JPH0352292A - Heat radiation structure of multilayer printed wiring board - Google Patents
Heat radiation structure of multilayer printed wiring boardInfo
- Publication number
- JPH0352292A JPH0352292A JP1186011A JP18601189A JPH0352292A JP H0352292 A JPH0352292 A JP H0352292A JP 1186011 A JP1186011 A JP 1186011A JP 18601189 A JP18601189 A JP 18601189A JP H0352292 A JPH0352292 A JP H0352292A
- Authority
- JP
- Japan
- Prior art keywords
- wiring board
- heat
- printed wiring
- multilayer printed
- heat radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 10
- 230000017525 heat dissipation Effects 0.000 claims description 37
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 238000009825 accumulation Methods 0.000 abstract description 2
- 230000009931 harmful effect Effects 0.000 abstract 1
- 230000000191 radiation effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
多層プリント配線板の放熱構造に関し、多層プリント配
線板内の熱を外部に効果的に排出でき信頼性の高い回路
作動を保証し得る多層プリント配線板の放熱構造を提供
することを目的とし、
多層プリント配線板の内層に1個又は複数個のマイクロ
ヒートパイプを埋め込み、且つ該マイクロヒートパイプ
の配線板より突出する部分に放熱媒体を接続し、配m坂
内部からの放熱を促進せしめたことを特徴とする多層プ
リント配線板の放熱構造。[Detailed Description of the Invention] [Summary] Regarding the heat dissipation structure of a multilayer printed wiring board, there is a need for a multilayer printed wiring board that can effectively discharge heat within the multilayer printed wiring board to the outside and ensure highly reliable circuit operation. For the purpose of providing a heat dissipation structure, one or more micro heat pipes are embedded in the inner layer of a multilayer printed wiring board, and a heat dissipation medium is connected to the part of the micro heat pipe that protrudes from the wiring board. A heat dissipation structure for a multilayer printed wiring board characterized by promoting heat dissipation from inside the slope.
本発明は、電気絶縁性基板の外層の他に、内層にも電気
良導体金属による配線図形を有するいわゆる多層プリン
ト配線板の放熱対策に関する。The present invention relates to heat dissipation measures for a so-called multilayer printed wiring board that has wiring patterns made of electrically conductive metals not only on the outer layer but also on the inner layer of the electrically insulating board.
電子機器の急速な高精度・高密度高信頼性化への要求を
満足させるため、絶縁体(又は誘電体)と導電体とを層
状に積層形成し、各導電層間の電気的接続を行い、1つ
のシステムにまとめあげたいわゆる多層プリント配線板
が多用されている。In order to satisfy the rapid demand for high precision, high density, and high reliability in electronic devices, insulators (or dielectrics) and conductors are laminated in layers, and electrical connections are made between each conductive layer. So-called multilayer printed wiring boards that are integrated into one system are often used.
しかるに、電子部品の高集積化及びプリント配線板への
電子部品の実装化により、配線板単位面積当たりの発熱
量は著しく増加している。これらの電子部品から発生す
る熱は、従来の多層プリント配線板の要部断面を示す第
7図に示す如く電子部品51の表面から一部放熱される
もののその大部分はリード52を伝わりプリント配線板
53の内部に蓄積されてしまう。配線板内部に熱が蓄積
されると、電子回路が誤動作し易くなり、またプリント
配線板の基材(エボキシ材)の誘電率は第8図に示す如
く温度依存性が高いために高温度下では信号の伝播遅延
が起きてしまう。さらに、第9図に拡大して示すスルー
ホールめっき(銅)部54においては、配線板基部53
とめっき部54との熱膨張率の相違等からそのコーナ部
Aにクラックが生してしまう等の問題があった。However, with the increasing integration of electronic components and the mounting of electronic components on printed wiring boards, the amount of heat generated per unit area of the wiring board has significantly increased. The heat generated from these electronic components is partially radiated from the surface of the electronic component 51, as shown in FIG. This will accumulate inside the plate 53. If heat accumulates inside the wiring board, electronic circuits are likely to malfunction, and the dielectric constant of the printed wiring board base material (epoxy material) is highly temperature dependent as shown in Figure 8, so it cannot be used at high temperatures. This results in a signal propagation delay. Furthermore, in the through-hole plating (copper) portion 54 shown enlarged in FIG. 9, the wiring board base 53
There were problems such as cracks forming at the corner portion A due to the difference in thermal expansion coefficient between the plated portion 54 and the plated portion 54.
