ2″はタイヤ車輪の
一般走行のための負荷転動時に、空気入りタイヤ
1の内面と接触しない程度の外径を有するのはい
うまでもない。 この発明の構成上とくに重要な環状ゴムパツド
3のゴム物性としてはまずJIS硬度で60°〜90°(シ
ヨアー硬度では63°〜93°)より好ましくは65°〜
80°の範囲に設定するを要し、これは60°未満では
ランフラツト走行中の変形が大きくなり、その一
方で90°をこえると組立時の作業性およびランフ
ラツト走行時に必要とされる適度な緩衝効果の面
から好ましくないからである。 次に20℃、2%の条件での動的弾性率について
50Kgf/cm2〜200Kgf/cm2、好ましくは100Kgf/
cm2から180Kgf/cm2の範囲に設定するを要し、こ
れは200Kgf/cm2をこえるとカツト面から好まし
くなく、50Kgf/cm2未満では変形が過大になる。
さらに損失正接tanδは0.125〜0.350、好ましくは
0.150〜0.300の範囲が発熱の問題から限定される
を要する。 ランフラツト走行時におけるタイヤ1の内面と
剛性コア2の外周フランジとの間の摩擦を低減す
るため次の潤滑剤を空気入りタイヤ1の内部空洞
中に400〜500g封入する。 この潤滑剤としては下記に示すところの特性、
組成のものが好ましい。 特性: 温室付近で半固体状の性質でかつチクソトロビ
ー性を有する潤滑剤組成物で特に高温時(100℃
以上)における剪断粘度が室温付近のそれに比べ
て小さくなるようなものが好ましい。 すなわち剪断速度10〜20sec-1の時、室温での
剪断粘度が20000〜200000cPの範囲にあり、かつ
150℃での剪断粘度が2000〜20000cPの範囲とな
るものである。 組成: 一般的な潤滑剤組成物としては鉱油系、合成油
系の液状〜半固体状のものか、あるいは粉体系の
固体状潤滑剤のものもあるが、この発明の場合、
タイヤの内面への塗布に際して、インナーゴムに
影響をおよぼさず、かつ高荷重の摩擦に耐えるも
のでなくてはならない。それらの性能を満足させ
るためには、ゴムの極性と異なり、かつ液状〜半
固体状のものが好ましい。 ここにジエステル油、シリコーン油、ユーコン
油、ハロカーボン油等の合成油を主成分とし、そ
の中に金属石けん、シリカ、ベントン、アリル尿
素、インダンスレーン、フタロシアニン、グラフ
アイト、二硫化モリブデン、フツ素樹脂などの増
稠剤その他酸化防止剤、防錆剤等の添加剤が含ま
れる潤滑剤組成物がその例である。 (作用) 環状ゴムパツドが、その外周面に剛性コアの内
周フランジを緻密にはめ合わせる周溝を備えて剛
性コアを正確位置決めの下での容易な組立てに役
立ちかつ安定な保持固定にも寄与してランフラツ
ト走行時における剛性コアの左右への移動を阻止
し、環状ゴムパツドの耐久性を増加し、ランフラ
ツト走行性能を向上させる。 環状ゴムパツド3の上記物性値の、空気入りタ
イヤ1のランフラツト条件の下における寄与は次
のとおりである。 JIS硬度; ランフラツト条件の下で空気入りイタヤ1のト
レツド内面が剛性コア2の外周フランジ2″に接
した状態における転動時に該トレツドから剛性コ
ア2を介して伝わる外力の緩衝に役立つためには
環状ゴムパツド3のJIS硬度は90°が限界で、これ
をこえるとトレツド内面における破損を生じ易
く、所定のランフラツト走行距離を全うできない
ばかりか空気入りタイヤ1の再利用を不能にす
る。この意味でJIS硬度は低い方がのぞましいが
その値が60°よりも低くなると、、環状ゴムパツト
自体の変形が過大になつて剛性コア2の安定な保
持に不安を生じることになる。 この関係について種々なゴムを用いた試験の結
果をまとめて第2図に示した。 動的弾性率; 第2図についてのべた耐変形性に関しては動的
弾性率も第3図に示したように、ゴム硬度と同様
な傾向を呈し、50Kgf/cm2がその下限であるが、
200Kgf/cm2をこえて高くしすぎると、環状ゴム
パツトド3の周溝の入隅に亀裂が入り易く、これ
により剛性コア2の安定な保持に支障を生じてラ
