JPH0352245B2 - - Google Patents

Info

Publication number
JPH0352245B2
JPH0352245B2 JP7197881A JP7197881A JPH0352245B2 JP H0352245 B2 JPH0352245 B2 JP H0352245B2 JP 7197881 A JP7197881 A JP 7197881A JP 7197881 A JP7197881 A JP 7197881A JP H0352245 B2 JPH0352245 B2 JP H0352245B2
Authority
JP
Japan
Prior art keywords
frequency
horn
rotationally symmetrical
antenna device
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7197881A
Other languages
Japanese (ja)
Other versions
JPS57186804A (en
Inventor
Takeo Inoe
Kenichi Kagoshima
Katsuhiko Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP7197881A priority Critical patent/JPS57186804A/en
Publication of JPS57186804A publication Critical patent/JPS57186804A/en
Publication of JPH0352245B2 publication Critical patent/JPH0352245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Description

【発明の詳細な説明】 この発明はオフセツトアンテナなど非回転対称
鏡面を用いたアンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna device such as an offset antenna using a rotationally non-symmetrical mirror surface.

従来この種の装置として、第1図に示すものが
あつた。図において1は非回転対称のパラボラ反
射鏡の鏡面で、中心はM、開口直径dで、軸2を
回転対称軸とした二点鎖線でパラボラ(放物面)
10の一部(パラボラの直径D、パラボラの焦点
距離F)、3は前記パラボラ10の焦点、4は給
電ホーンである。5は給電ホーン4のホーン軸で
焦点3が鏡面1の中心Mに引かれた線と一致させ
て設定されている。
A conventional device of this type is shown in FIG. In the figure, 1 is the mirror surface of a non-rotationally symmetrical parabolic reflecting mirror, the center is M, the aperture diameter is d, and the chain double-dashed line indicates the parabolic surface with axis 2 as the axis of rotational symmetry.
10 (parabola diameter D, parabola focal length F), 3 is the focal point of the parabola 10, and 4 is a power feeding horn. Reference numeral 5 denotes the horn axis of the power feeding horn 4, and the focal point 3 is set to coincide with a line drawn at the center M of the mirror surface 1.

なお、X,Y,Zは説明の都合上設けた直交す
る三つの軸方向を示し、θ0は軸1とホーン軸5を
はさむ角度、θc及びθ′cは焦点3から鏡面1を見
た仰角を示す。また、x,y,zは鏡面1の開口
面の中心から測定したx,y,z方向の大きさを
示す。この種のアンテナの動作は公知であり、例
えば文献1“DePolarization Properties of
offset Reflector Antennas,TA−SHING
CHU etal,IEEE TRANS.AP−21,No.3,
MAY,1973,P.339−345”がある。このアンテ
ナの特性例を第2図に示す。第2図AはYZ面内
の放射パターンを示し、第2図BはXZ面内の放
射パターンを示す。図において実線は右旋円偏波
の放射パターン、一点鎖線は左旋円偏波の放射パ
ターン、△G0はアンテナ正面方向の利得低下量
を示す。
Note that X, Y, and Z indicate three orthogonal axial directions provided for convenience of explanation, θ 0 is the angle between axis 1 and horn axis 5, and θc and θ′c are when looking at mirror surface 1 from focal point 3. Indicates the angle of elevation. Further, x, y, and z indicate the sizes in the x, y, and z directions measured from the center of the aperture surface of the mirror surface 1. The operation of this type of antenna is well known, for example in the document 1 “DePolarization Properties of
offset Reflector Antennas,TA−SHING
CHU etal, IEEE TRANS.AP−21, No. 3,
MAY, 1973, P.339-345". An example of the characteristics of this antenna is shown in Figure 2. Figure 2A shows the radiation pattern in the YZ plane, and Figure 2B shows the radiation pattern in the XZ plane. In the figure, the solid line indicates the radiation pattern of right-handed circularly polarized waves, the dashed-dotted line indicates the radiation pattern of left-handed circularly polarized waves, and ΔG 0 indicates the amount of gain reduction in the front direction of the antenna.