以上の点に鑑み本発明は、多層プリント配線板内部から
の放熱を促進して、従来問題となっていた内部蓄熱によ
る上記弊害を一掃し得る多層プリント配線板の放熱構造
を提供することを課題とする。In view of the above points, it is an object of the present invention to provide a heat dissipation structure for a multilayer printed wiring board that can promote heat dissipation from inside the multilayer printed wiring board and eliminate the above-mentioned disadvantages caused by internal heat accumulation, which has been a problem in the past. shall be.
上記課題を解決するために本発明によれば、多層プリン
ト配線板の内層に1個又は複数個のマイクロヒートバイ
プを埋め込み、且つ該マイクロヒートバイブの配線板よ
り突出する部分に放熱媒体を接続し、配線仮内部からの
放熱を促進せしめたことを構戒上の特徴とする。In order to solve the above problems, according to the present invention, one or more micro heat vibs are embedded in the inner layer of a multilayer printed wiring board, and a heat dissipation medium is connected to a portion of the micro heat vibes that protrudes from the wiring board. A structural feature is that it promotes heat dissipation from inside the wiring.
多層プリント配線板内に蓄積し得る熱が内部に埋め込ん
だマイクロヒートパイプを介して外部に運ばれ、配線板
より突出するマイクロヒートパイプに接続された放熱媒
体を介して外気に拡散される。これにより配線板内部は
適切に冷却され、熱害から多層プリント配線板が保護さ
れる。Heat that can accumulate within the multilayer printed wiring board is carried to the outside through micro heat pipes embedded inside and diffused into the outside air through a heat dissipation medium connected to the micro heat pipes that protrude from the wiring board. This allows the inside of the wiring board to be appropriately cooled and protects the multilayer printed wiring board from heat damage.
(実施例〕 以下、図示実施例に基づき本発明を説明する。(Example〕 The present invention will be explained below based on illustrated embodiments.
第1図は本発明に係る多層プリント配線板の放熱構造の
一実施例のプリント配線板を正面より見た図、第2図は
第1図のプリント配線板の内層部を部分的に拡大した図
、第3図は同プリント配線板の要部破断斜視図、第4図
は同プリント配線板の要部側面断面図、第5図は放熱構
造の要部を威す放熱媒体の一例を示す要部破断斜視図、
第6図は別の放熱媒体の要部破断斜視図である。Figure 1 is a front view of a printed wiring board of an embodiment of the heat dissipation structure for a multilayer printed wiring board according to the present invention, and Figure 2 is a partially enlarged view of the inner layer of the printed wiring board in Figure 1. Figure 3 is a cutaway perspective view of the main parts of the printed wiring board, Figure 4 is a side sectional view of the main parts of the printed wiring board, and Figure 5 shows an example of a heat dissipation medium that affects the main parts of the heat dissipation structure. Main part cutaway perspective view,
FIG. 6 is a cutaway perspective view of a main part of another heat dissipation medium.
第1図乃至第4図を参照すると、本実施例の多層プリン
ト配線板1内部には放熱用のマイクロヒートパイプ2が
埋め込まれる。ここで、ヒートパイプについて簡単に説
明すると、ヒートパイプは内表面に金網や細かい溝等で
構威されるウイック層を有する両端を閉じた中空円筒か
ら戒り、内部には凝縮性液体(作動液)が封入されてい
る。ヒートパイプはその作動液の液相と気相の変化に伴
う潜熱を仲介として流れによって大量の熱を運ぶことに
より周りを冷却せんとする伝熱素子であり、構造が簡単
で、単位面積当りの伝熱量が大きく、作動液を変えるこ
とにより広い温度範囲で使用できるという特徴を有する
。なお、本明細書においては外径が0.8閣程度である
極めて微細なヒートパイプを用いるため特にマイクロヒ
ートパイプと呼んでいる。Referring to FIGS. 1 to 4, a micro heat pipe 2 for heat dissipation is embedded inside the multilayer printed wiring board 1 of this embodiment. Here, to briefly explain about heat pipes, heat pipes are hollow cylinders with both ends closed and have a wick layer made of wire mesh or fine grooves on the inner surface. ) is included. A heat pipe is a heat transfer element that attempts to cool the surrounding area by transporting a large amount of heat through the flow using the latent heat that accompanies changes in the liquid and gas phases of the working fluid. It has a large amount of heat transfer and can be used in a wide temperature range by changing the working fluid. Note that in this specification, an extremely fine heat pipe with an outer diameter of about 0.8 mm is used, so it is particularly referred to as a micro heat pipe.