ンフラツト条件下で継続運行を完遂できない。 この関係についての実験結果は第3図のとおり
である。 損失正接 主に環状ゴムパツド3の発熱に関係し、0.35を
こえると著しい昇温によるゴム劣化を生じ易い。
なお損失正接0.10未満は、カーボンブラツクの配
合の下では実用され得ない。 この関係については、第4図に発熱を及ばす影
響の調査結果を示す。 なお上記の実験において、環状ゴムパツド3の
耐変形性については、この発明によるランフラツ
トタイヤを試験ドラムにかけ、荷重4000Kg、速度
35Km/hrでランフラツト走行させ、環状ゴムパツ
ド3の変形による剛性コア2の保持効果の低下の
ために走行不能に至る距離をもつて判定し、緩衝
効果については、同様の要領で空気入りタイヤ1
の内面破壊による走行限界距離で評価し、さらに
耐カツト性については環状ゴムパツド3の周溝の
入隅に生じるクラツクに起因してランフラツト走
行が不安定になる走行距離により評定した。 (実施例) タイヤサイズ13/80R20のチユーブレスタイヤ
を用いた図示例で環状ゴムパツド3の内径dは、
フラツトベースR1の外径Dが508mmなのでこれに
対し99.4%に当たる505mmであり、また幅wはタ
イヤ1のビード部内面間距離Wが151mmなのでこ
れに対し107.9%に当たる163mmであり、さらにシ
ート部厚みt1は剛性コア2の高さHが158mmなの
でこれに対し9.5%に当たる15mmである。 なおこの環状ゴムパツド3の両端面は図に示す
ように空気入りタイヤ1のビード部の内面形状に
実質上沿うものとすることがより好ましいことか
ら上記幅wは平均幅で示した。 環状ゴムパツド3のゴム物性としてはJIS硬度
が70°、動的弾性率は175Kgf/cm2また損失正接は
0.252のものを使用した。 これに対し剛性コア2の内周フランジ2′をリ
ムRの幅の中央即ちフラツトベースR1の中央区
域に位置せしめるように、環状ゴムパツド3の外
周に周溝3′を形成し、これは剛性コア2の内周
フランジ2′の両側面が実質的に嵌合する溝幅と
溝深さを有するものとし、ここに周溝3′の幅b
は99.5mm、内周フランジ2′の幅Bは100mm、また
溝深さgは13mm、内周フランジ2′の側面厚さS
は10mmである。 ちなみに溝深さgは内周フランジ2′の側面厚
みSの50〜150%より好ましくは80〜135%の範囲
に設定するのが良い。内周フランジ2′の組立て
内径は環状ゴムパツド3の周溝3′の溝底径に合
わせた。 リムRはフラツトペース部R1と、その軸方向
の一端で固定フランジF1を、他端に組合わせフ
ランジF2を備え、従つて空気入りタイヤ1の内
部空洞における剛性コア2の組立てのあと、これ
に環状ゴムパツド3を組合わせ、次にリムRのフ
ラツトベースR1を片側のビード部から環状ゴム
パツド3に通し貫通端を組合わせフランジF2で
抑止しここにタイヤ1のエヤーシールはシーリン
グ6を用いて簡単になされる。 エヤーの注入は環状ゴムパツド3の内面と周溝
3′の溝底とに、エヤー通路に適した半円形、四
角形形状等の周方向連続小溝P,P′を配置し、複
数箇所で連通させておくことにより剛性コア2に
設けた斜孔7から空気入りタイヤ1内に容易に注
入され得る。 上記したサイズ13/80R20の空気入りチユーブ
レスタイヤと、サイズ9.00×20の市販フラツトベ
ースタイプリムとを用い、上述した潤滑剤の封入
も含めてこの発明の実施例について共通の剛性コ
アを用いた比較例にあわせ、環状ゴムパツドの形
状と物性の影響に関し対比試験を行い、この発明
の効果を確認した。 両環状ゴムパツドの諸元、ゴム特性をまとめて
次表1に示す。
(Industrial Application Field) This invention relates to a runflat tire wheel for a track running vehicle, and the track running vehicle herein refers to a run-flat tire wheel for a track running vehicle.
