JPH0351967A - Adaptive sharpness increasing device for image - Google Patents

Adaptive sharpness increasing device for image

Info

Publication number
JPH0351967A
JPH0351967A JP1187101A JP18710189A JPH0351967A JP H0351967 A JPH0351967 A JP H0351967A JP 1187101 A JP1187101 A JP 1187101A JP 18710189 A JP18710189 A JP 18710189A JP H0351967 A JPH0351967 A JP H0351967A
Authority
JP
Japan
Prior art keywords
image
size
differential
differential operator
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187101A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okada
浩行 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1187101A priority Critical patent/JPH0351967A/en
Publication of JPH0351967A publication Critical patent/JPH0351967A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the image sharp adaptively by dividing the image into small areas, and determining the suitable size of a differential operator according to the density distribution in each area and performing differential processing. CONSTITUTION:A differential operator size determining circuit 3 reads image data on a specific area out of an image memory 2, detects the change point of the density distribution, and determines the size of the differential operator matching the area and a differentiation circuit 4 performs the differential processing with the size of the differential operator determined for each small area by the circuit 3 to make the image sharp. Consequently, the image can be made sharp adaptively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、画像の鮮鋭化装置に関し、特に、画像を鮮鋭
化する際の画像の適応的鮮鋭化手法に関するものである
. 従来の技術 従来、画像を歯ざれよくしたり、鮮鋭化したりする手法
として微分演算が知られている。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image sharpening device, and more particularly to an adaptive image sharpening method when sharpening an image. BACKGROUND OF THE INVENTION Conventionally, differential calculation has been known as a method for making an image more grainy or sharp.

微分演算の中でも特に有用なラブラシアンは線形の微分
オペレータであり、画像とそのラブラジアンの引き算に
よって画像の鮮鋭化が行える.発明が解決しようとする
課題 しかしながら、画像の性質に関する情報がない場合には
、通常、一定のサイズの微分オペレータを使用しており
、その微分オペレータが画像の鮮鋭化に対して最適であ
るとは限らない.例えば、小さな文字等の画像に対して
大きいサイズの微分オペレータを使用して微分処理を行
ったときには、平滑化されてしまい、文字の輪郭部が劣
化してぼけた画像になってしまう. また、写真等の画像に対して、小さいサイズの微分オペ
レータを用いて微分処理を実施すると、画像に含まれる
細かな雑音の強調が行われてしまい、画質の劣化が生ず
る. 本発明は従来の技術に内在する上記諸課題を解決する為
になされたものであり、従って本発明の目的は、画像を
小領域に分割し、各小領域内の濃度分布からそれぞれに
適した微分オペレータのサイズを決定して微分処理を行
うことによって、画像を適応的に鮮鋭化することを可能
とした新規な鮮鋭化装置を提供することにある。
Among differential operations, the Labradian is a linear differential operator that is particularly useful, and can sharpen an image by subtracting the Labradian from the image. Problems to be Solved by the Invention However, when there is no information about the properties of the image, a differential operator of a fixed size is usually used, and it is not clear that the differential operator is optimal for sharpening the image. Not exclusively. For example, when differential processing is performed on an image of small characters using a large-sized differential operator, the image is smoothed and the outlines of the characters deteriorate, resulting in a blurred image. Furthermore, when differential processing is performed on an image such as a photograph using a small-sized differential operator, fine noise contained in the image is emphasized, resulting in deterioration of image quality. The present invention has been made in order to solve the above-mentioned problems inherent in the conventional technology.Therefore, an object of the present invention is to divide an image into small areas, and to calculate a density distribution suitable for each small area from the density distribution within each small area. An object of the present invention is to provide a novel sharpening device that can adaptively sharpen an image by determining the size of a differential operator and performing differential processing.