このマイクロヒートパイプ2は配線板lに対して、配線
板1がラック等に装着される場合のその装着方向(第1
図にあっては左方のコネクタ側から右方側)に略平行に
等間隔に複数個配設される。This micro heat pipe 2 is connected to the wiring board l in the mounting direction (first direction) when the wiring board 1 is mounted on a rack or the like.
In the figure, a plurality of connectors are arranged approximately parallel to each other at equal intervals (from the left connector side to the right side).
第3図に示す如く、マイクロヒートパイプ2の設置間隔
Pはスルーホール3の設置間隔Qと等しく(例えば2.
54mmピッチ)して両者が交互に位置するように配置
すれば、相互に干渉し合うという問題も起きない。なお
、言うまでもないが、配線板lに対してその全域に亘り
全て等間隔にマイクロヒートパイプを埋めつくす必要は
全くなく、特に必要と思われる(あるいは必要な)例え
ばLSIやパワートランジスタ等の発熱部分のみ重点的
に冷却rるために当該配線板部分にのみマイクロヒート
パイプを埋設すればよい。As shown in FIG. 3, the installation interval P of the micro heat pipes 2 is equal to the installation interval Q of the through holes 3 (for example, 2.
If they are arranged alternately with a pitch of 54 mm, the problem of mutual interference will not occur. Needless to say, it is not necessary to completely fill the entire wiring board with micro heat pipes at equal intervals, and it is not necessary to fill the entire area of the wiring board with micro heat pipes at equal intervals. In order to provide focused cooling only, it is sufficient to embed a micro heat pipe only in the wiring board section.
このように埋設されたマイクロヒートパイプ2は、放熱
のためにその他端(第1図においては右方側)が配線板
1より突出せしめられ、その突出部分には放熱媒体4が
接続される。この放熱媒体4については後述する。The other end (the right side in FIG. 1) of the micro heat pipe 2 buried in this way is made to protrude from the wiring board 1 for heat radiation, and the heat radiation medium 4 is connected to the protruding portion. This heat dissipation medium 4 will be described later.
以上の構或により、発熱する電子部品51からの熱がリ
一ド52を介して配線板1内部に伝導しても、配線板1
内部に埋設したマイクロヒートパイプ2の吸熱・放熱作
用によりその熱を外部に効果的に排出でき、従ってこの
高い放熱効果によりこの多層プリント配線板から戒る回
路基板の作動の信頼性が著しく向上する。With the above structure, even if the heat from the electronic component 51 that generates heat is conducted into the wiring board 1 through the lead 52, the wiring board 1
The heat can be effectively discharged to the outside by the heat absorption and heat dissipation action of the micro heat pipe 2 buried inside, and therefore, this high heat dissipation effect significantly improves the reliability of the operation of the circuit board from this multilayer printed wiring board. .
更に本実施例においては、マイクロヒートパイプ2を単
に配線板l内部に埋め込むに止まらず、内層のアースパ
ターン(洞箔層)5上に溶接等により接着するようにし
ている。なお、このマイクロヒートバイプ2の埋め込み
は内層銅箔のパターンニング前に銅箔にマイクロヒート
パイプ2を2.54mmピッチで配置して溶接し、その
後パターンニングを行えばよく、その後は通常の多層プ
リント配線板の製造法と同じである。Furthermore, in this embodiment, the micro heat pipe 2 is not merely embedded inside the wiring board 1, but is also bonded onto the inner layer earth pattern (hole foil layer) 5 by welding or the like. The micro heat pipes 2 can be embedded by arranging and welding the micro heat pipes 2 on the copper foil at a pitch of 2.54 mm before patterning the inner layer copper foil, and then performing the patterning. This is the same method for manufacturing printed wiring boards.
このマイクロヒートパイプ2のアースパターン5上への
溶接により、アース領域が実質的に安定拡大し、これに
より高いシールド効果が期待できる。By welding the micro heat pipe 2 onto the ground pattern 5, the ground area can be substantially stably expanded, and thereby a high shielding effect can be expected.