For example, dedicated running paths (tracks) such as monorails and guideways run relatively short distances (e.g., several kilometers).
It is used for the so-called new transportation system, which is a means of mass transportation, often by train, that is laid over a distance of about 10 to 10 km) and connects multiple points separated from each other and runs round and round on the above-mentioned track. Runflat refers to a vehicle with a pneumatic tire that may undesirably occur during driving, which is convenient for ensuring the excellent ride comfort required for this type of vehicle. Even if the wheel load loses its ability to bear the internal pressure due to a certain air leak (e.g. due to a puncture), it is possible to continue the operation over a short distance (e.g. about 20 km) until reaching the repair facility without virtually any hindrance. The purpose of this invention is to propose a run-flat tire wheel for a track running vehicle that is improved so as to be able to smoothly ensure continuous operation under such run-flat conditions. (Prior art) Regarding this type of run-flat tire wheel,
For example, a precedent example can be found in Japanese Patent Application Laid-Open No. 54-6205. However, in this case, the solid annular member of elastic material, which is placed between the rigid crown and the rim as a retaining ring for the tire, has an outer diameter approximately equal to the inner diameter of the rigid crown, and after installation of the tire, this annular member is having an inner diameter and width such that compression of the elastic material of the member ensures fixation of the assembly of the annular member and the rigid crown on the rim;
Although the size characteristics are mainly mentioned, the physical properties of the elastic material, which are more important for ensuring smooth continuous operation of the vehicle over the necessary mileage under runflat conditions, are not mentioned. (Problem to be Solved by the Invention) The present invention advantageously fulfills its mission as a run-flat tire wheel for a track running vehicle, that is, when a run-flat condition occurs, there is no problem with the continued operation of the vehicle and subsequent forwarding. Not only is it possible to reach a repair facility for an air leak failure without any hindrance, but also without causing damage to the wheel tire under this continued operation, and thus maintaining the runflat function of the tire under both uses. It is an object of the invention to propose a runflat tire wheel for track vehicles which can be easily recovered. (Means for Solving the Problems) The present invention includes a tubeless type pneumatic tire, a flat base type rim, and a tubeless type pneumatic tire fitted to the flat base of the rim between the inner surfaces of a pair of bead portions of the tire. A run-flat tire wheel comprising an assembly of an annular rubber pad and a rigid core formed by connecting metal segments having an I-shaped cross section in an annular manner around the annular rubber pad and integrating the rim with the annular rubber pad. The annular rubber pad has a circumferential groove on its outer peripheral surface that tightly fits the inner peripheral flange of the rigid core, and holds the rigid core stably.
The JIS hardness is 60~90°, the dynamic elastic modulus is 50~200Kg f/cm2 under the measurement conditions of 20℃-2%, and the loss tangent is also 50~200Kg f / cm2 .
A runflat tire wheel for a track running vehicle characterized by having physical property values within a range of 0.125 to 0.350. FIG. 1 shows a run-flat tire wheel for a track running vehicle according to the present invention in a cross section including its rotating shaft. , 3 is an annular rubber pad, and R is a rim, particularly of a flat base type, on which the pneumatic tire 1 is mounted. The means for reinforcing the pneumatic tire 1 may remain conventional, and therefore all reinforcing elements appearing in its cross section are omitted from illustration. The rigid core 2 is formed by connecting metal segments having an I-shaped cross section in an annular shape, and has an outer diameter smaller than the inner diameter of the tread portion of the pneumatic tire 1 and occupies an inner cavity thereof. 3 is an annular rubber pad which will be described in detail later, and R is a rim having a fixed flange F1 and a combination flange F2 at both ends of the flat base R1 . Now, the inner diameter d of the annular rubber pad 3 is 97.4 to 99.8 with respect to the outer diameter D of the flat base R1 of the rim R.