次に動作について説明する。第1図の給電ホー
ン4を円偏波で給電した場合、オフセツトアンテ
ナの発生する交差偏波成分のため、第2図に示す
ようにアンテナの指向方向に対しYZ平面の放射
パターンのずれ(以下ビームシフトという)が発
生する。このビームシフトは、右旋円偏波と左旋
円偏波では異なるため、いわゆるビームセパレー
シヨンを生じ、例えばこの形式のアンテナを衛星
通信用アンテナに適用した場合以下の欠点を呈す
る。即ち、衛星通信では一般には下り回線と上り
回線は異なる周波数帯で、かつ互いに直交関係の
円偏波が用いられている。インテルサツト(国際
商業衛星通信機構)では下り回線として4GHz帯
の右旋円偏波が、上り回線として6GHz帯の左旋
円偏波が用いられている。このようなシステムに
おいて、前記のアンテナを用いると、4GHz帯の
利得最大方向と6GHz帯の利得最大方向が異な
る。一般にアンテナ指向方向の微少な角度ずれ△
θによるアンテナの相対利得低下△Gは次式で示
される。
Next, the operation will be explained. When the feeding horn 4 shown in Fig. 1 is fed with circularly polarized waves, due to cross-polarized components generated by the offset antenna, the radiation pattern on the YZ plane shifts ( (hereinafter referred to as beam shift) occurs. Since this beam shift is different for right-handed circularly polarized waves and left-handed circularly polarized waves, so-called beam separation occurs, and when this type of antenna is applied to a satellite communication antenna, for example, the following drawbacks occur. That is, in satellite communications, downlink and uplink generally use different frequency bands and circularly polarized waves that are orthogonal to each other. Intelsat (International Commercial Satellite Communications Organization) uses right-handed circularly polarized waves in the 4GHz band for downlinks, and left-handed circularly polarized waves in the 6GHz band for uplinks. In such a system, when the antenna described above is used, the maximum gain direction in the 4 GHz band is different from the maximum gain direction in the 6 GHz band. Generally, a slight angular deviation in the antenna pointing direction△
The relative gain reduction ΔG of the antenna due to θ is expressed by the following equation.

△G=−12(△θ2/Θ3),dB ここで、θ3は3dB幅(対象とする周波数に対す
るいわゆるビーム幅) 前記ビームシフト量はオフセツトアンテナの発
生する交差偏波成分により定まり、文献1による
と、例えば第1図のθ0が51.3゜、θcが51.3゜、F/D
が0.4の場合ビーム幅の13%になる。今、アンテ
ナは右旋/左旋のビームの中心を指向していると
考えて、第2図の△G0に相当する利得低下を上
式で求めるとその値は0.2dBとなる。
△G=-12 (△θ 23 ), dB Here, θ 3 is 3 dB width (so-called beam width for the target frequency) The amount of beam shift is determined by the cross-polarized wave component generated by the offset antenna. According to Document 1, for example, θ 0 in Fig. 1 is 51.3°, θc is 51.3°, F/D
When is 0.4, it becomes 13% of the beam width. Now, assuming that the antenna is pointing at the center of the right-handed/left-handed beam, the gain reduction corresponding to △G 0 in Figure 2 is calculated using the above formula, and the value is 0.2 dB.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、送・受信波の周波
数帯が異なつておりかつ送・受信波の偏波が互い
に直交した円偏波を利用する通信システムのアン
テナとして、各帯域専用の給電ホーンと周波数選
択性を有する反射鏡とから構成される一次放射器
を用いてオフセツトアンテナを構成することによ
りオフセツトアンテナ固有のビームシフトによる
利得の低下を避けることができるアンテナ装置を
提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and utilizes circularly polarized waves in which the frequency bands of the transmitted and received waves are different and the polarizations of the transmitted and received waves are orthogonal to each other. As an antenna for a communication system, by configuring an offset antenna using a primary radiator consisting of a feeding horn dedicated to each band and a reflector with frequency selectivity, it is possible to reduce the gain due to the beam shift inherent in the offset antenna. The purpose of the present invention is to provide an antenna device that can avoid such problems.