ここで、話が前後するが、マイクロヒートパイプ突出部
に接続される放熱媒体について簡単に説明するに、第5
図を参照するとこの放熱媒体14は上下対称形状の一組
の板材14a.14bから戒り、これら両板材14a,
14bに形威された半円筒形状の凹溝15に配線板1か
ら突出するマイクロヒートパイプ2を嵌め込みねし16
等の締結部材により機械的にこれを挟着するものである
。板材14a.14bは熱伝導性の優れるアルミニウム
等で形成でき、空気中への放熱性を高めるために多数の
放熱フィン部17を有する。Here, the story goes back and forth, but to briefly explain the heat dissipation medium connected to the micro heat pipe protrusion, the fifth
Referring to the figure, this heat dissipation medium 14 consists of a pair of vertically symmetrical plates 14a. From 14b, these two plates 14a,
The micro heat pipe 2 protruding from the wiring board 1 is fitted into the semi-cylindrical groove 15 formed by the screw 14b.
This is mechanically clamped using fastening members such as. Plate material 14a. 14b can be made of aluminum or the like having excellent thermal conductivity, and has a large number of heat dissipating fins 17 to improve heat dissipation into the air.
次に、別の形式の放熱媒体を示す第6図を参照すると、
この放熱媒体24はマイクロヒートパイプ2の突出部が
挿着される板体25と、この板体25を上下方向及び側
方から囲むように扶持する放熱体26とから戒る。板体
25は例えば銅で形或でき、板体25とマイクロヒート
パイプ2とは導電性接着剤あるいは半田付け等により接
続される。放熱体26は例えばアルξニウムで形或でき
、第5図の放熱媒体l4と同様の多数の放熱フィン部2
7を有する。Next, referring to FIG. 6, which shows another type of heat dissipation medium,
The heat dissipation medium 24 is separated from a plate 25 into which the protruding portion of the micro heat pipe 2 is inserted, and a heat dissipation body 26 that supports the plate 25 so as to surround it from above and below and from the sides. The plate 25 can be made of copper, for example, and the plate 25 and the micro heat pipe 2 are connected using a conductive adhesive, soldering, or the like. The heat sink 26 can be made of aluminum, for example, and includes a large number of heat sinks 2 similar to the heat sink 14 in FIG.
It has 7.
以上、放熱媒体として2つの例を挙げて説明したが、本
発明の思想自体は何らこれらに限定されるものではなく
、従って様々の態様のものが当業者により想到されよう
。Although two examples of the heat dissipation medium have been described above, the idea of the present invention is not limited to these in any way, and therefore, those skilled in the art will be able to come up with various embodiments.
以上の如く本発明によれば、多層プリント配線板内に埋
設したマイクロヒートパイプと放熱媒体とにより配線板
内部の熱を外部に極めて効果的に排出でき、上記従来の
熱害を一掃できる。As described above, according to the present invention, the heat inside the wiring board can be extremely effectively discharged to the outside by the micro heat pipe and the heat dissipation medium embedded in the multilayer printed wiring board, and the above-mentioned conventional heat damage can be wiped out.
第1図は本発明に係る多層プリント配線板の放熱構造の
一実施例のプリント配線板を正面より見た図、
第2図は第1図のプリント配線板の内層部を部分的に拡
大した図、
第3図はプリント配線板の要部破断斜視図、第4図はプ
リント配線板の要部側面断面図、第5図は放熱構造の要
部を威す放熱媒体の一例を示す要部破断斜視図、
第6図は別の放熱媒体の要部破断斜視図、第7図は従来
のプリント配線板の要部側面断面図、
第8図はプリント配線板基材の誘電率の温度特性図、
第9図はスルーホールめっき部のコーナ部分の拡大図で
ある。
1・・・多層プリント配線板、
2・・・マイクロヒートパイプ、
4・・・放熱媒体、 14・・・放熱媒体、2
4・・・放熱媒体。
3
多層プリント配線板の放熱構造の実施例内層部の部分的
拡大図
第2図
4・・・放熱媒体
プリント配線板の要部破断斜視図
第3図
第
4
図
52・・・4ノード
↑
↑
f
↑
従来のプリント配線板の要部断面側面図1!7図
プリント配線板基材の誘電率の温度特性図第8図
スルーホールめっき部のコーナ部分の拡大図第
9
図
53・・・配線板
54・・・スルーホールめっき部Figure 1 is a front view of a printed wiring board of an embodiment of the heat dissipation structure for a multilayer printed wiring board according to the present invention, and Figure 2 is a partially enlarged view of the inner layer of the printed wiring board in Figure 1. Fig. 3 is a cutaway perspective view of the main part of the printed wiring board, Fig. 4 is a side sectional view of the main part of the printed wiring board, and Fig. 5 is the main part showing an example of the heat dissipation medium that affects the main part of the heat dissipation structure. Figure 6 is a broken perspective view of the main part of another heat dissipation medium, Figure 7 is a side sectional view of the main part of a conventional printed wiring board, and Figure 8 is the temperature characteristics of the dielectric constant of the printed wiring board base material. Figure 9 is an enlarged view of the corner portion of the through-hole plating section. DESCRIPTION OF SYMBOLS 1... Multilayer printed wiring board, 2... Micro heat pipe, 4... Heat dissipation medium, 14... Heat dissipation medium, 2