%, more preferably in the range of 98% to 99.6%, and fit onto the flat base of the rim R. This is because if it is less than 97.4%, it will be difficult to assemble, but if it exceeds 99.8%, wrinkles will easily occur on the outer or inner periphery of the annular rubber pad, reducing its durability, and the precision of the rigid core 2. This is because it cannot be fixed well. Next, the width w of the annular rubber pad 3 is relative to the distance W between the inner surfaces of the bead portions of the pneumatic tire 1 after the rim is assembled.
It should be set in the range of 100 to 112%, more preferably 102 to 110%, because if it is less than 100%, the bead will tend to move during runflat running, resulting in a decrease in runflat running performance. On the other hand, if it exceeds 112%, assembly becomes difficult. Furthermore, the thickness of the sheet portion of the annular rubber pad 3, that is, the residual thickness t 1 at the bottom of the circumferential groove, which will be described later, is the same as that of the rigid core 2.
The height H is set in the range of 6 to 18%, more preferably 8 to 15%, because if it is less than 6%, the cushioning effect will be insufficient and the runflat running performance will be adversely affected, and assembly will be difficult. On the other hand, the displacement under the external force acting on the rigid core 2 during runflat running exceeding 18% is large, and this generates heat, which reduces the life of the annular rubber pad 3 and the inner surface of the bead of the pneumatic tire 1. This is because it will have a negative impact. The annular rubber pad 3 has a circumferential groove 3' on its outer peripheral surface at the center in the width direction, into which the inner circumferential flange 2' of the rigid core 2 is tightly fitted. It has a width b and a depth g corresponding to the circumferential flange 2'. This circumferential groove 3' facilitates accurate positioning of the rigid core 2 between the inner surfaces of the bead portions of the pneumatic tire 1, that is, in the central area of the flat base R1 of the rim R, prior to rim assembly. It is useful for assembly and stable holding and fixing, and is essential for preventing left and right movement of the rigid core 2 during runflat running, maintaining the durability of the annular rubber pad 3, and improving runflat running performance. The optimum width b of the circumferential groove 3' is 59.5 to 65.2% of the width of the annular rubber pad 3, preferably 60.5 to 65.2%,
64.5% and should be in the range of 98-100.5%, more preferably 99-100% of the width B of the inner flange 2' of the rigid core 2, which means that if it is less than 98%, the width B of the inner flange 2'' is not well settled and the fixation tends to become unstable, which has a negative effect on runflat running performance.On the other hand, if it exceeds 100.5%, the displacement of the rigid core 2 becomes large when a lateral force is applied during runflat running. Therefore, not only does the durability of the annular rubber pad 3 decrease, but also it becomes difficult to fix the rigid core 2 during assembly. The rigid core 2 is preferably made of a light alloy such as aluminum alloy, and the rigid core 2 has, for example, I-shaped cross-sectional segments divided into five parts on the circumference, and is bolted to a pair of arc-shaped side plates 4 somewhat similar to rail joint plates. 5 allows it to be fixed with screws. Needless to say, the outer peripheral flange 2'' of the rigid core 2 has an outer diameter of such a degree that it does not come into contact with the inner surface of the pneumatic tire 1 when the tire wheel rolls under load for general running. The important rubber physical properties of the annular rubber pad 3 are JIS hardness of 60° to 90° (Shorer hardness of 63° to 93°), preferably 65° to 90°.