以下この発明の一実施例を第3図にもとずいて
説明する。
An embodiment of the present invention will be described below with reference to FIG.

図において4aは周波数F1用の給電ホーン、
4bは周波数F2用の給電ホーン、6はF2を反射
しF1を通過する周波数選択性の平面板状の反射
板、30は反射板6の反射により生ずる焦点3の
イメージ焦点である。その他の符号は第1図のも
のと同一又は相当品である。
In the figure, 4a is a power supply horn for frequency F1 ;
4b is a feeding horn for frequency F2 ; 6 is a frequency-selective planar reflector that reflects F2 and passes F1 ; and 30 is an image focal point of focal point 3 generated by the reflection of reflector 6. Other symbols are the same as or equivalent to those in Fig. 1.

一般に第4図に示すように反射鏡11にむけて
置かれた給電ホーン41を焦点31からその鏡軸
21に直交する面内で△yだけオフセツトすると
(この場合のホーン軸は22となる)、反射鏡11
からのビーム23は次式で定まる角度△θだけ鏡
軸21に対しずれる。(文献;Microwave
Antenna Theory and Design:SiIven) △θ=k ta n-1△y/F 第4図のものは、回転対称形の鏡面11を有す
る例でありる。こゝで k…比例係数 △y…y軸方向の焦点31からのオフセツト量 F…主反射鏡の焦点距離 D…直径 である。
Generally, as shown in FIG. 4, if the feeding horn 41 placed facing the reflecting mirror 11 is offset from the focal point 31 by Δy in a plane perpendicular to the mirror axis 21 (the horn axis in this case is 22). , reflecting mirror 11
The beam 23 from is shifted from the mirror axis 21 by an angle Δθ determined by the following equation. (Literature; Microwave
Antenna Theory and Design: Siven) △θ=k tan -1 △y/F The one in FIG. 4 is an example having a rotationally symmetrical mirror surface 11. Here, k...proportionality coefficient △y...offset amount from the focal point 31 in the y-axis direction F...focal length of the main reflecting mirror D...diameter.

なおビームのずれ方向は給電ホーン41のオフセ
ツト方向と同一平面内(この場合、yz面内)と
ある。
Note that the beam shift direction is in the same plane as the offset direction of the feeding horn 41 (in this case, in the yz plane).

以上のようにホーン軸を鏡軸からずらせること
によりビームの方向をずらすことができることを
利用して、第2図に示すyz平面内における右旋
電波の放射パターンと左旋電波の放射パターンの
ずれ、つまりビームセパレーシヨンをなくすよう
次のようにして補正する。
Taking advantage of the fact that the direction of the beam can be shifted by shifting the horn axis from the mirror axis as described above, the deviation between the radiation pattern of the right-handed radio wave and the radiation pattern of the left-handed radio wave in the yz plane shown in Figure 2 can be adjusted. , that is, the beam separation is corrected as follows.