4... Heat dissipation medium. 3 Partially enlarged view of the inner layer part of an embodiment of the heat dissipation structure of a multilayer printed wiring board Fig. 2 4... A broken perspective view of the main part of the heat dissipation medium printed wiring board Fig. 3 Fig. 4 Fig. 52... 4 nodes ↑ ↑ f ↑ Cross-sectional side view of the main part of a conventional printed wiring board 1!7 Figure 7 Temperature characteristic diagram of dielectric constant of the printed wiring board base material Figure 8 Enlarged view of the corner part of the through-hole plating part Figure 9 Figure 53...Wiring Plate 54...Through hole plating part
Claims (1)
のマイクロヒートパイプ(2)を埋め込み、且つ該マイ
クロヒートパイプ(2)の配線板(1)より突出する部
分に放熱媒体(4,14,24)を接続し、配線板内部
からの放熱を促進せしめたことを特徴とする多層プリン
ト配線板の放熱構造。1. One or more micro heat pipes (2) are embedded in the inner layer of the multilayer printed wiring board (1), and a heat dissipation medium (4, 14) is embedded in the part of the micro heat pipe (2) that protrudes from the wiring board (1). , 24) are connected to promote heat radiation from inside the wiring board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1186011A JPH0352292A (en) | 1989-07-20 | 1989-07-20 | Heat radiation structure of multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1186011A JPH0352292A (en) | 1989-07-20 | 1989-07-20 | Heat radiation structure of multilayer printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0352292A true JPH0352292A (en) | 1991-03-06 |
Family
ID=16180818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1186011A Pending JPH0352292A (en) | 1989-07-20 | 1989-07-20 | Heat radiation structure of multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0352292A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009143682A1 (en) * | 2008-05-27 | 2009-12-03 | 华为技术有限公司 | A heat dissipating device for a circuit board with embedded components and a fabrication method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5952666B2 (en) * | 1977-01-24 | 1984-12-20 | 堺化学工業株式会社 | Manufacturing method of granular stabilizer |
-
1989
- 1989-07-20 JP JP1186011A patent/JPH0352292A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5952666B2 (en) * | 1977-01-24 | 1984-12-20 | 堺化学工業株式会社 | Manufacturing method of granular stabilizer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009143682A1 (en) * | 2008-05-27 | 2009-12-03 | 华为技术有限公司 | A heat dissipating device for a circuit board with embedded components and a fabrication method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5371653A (en) | Circuit board, electronic circuit chip-mounted circuit board and circuit board apparatus | |
US7254036B2 (en) | High density memory module using stacked printed circuit boards | |
CA1210519A (en) | Circuit module with enhanced heat transfer and distribution | |
US7646093B2 (en) | Thermal management of dies on a secondary side of a package | |
JP2006108685A (en) | Heat sink for surface mounting | |
US6977346B2 (en) | Vented circuit board for cooling power components | |
TW201630496A (en) | Printed circuit board with heat radiation structure and method manufacturing same | |
KR20160120486A (en) | Circuit board and method of manufacturing the same | |
JP2003188565A (en) | Heat dissipation structure of surface mount electronic component | |
JPS5893264A (en) | Cooler for device | |
JPH0352292A (en) | Heat radiation structure of multilayer printed wiring board | |
JP3193142B2 (en) | Board | |
US20060002092A1 (en) | Board mounted heat sink using edge plating | |
GB2137422A (en) | Printed circuit board | |
JPH065994A (en) | Multilayer printed wiring board | |
JPH07321471A (en) | Multilayer board | |
JPH0669613A (en) | Printed wiring board | |
JPH1093237A (en) | Electronic substrate | |
JP2006135202A (en) | Heat radiating structure for electronic appliance | |
GB2335075A (en) | Heat transfer from a single electronic device | |
JPH02155288A (en) | Printed wiring board | |
US6301120B1 (en) | Circuit board apparatus | |
JPH05235496A (en) | Printed wiring board with metal plate | |
JPS63217195A (en) | Composite heat pipes | |
KR20230079142A (en) | Separation of ground conductors for thermal insulation of quantum circuits |