It is necessary to set the angle within the range of 80°, because if it is less than 60°, the deformation during runflat running will be large, while if it exceeds 90°, it will be difficult to assemble the workability and the appropriate cushioning required during runflat running. This is because it is unfavorable from the standpoint of effectiveness. Next, regarding the dynamic elastic modulus at 20℃ and 2%
50Kgf/ cm2 to 200Kgf/ cm2 , preferably 100Kgf/cm2
It is necessary to set it in the range of cm 2 to 180 Kgf/cm 2 .If it exceeds 200 Kgf/cm 2 , it is unfavorable from the cutting surface, and if it is less than 50 Kgf/cm 2 , the deformation becomes excessive.
Furthermore, the loss tangent tanδ is 0.125 to 0.350, preferably
The range of 0.150 to 0.300 must be limited due to heat generation issues. In order to reduce the friction between the inner surface of the tire 1 and the outer peripheral flange of the rigid core 2 during runflat running, 400 to 500 g of the following lubricant is sealed in the inner cavity of the pneumatic tire 1. This lubricant has the following characteristics:
composition is preferred. Characteristics: A lubricant composition that has semi-solid properties and thixotropic properties near greenhouses, especially at high temperatures (100℃
Preferably, the shear viscosity at temperatures above) is lower than that at room temperature. That is, when the shear rate is 10 to 20 sec -1 , the shear viscosity at room temperature is in the range of 20000 to 200000 cP, and
The shear viscosity at 150°C is in the range of 2000 to 20000 cP. Composition: Typical lubricant compositions include mineral oil-based, synthetic oil-based liquid to semi-solid lubricants, or powder-based solid lubricant compositions, but in the case of this invention,
When applied to the inner surface of a tire, it must not affect the inner rubber and must be able to withstand high-load friction. In order to satisfy these properties, it is preferable to use a material that has a polarity different from that of rubber and is in a liquid to semi-solid state. The main ingredients are synthetic oils such as diester oil, silicone oil, Yukon oil, and halocarbon oil, and among them are metal soap, silica, bentone, allyl urea, indanthrene, phthalocyanine, graphite, molybdenum disulfide, and phthalocyanine. An example is a lubricant composition containing additives such as a thickener such as a base resin, an antioxidant, and a rust preventive agent. (Function) The annular rubber pad has a circumferential groove on its outer circumferential surface that closely fits the inner circumferential flange of the rigid core, which helps in easy assembly of the rigid core with accurate positioning, and also contributes to stable holding and fixing. This prevents the rigid core from moving to the left or right during runflat running, increases the durability of the annular rubber pad, and improves runflat running performance. The contribution of the above physical property values of the annular rubber pad 3 under runflat conditions of the pneumatic tire 1 is as follows. JIS hardness: To help buffer the external force transmitted from the tread through the rigid core 2 when the pneumatic tire 1 is rolling under runflat conditions with the tread inner surface of the pneumatic tire 1 in contact with the outer peripheral flange 2'' of the rigid core 2. The JIS hardness of the annular rubber pad 3 has a limit of 90°, and if this is exceeded, damage is likely to occur on the inner surface of the tread, which not only makes it impossible to complete the predetermined runflat mileage, but also makes it impossible to reuse the pneumatic tire 1. In this sense, It is preferable for the JIS hardness to be low, but if the value is lower than 60°, the annular rubber part itself will deform excessively, making it difficult to hold the rigid core 2 stably. The results of the tests using the rubber are summarized in Figure 2. Dynamic modulus of elasticity: Regarding the deformation resistance shown in Figure 2, the dynamic elastic modulus is similar to the rubber hardness as shown in Figure 3. The lower limit is 50Kgf/ cm2 ,
If the height exceeds 200Kgf/cm 2 , cracks will easily form in the inner corners of the circumferential groove of the annular rubber pad 3, which will hinder the stable holding of the rigid core 2 and make it impossible to complete continuous operation under runflat conditions. . The experimental results regarding this relationship are shown in FIG. Loss tangent Mainly related to the heat generation of the annular rubber pad 3, and if it exceeds 0.35, rubber deterioration is likely to occur due to significant temperature rise.