第3図に示すように、右旋用給電ホーン4aと
左旋用給電ホーン4bを反射板6を介して配置
し、それぞれの給電ホーン4a,4bによつて生
ずる鏡面1からの放射ビームが一致するようそれ
ぞれの給電ホーン4a,4bの給電位相の中心を
xy面に対し焦点3及びイメージ焦点30の位置
から所要量オフセツトして配置する。反射板6を
介して2個の給電ホーン4a,4bを配置するの
は、ビームシフトを補正するのに必要な各々の給
電ホーンのオフセツト量△y1,△y2は以下の計算
で示すように大きな値でないので、反射板6がな
いと2個の給電ホーン4a,4bを重ねて配置せ
ねばならないことになり、物理的に配置不可能な
のに対し、反射板6を用いF1波は反射させその
給電位相中心をイメージ焦点30の近傍に、また
F2波はそのまゝ通過させ焦点3の近傍にその給
電位相中心をもつてくるようにすると2個の給電
ホーン4a,4bをビームセパレーシヨンを起こ
さない所定位置に物理的に配置することが出来
る。
As shown in FIG. 3, a right-handed feeding horn 4a and a left-handed feeding horn 4b are arranged with a reflection plate 6 in between, so that the radiation beams from the mirror surface 1 generated by the respective feeding horns 4a and 4b coincide. The center of the power supply phase of each power supply horn 4a, 4b is
The focal point 3 and the image focal point 30 are offset by a required amount with respect to the xy plane. The reason for arranging the two feeding horns 4a and 4b through the reflector 6 is that the offset amounts △y 1 and △y 2 of each feeding horn necessary to correct the beam shift are calculated as shown below. is not a large value, so without the reflector 6, the two feeding horns 4a and 4b would have to be placed one on top of the other, which would be physically impossible, but with the reflector 6, the F1 wave is reflected. and its feeding phase center is near the image focus 30, and
If the F2 wave is allowed to pass through as is and its feeding phase center is brought to the vicinity of the focal point 3, the two feeding horns 4a and 4b can be physically placed at predetermined positions that will not cause beam separation. I can do it.

所要オフセツト量の計算結果(第3図参照)に
ついて示す。
The calculation results of the required offset amount (see FIG. 3) are shown below.

θ0=51.3゜,θ2=51.3°,F/D=0.4の場合,
△y=0.1波長となる。
When θ 0 = 51.3°, θ 2 = 51.3°, F/D = 0.4,
Δy=0.1 wavelength.

直径(d)=4mのオフセツトパラボラアンテナ
の場合 F=4GHzでは △y=7.5mm F=6GHzでは △y=5mm こゝで右旋回給電ホーンと左旋用給電ホーン
は、xy面に対し同一方向にオフセツトするが、
これは周波数選択性反射板が反射するF2の周波
数に対し入射円偏波を逆旋に変換して反射するた
めである。
In the case of an offset parabolic antenna with diameter (d) = 4 m, at F = 4 GHz, △y = 7.5 mm, at F = 6 GHz, △y = 5 mm. Here, the right-handed feed horn and the left-handed feed horn are the same with respect to the xy plane. offset in the direction,
This is because the frequency-selective reflector converts the incident circularly polarized wave into anti-rotation for the F2 frequency reflected and reflects it.

なお、給電ホーンのxy面に対するオフセツト
の方向は給電ホーンの使用している円偏波の旋回
方向によつて一意的に定まる。
Note that the offset direction of the feeding horn with respect to the xy plane is uniquely determined by the direction of rotation of the circularly polarized wave used by the feeding horn.

以上のように、周波数選択性反射板によつて2
つの給電ホーンの給電位相中心の位置を離れた位
置に形成するようにしたので、2個の給電ホーン
4a,4bを所要位置に配置してビームセパレー
シヨンをなくすことができる。
As mentioned above, by using the frequency selective reflector, 2
Since the feeding phase centers of the two feeding horns are formed at separate positions, the two feeding horns 4a and 4b can be placed at desired positions and beam separation can be eliminated.

またここで提供するアンテナ装置の他の利点と
して、給電ホーンを各帯域専用に設計できるの
で、例えばデユアルモードホーンなど廉価でかつ
回転対称性を有するビームを放射するホーンを使
用できることが挙げられる。
Another advantage of the antenna device provided herein is that the feeding horn can be designed specifically for each band, so that an inexpensive horn that emits a beam with rotational symmetry, such as a dual mode horn, can be used.