課題を解決するための手段 上記目的を達戒する為に、本発明に係る画像の適応的鮮
鋭化装置は、画像を小領域に分割し、その小領域内の濃
度分布の状態により微分オペレータのサイズを各小領域
に対して決定、即ち濃度変化が小さいときには小さいサ
イズの微分オペレータを、濃度変化が大きい場合には大
きいサイズの微分オペレータを用いて微分処理を行い、
適応的に画像の鮮鋭化を実施することを特徴としている
. 実施例 次に、本発明をその好ましい一実施例について図面を参
照して具体的に説明する. 第l図は本発明に係る画像の適応的鮮鋭化装置の一実施
例を示すブロック楕戒図である.第1図を参照するに、
1は画像データであり、例えば階調数を256に設定す
る場合、0〜255のレベルで示される.以下、階調数
が256の場合で説明する. 2は画像メモリであり、上記画像データ1が入力される
. 3は微分オペレータ・サイズ決定回路であり、上記画像
メモリ2がら所定の領域の画像データを読出して濃度分
布の変化点の検出を行い、その領域に適した微分オペレ
ータのサイズを決定する。
Means for Solving the Problems In order to achieve the above object, an image adaptive sharpening device according to the present invention divides an image into small regions and uses a differential operator according to the state of density distribution within the small regions. The size is determined for each small region, that is, when the density change is small, a small-sized differential operator is used, and when the density change is large, a large-sized differential operator is used to perform the differential processing,
It is characterized by adaptively sharpening images. Embodiment Next, a preferred embodiment of the present invention will be specifically explained with reference to the drawings. FIG. 1 is a block elliptical diagram showing an embodiment of the image adaptive sharpening device according to the present invention. Referring to Figure 1,
1 is image data, and for example, when the number of gradations is set to 256, it is represented by levels from 0 to 255. In the following, the case where the number of gradations is 256 will be explained. 2 is an image memory, into which the above image data 1 is input. Reference numeral 3 designates a differential operator size determining circuit which reads image data of a predetermined area from the image memory 2, detects a change point in density distribution, and determines the size of a differential operator suitable for that area.

微分回路4は、上記微分オペレータ・サイズ決定回路3
により各小領域に対して決定された微分オペレータのサ
イズで微分処理を実施し、画像の鮮鋭化を行う. 5は鮮鋭化された画像データである.以下に、上述の構
戒の画像の適応的鮮鋭化手法の動作について説明する. (1〉.先ず、画像データ1を画像メモリ2へ記憶する
. (2〉.次に、画像メモリ2に記憶されている画像デー
タを第2図に示すようにMXN画素の画1象をmxn画
素の大きさの小頭域6に分割する.(3).上記(2)
において分割された小頭域6は、微分オペレータ・サイ
ズ決定回路3により各小領域に適した微分オペレータの
サイズが次の手順により決定される. ■.各小領域6において横方向(行)及び縦方向〈列)
の濃度分布を求める. 第3図(a)は小領域のある行の横方向の濃度分布、同
図(b)はある列の縦方向の濃度分布を示し、gは濃度
値、j及びiはそれぞれ行の横方向の位置、列の縦方向
の位置を表す。
The differentiation circuit 4 is the differentiation operator size determination circuit 3 described above.
Differential processing is performed using the size of the differential operator determined for each small region to sharpen the image. 5 is the sharpened image data. Below, we explain the operation of the adaptive image sharpening method described above. (1>. First, image data 1 is stored in image memory 2. (2>. Next, as shown in FIG. 2, image data 1 is stored in image memory 2. Divide into 6 small head regions of pixel size. (3). Above (2)
For the small head regions 6 divided in , the differential operator size determining circuit 3 determines the size of the differential operator suitable for each small region by the following procedure. ■. In each small area 6, horizontal direction (row) and vertical direction (column)
Find the concentration distribution of. Figure 3 (a) shows the horizontal density distribution of a row with a small region, and Figure 3 (b) shows the vertical density distribution of a certain column, where g is the density value, and j and i are the horizontal direction of the row. represents the vertical position of the column.