It should be noted that a loss tangent of less than 0.10 cannot be put to practical use in carbon black formulations. Regarding this relationship, Figure 4 shows the results of an investigation into the influence of heat generation. In the above experiment, the deformation resistance of the annular rubber pad 3 was tested by applying a runflat tire according to the present invention to a test drum at a load of 4000 kg and a speed of 4000 kg.
The tire was run flat at a speed of 35 km/hr, and judgment was made based on the distance at which it became impossible to run due to a reduction in the holding effect of the rigid core 2 due to the deformation of the annular rubber pad 3. Regarding the cushioning effect, the pneumatic tire 1 was tested in the same manner.
The cut resistance was evaluated based on the running distance at which runflat running became unstable due to cracks occurring at the corners of the circumferential groove of the annular rubber pad 3. (Example) In the illustrated example using a tubeless tire of tire size 13/80R20, the inner diameter d of the annular rubber pad 3 is:
Since the outer diameter D of flat base R 1 is 508 mm, it is 505 mm, which is 99.4% of this, and the width w is 163 mm, which is 107.9% of this, since the distance W between the inner surfaces of the bead parts of tire 1 is 151 mm. Since the height H of the rigid core 2 is 158 mm, t 1 is 15 mm, which is 9.5% of this. It is preferable that both end surfaces of the annular rubber pad 3 substantially follow the inner surface shape of the bead portion of the pneumatic tire 1 as shown in the figure, so the width w is shown as an average width. As for the rubber physical properties of the annular rubber pad 3, the JIS hardness is 70°, the dynamic elastic modulus is 175Kgf/cm 2 , and the loss tangent is
0.252 was used. On the other hand, a circumferential groove 3' is formed on the outer periphery of the annular rubber pad 3 so that the inner circumferential flange 2' of the rigid core 2 is located in the center of the width of the rim R, that is, in the central area of the flat base R1. Both sides of the inner peripheral flange 2' of No. 2 shall have a groove width and a groove depth to which they substantially fit, and here the width b of the peripheral groove 3'
is 99.5 mm, the width B of the inner flange 2' is 100 mm, the groove depth g is 13 mm, and the side thickness S of the inner flange 2'
is 10mm. Incidentally, the groove depth g is preferably set in a range of 50 to 150%, more preferably 80 to 135%, of the side surface thickness S of the inner peripheral flange 2'. The assembled inner diameter of the inner peripheral flange 2' is matched to the groove bottom diameter of the peripheral groove 3' of the annular rubber pad 3. The rim R comprises a flat space R 1 and a fixed flange F 1 at one axial end thereof and a mating flange F 2 at the other end, so that after assembly of the rigid core 2 in the internal cavity of the pneumatic tire 1, Combine this with the annular rubber pad 3, then pass the flat base R1 of the rim R through the annular rubber pad 3 from the bead on one side, and combine the through end and restrain it with the flange F2. easily done. Air is injected by arranging circumferentially continuous small grooves P, P' in the inner surface of the annular rubber pad 3 and the groove bottom of the circumferential groove 3', such as semicircular or rectangular shapes suitable for air passages, and making them communicate at multiple locations. By placing the liquid in the pneumatic tire 1, it can be easily injected into the pneumatic tire 1 through the diagonal hole 7 provided in the rigid core 2. Using a pneumatic tubeless tire of size 13/80R20 described above and a commercially available flat base type rim of size 9.00×20, a common rigid core is used for the embodiments of this invention, including the inclusion of the lubricant described above. Comparative tests were conducted on the influence of the shape and physical properties of the annular rubber pad in conjunction with the comparative example shown in Table 1, and the effects of the present invention were confirmed. The specifications and rubber properties of both annular rubber pads are summarized in Table 1 below.