なお第3図の実施例では平面板状の周波数選択
性反射板6の場合について説明したがいわゆるオ
フセツトカセグレン形式のアンテナへの適用を考
慮して、曲面形状の周波数選択性反射板を用いて
も同様の効果が得られる。
In the embodiment shown in FIG. 3, a planar plate-shaped frequency-selective reflector 6 was explained, but in consideration of application to a so-called offset cassegrain type antenna, a curved-shaped frequency-selective reflector was used. A similar effect can be obtained.

以上のように、この発明によれば、互いに直交
関係のある2つの円偏波を利用する例えば衛星通
信システムにおいていわゆるオフセツトパラボラ
アンテナなど非回転対称鏡面をもちいるアンテナ
装置に、周波数選択性の反射板を介在させた一対
の給電ホーンから構成される一次放射器をオフセ
ツト給電し、かつ前記一対のホーンの各々をアン
テナ鏡軸を含む対称面(第3図のxy面)に対し
オフセツト(偏位)させて配置せしめ、ホーンの
オフセツト(偏位)によるビームシフトにより非
回転対称鏡面固有で発生するビームシフトを補正
するように構成したので、ビームシフトによる利
得低下のない高性能のアンテナ装置が得られる効
果がある。
As described above, according to the present invention, it is possible to add frequency selectivity to an antenna device that uses a non-rotationally symmetrical mirror surface, such as a so-called offset parabolic antenna in a satellite communication system, which uses two circularly polarized waves that are orthogonal to each other. A primary radiator consisting of a pair of feeding horns with a reflector interposed is fed with offset power, and each of the pair of horns is offset (polarized) with respect to a plane of symmetry including the antenna mirror axis (xy plane in Fig. 3). The structure is such that the beam shift caused by the horn offset (deviation) corrects the beam shift that occurs due to the non-rotationally symmetric mirror surface, so a high-performance antenna device that does not suffer from loss of gain due to beam shift can be achieved. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアンテナ装置を説明する図、第
2図は第1図のアンテナの放射パターン特性を説
明する図、第3図,第4図はこの発明の一実施例
によるアンテナ装置を説明する図である。 1は非回転対称のオフセツトパラボラアンテナ
の鏡面、2はパラボラアンテナの回転対称軸、3
はパラボラアンテナの焦点30は同じくイメージ
焦点、4a,4bは給電ホーン、5はホーン軸、
6は周波数選択性の反射板を示す。なお図中同一
符号は同一又は相当部分を示す。
FIG. 1 is a diagram for explaining a conventional antenna device, FIG. 2 is a diagram for explaining the radiation pattern characteristics of the antenna in FIG. 1, and FIGS. 3 and 4 are diagrams for explaining an antenna device according to an embodiment of the present invention. This is a diagram. 1 is the mirror surface of the non-rotationally symmetric offset parabolic antenna, 2 is the rotationally symmetric axis of the parabolic antenna, and 3 is the mirror surface of the non-rotationally symmetric offset parabolic antenna.
The focal point 30 of the parabolic antenna is also the image focal point, 4a and 4b are the feeding horns, 5 is the horn axis,
6 indicates a frequency selective reflector. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 回転対称パラボラの一部によつて構成される
曲面を有する非回転対称鏡面と、第1の周波数の
電波に対しては通過特性を示し、第2の周波数の
電波に対しては反射特性を示す周波数選択性反射
板と、前記周波数選択性反射板を経て前記非回転
対称鏡面の中心にむけてホーン軸が設定され前記
回転対称パラボラの焦点から給電の位相中心が所
定距離はなれた位置に配置されて第1の方向にそ
の偏波面が回転する前記第1の周波数を有する電
波を放射する第1の給電ホーンと、前記周波数選
択性反射板を経て前記非回転対称鏡面の中心にむ
けて、その反射したホーン軸が設定され前記回転
対称パラボラの焦点が所定距離はなれた位置に配
置されて偏波面が前記第1の方向とは逆方向の第
2の方向に回転する第2の周波数を有する電波を
放射する第2の給電ホーンとを備えたことを特徴
とするアンテナ装置。 2 周波数選択性反射板は平面構造であることを
特徴とする特許請求の範囲第1項記載のアンテナ
装置。 3 周波数選択性反射板は曲面構造であることを
特徴とする特許請求の範囲第1項記載のアンテナ
装置。 4 周波数選択性反射板は、高域通過特性を有す
ることを特徴とする特許請求の範囲第1項記載の
アンテナ装置。 5 周波数選択性反射板は低域通過特性を有する
ことを特徴とする特許請求の範囲第1項記載のア
ンテナ装置。
[Claims] 1. A non-rotationally symmetrical mirror surface having a curved surface formed by a part of a rotationally symmetrical parabola, which exhibits a passing characteristic for radio waves of a first frequency, and exhibits a transmission characteristic for radio waves of a second frequency. A horn axis is set toward the center of the non-rotationally symmetrical mirror surface through a frequency selective reflector showing reflection characteristics, and a horn axis is set toward the center of the non-rotationally symmetrical mirror surface, and the phase center of the power supply is determined from the focus of the rotationally symmetrical parabola. a first feeding horn that emits a radio wave having the first frequency and whose plane of polarization rotates in a first direction, which is disposed at a distance; The reflected horn axis is set toward the center of the rotationally symmetrical parabola, and the focal point of the rotationally symmetric parabola is placed at a predetermined distance apart, so that the plane of polarization rotates in a second direction opposite to the first direction. An antenna device comprising: a second feeding horn that radiates radio waves having a second frequency. 2. The antenna device according to claim 1, wherein the frequency selective reflector has a planar structure. 3. The antenna device according to claim 1, wherein the frequency selective reflector has a curved structure. 4. The antenna device according to claim 1, wherein the frequency selective reflector has high-pass characteristics. 5. The antenna device according to claim 1, wherein the frequency selective reflector has low-pass characteristics.
JP7197881A 1981-05-13 1981-05-13 Antenna device Granted JPS57186804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197881A JPS57186804A (en) 1981-05-13 1981-05-13 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197881A JPS57186804A (en) 1981-05-13 1981-05-13 Antenna device