【表】【table】

【表】【table】

【表】 なお、ランフラツト走行条件は、内圧0Kg/cm2
荷重4000Kg:速度35Km/hrで共通とした。 (発明の効果) この発明の軌道走行車両用ランフラツトタイヤ
は、空気入りタイヤの内部空洞に位置して、ラン
フラツト条件下で車輪荷重を空気入りタイヤの充
てん内圧から肩代わりして支持す剛性コアをリム
のフラツトベース上に保持固定する環状ゴムパツ
ドについてその外周面に剛性コアの内周フランジ
を緻密にはめ合わせる周溝を備え、剛性コアを安
定に保持固定するものとして、ランフラツト走行
時における剛性コアの左右への移動を阻止し環状
ゴムパツドの耐久性を維持し増しランフラツト走
行性能を向上させる。またとくにそのゴム物性値
の適合を図つたため、ランフラツト条件下に必要
とされる継続運行及び車両回送の距離を十分に確
保することができ、またこのような運行に由来す
る空気入りタイヤ自体の損傷が有利に回避でき、
ランフラツト機能回復のための修理のあと空気入
りタイヤの両使用に支障とならない。
[Table] Note that runflat running conditions are internal pressure 0 kg/cm 2
The load was 4000Kg and the speed was 35Km/hr. (Effects of the Invention) The run-flat tire for track running vehicles of the present invention has a rigid core that is located in the internal cavity of the pneumatic tire and supports the wheel load under run-flat conditions by taking over the filling internal pressure of the pneumatic tire. The annular rubber pad that is held and fixed on the flat base of the rim has a circumferential groove on its outer circumferential surface that tightly fits the inner peripheral flange of the rigid core, and is used to stably hold and fix the rigid core. This prevents the rubber pad from moving, maintains the durability of the annular rubber pad, and improves runflat running performance. In addition, by specifically adapting the physical properties of the rubber, it is possible to secure sufficient continuous operation and vehicle transfer distance required under runflat conditions, and the pneumatic tires themselves due to such operation can be Damage can be advantageously avoided,
After repair to restore runflat function, there is no problem in using both pneumatic tires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の断面図、また第2図は環状ゴ
ムパツドの硬度と対変形性、緩衝効果の関係のグ
ラフ、第3図は同じく動的弾性率と対変形性、耐
カツト性の関係グラフ、第4図は同じく損失正接
と発熱性の関係グラフである。 1……空気入りタイヤ、2……剛性コア、3…
…環状ゴムパツド、R……リム、R1……フラツ
トベース。
Figure 1 is a cross-sectional view of the example, Figure 2 is a graph of the relationship between the hardness of the annular rubber pad, resistance to deformation, and cushioning effect, and Figure 3 is a graph of the relationship between dynamic elastic modulus, resistance to deformation, and cut resistance. The graph shown in FIG. 4 is also a graph of the relationship between loss tangent and heat generation. 1...Pneumatic tire, 2...Rigid core, 3...
...Annular rubber pad, R...Rim, R1 ...Flat base.

Claims (1)

【特許請求の範囲】 1 チユーブレスタイプの空気入りタイヤと、フ
ラツトベースタイプのリムと、上記タイヤの一対
のビード部内面相互間にわたつて上記リムのフラ
ツトベースにはめ合わせた環状ゴムパツド及び、
この環状ゴムパツドのまわりにI型断面の金属製
セグメントを円環状に連結して上記リムと上記環
状ゴムパツドを介し一体化した剛性コアとの組立
体よりなるランフラツトタイプ車輪において、 上記環状ゴムパツドは、その外周面に剛性コア
の内周フランジを緊密にはめ合わせる周溝を備え
て剛性コアを安定に保持するとともに、JIS硬度
が60〜90°、20℃−2%の測定条件下での動的弾
性率が50〜200Kgf/cm2、同じく損失正接が0.125
〜0.350の各範囲内を占める、物性値を有するも
のであることを特徴とする、軌道走行車両用ラン
フラツトタイヤ車輪。
[Scope of Claims] 1. A tubeless type pneumatic tire, a flat base type rim, an annular rubber pad fitted to the flat base of the rim between the inner surfaces of a pair of bead portions of the tire, and
In a run-flat type wheel comprising an assembly of a rigid core which is formed by connecting metal segments having an I-shaped cross section in an annular manner around the annular rubber pad and integrating the rim through the annular rubber pad, the annular rubber pad has the following features: The outer circumferential surface has a circumferential groove that tightly fits the inner circumferential flange of the rigid core to hold the rigid core stably, and it also supports dynamic measurement under the measurement conditions of JIS hardness of 60 to 90° and 20°C - 2%. Elastic modulus is 50-200Kg f /cm 2 , loss tangent is 0.125
A runflat tire wheel for a track running vehicle, characterized in that it has physical property values within the range of ~0.350.
JP57134754A 1982-08-03 1982-08-03 Tyre wheel for heavy load Granted JPS5926308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57134754A JPS5926308A (en) 1982-08-03 1982-08-03 Tyre wheel for heavy load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57134754A JPS5926308A (en) 1982-08-03 1982-08-03 Tyre wheel for heavy load

Publications (2)

Publication Number Publication Date
JPS5926308A JPS5926308A (en) 1984-02-10
JPH0352361B2 true JPH0352361B2 (en) 1991-08-09

Family

ID=15135779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57134754A Granted JPS5926308A (en) 1982-08-03 1982-08-03 Tyre wheel for heavy load

Country Status (1)

Country Link
JP (1) JPS5926308A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631427B2 (en) * 2000-09-28 2005-03-23 住友ゴム工業株式会社 Heavy duty radial tire and rim assembly
CN100475506C (en) 2004-03-01 2009-04-08 株式会社普利司通 Process for repairing punctured pneumatic tire in tire-rim assembly and repairing system
JP4755943B2 (en) * 2006-06-06 2011-08-24 トピー工業株式会社 Air injection valve and vehicle wheel assembly
JP2011005918A (en) * 2009-06-24 2011-01-13 Sumitomo Rubber Ind Ltd Run flat tire assembly and support ring used for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546205A (en) * 1977-06-10 1979-01-18 Michelin & Cie Holding ring for use in tire
JPS58180307A (en) * 1982-04-16 1983-10-21 Bridgestone Corp Tire wheel for heavy load having double supporting means of wheel weight

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546205A (en) * 1977-06-10 1979-01-18 Michelin & Cie Holding ring for use in tire
JPS58180307A (en) * 1982-04-16 1983-10-21 Bridgestone Corp Tire wheel for heavy load having double supporting means of wheel weight

Also Published As

Publication number Publication date
JPS5926308A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
US4444122A (en) Primary suspension system for a railway car
US4878527A (en) Wheel rim and assembly of wheel rim and tire
JP3808858B2 (en) Support ring and tire assembly
US4212339A (en) Tire/wheel assembly with low molecular weight coolant-lubricant
JP3771548B2 (en) Support ring and tire assembly using the same
JP5478293B2 (en) Tires for new transportation vehicles
JPH0352361B2 (en)
GB2153308A (en) Resilient wheel for a railway car
JP3198050B2 (en) Tire and rim assembly for motorcycles
JPS60110504A (en) Wheel for car
JP2002512143A (en) Railcar wheels with improved damping characteristics
US5388624A (en) Vehicle drive wheel with tire and track driven thereby
JP5285520B2 (en) Run-flat tire assembly and support ring used therefor
JPH06270617A (en) Car wheel with ring-shaped core assembly
JPS6015207A (en) Puncture travelling device
JPS58180307A (en) Tire wheel for heavy load having double supporting means of wheel weight
US4696753A (en) Lubricant for a tire and wheel assembly
US4212491A (en) Resilient flanged wheel
JP3959985B2 (en) Brake discs for railway vehicles and bogies for railway vehicles
RU2085403C1 (en) Seemless rolled wheel for railway vehicles
JPS5920483B2 (en) air tire wheels
JPS6329732Y2 (en)
JP2011016431A (en) Run-flat tire assembly and support ring used therefor
JP5395526B2 (en) Run-flat tire assembly and support ring used therefor
EP3779222B1 (en) A disc brake