Publications (2)

Publication Number Publication Date
JPS57186804A JPS57186804A (en) 1982-11-17
JPH0352245B2 true JPH0352245B2 (en) 1991-08-09

Family

ID=13476054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197881A Granted JPS57186804A (en) 1981-05-13 1981-05-13 Antenna device

Country Status (1)

Country Link
JP (1) JPS57186804A (en)

Also Published As

Publication number Publication date
JPS57186804A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
EP2724418B1 (en) Beam shaping of rf feed energy for reflector-based antennas
US6320553B1 (en) Multiple frequency reflector antenna with multiple feeds
JP5450106B2 (en) In-vehicle antenna and method for transmitting and receiving signals
EP3005482B1 (en) Antenna for multiple frequency bands
US4462034A (en) Antenna system with plural horn feeds
US6774861B2 (en) Dual band hybrid offset reflector antenna system
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
US2556087A (en) Directive antenna system
US2112282A (en) Ultrashort wave antenna system
JPH0946129A (en) Phased array antenna system
US3990080A (en) Antenna with echo cancelling elements
JPH0352245B2 (en)
US4958162A (en) Near isotropic circularly polarized antenna
JPS6128245B2 (en)
JPS5821847B2 (en) Emhenpa antenna
GB1565870A (en) Aerial system
US2644092A (en) Antenna
JP5305994B2 (en) Antenna device
JP2017175282A (en) Reception antenna device
JP3034262B2 (en) Aperture antenna device
JPS6324705A (en) Double reflection mirror antenna
JPH0366858B2 (en)
JP2000341025A (en) Primary radiator used in common to polarized waves
JPS63139403A (en) Off-setting cassegrain antenna
JPS62193402A (en) Reflection mirror antenna system