■.上記■で求めた濃度分布に対して濃度値の変化点を
検出し、その変化点間の間隔(画素数)を求める.第3
図(a).(b)において7〜l9は濃度値の変化点を
表し、20〜30は変化点間の間隔を表す. ■、上記の、■の処理を各小頭域6の全ての行及び列に
対して行い、変化点間の間隔の頻度を各小領域ごとに求
める. ■.!!t大の頻度の変化点の間隔の値がら微分オペレ
ータのサイズを以下のように各領域ごとに決定する. i). l&大の頻度が4画素以下のとき、第4図(a
)の3X3画素の微分オペレータ31i). R大の頻
度が5〜7画素のとき、第4図(b)の6X6画素の微
分オペレータ32i>. It大の頻度が8〜10画素
のとき、第4図(C)の9X9画素の微分オペレータ3
3ν).!1大の頻度が11画素以上のとき、第4図(
d)の12X12画素の微分オペレータ34(4)、上
記(3)で各小頭域6に対して決定された微分オペレー
タのサイズで微分回路4により、以下のように微分処理
を実施して画像の鮮鋭化を行う. 即ち,微分オペレータ(ディジタル・ラブラシアン)を
2、画像データをGとしたとき、G−hマ”G    
                         
   (1)(hは任意の定数) を求め、鮮鋭化された画像データ5を得る.このとき、
負の値は0、255を越える値は255を与える. 発明の効果 以上に詳述したように、本発明によれば、画像データを
小領域に分割して各小領域の濃度分布の変化点を検出し
、それらの間隔の値によりそれぞれの小領域に適した微
分オペレータのサイズを決定して微分処理を行うことで
、画像を適応的に鮮鋭化することができる.
■. Detect the changing points of the density value in the density distribution obtained in step ① above, and find the interval (number of pixels) between the changing points. Third
Figure (a). In (b), 7 to 19 represent the changing points of the density value, and 20 to 30 represent the intervals between the changing points. ② Perform the process ② above for all rows and columns of each small head region 6, and find the frequency of intervals between change points for each small region. ■. ! ! The size of the differential operator is determined for each region as follows based on the value of the interval between the points of change in the frequency of t. i). When the frequency of l & large is less than 4 pixels, Fig. 4 (a
) 3×3 pixel differential operator 31i). When the frequency of large R is 5 to 7 pixels, the differential operator 32i of 6×6 pixels in FIG. 4(b)>. When the frequency of It is 8 to 10 pixels, the differential operator 3 of 9×9 pixels in FIG. 4(C)
3ν). ! When the frequency of 1 is 11 pixels or more, Fig. 4 (
Using the 12×12 pixel differential operator 34 (4) in d) and the size of the differential operator determined for each small head area 6 in (3) above, the differential circuit 4 performs differential processing as follows to obtain an image. Sharpen the image. In other words, when the differential operator (digital Labrasian) is 2 and the image data is G, the G-h ma”G

(1) (h is an arbitrary constant) and obtain sharpened image data 5. At this time,
Negative values give 0, and values over 255 give 255. Effects of the Invention As described in detail above, according to the present invention, image data is divided into small regions, the change point of the density distribution in each small region is detected, and the change point of the density distribution in each small region is detected based on the value of the interval. By determining the appropriate size of the differential operator and performing differential processing, images can be sharpened adaptively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る画像の適応的鮮鋭化装置の一実施
例を示すブロック構戒図、第2図は画像の分割の説明図
、第3図(a).(b)は小領域のある行及びある列の
濃度分布を示す図、第4図(a)〜(d)は各サイズの
微分オペレータの図である.1・・・画像データ、2・
・・画像メモリ、3・・・微分オペレータ・サイズ決定
回路、4・・・微分回路、5・・・鮮鋭化された画像デ
ータ、6・・・小領域、7〜19・・・変化点、20〜
30・・・変化点間の間隔、3l・・・3X3画素の微
分オペレータ、32・・・6×6画索の微分オペレータ
、33・・・9×9画素の微分オペレータ、34・・・
12X12画素の微分オペレータ
FIG. 1 is a block composition diagram showing an embodiment of an image adaptive sharpening device according to the present invention, FIG. 2 is an explanatory diagram of image division, and FIG. 3(a). (b) is a diagram showing the concentration distribution of a certain row and a certain column of a small region, and FIGS. 4(a) to (d) are diagrams of differential operators of each size. 1... image data, 2...
...Image memory, 3. Differential operator size determination circuit, 4. Differential circuit, 5. Sharpened image data, 6. Small area, 7 to 19. Point of change, 20~
30... Interval between change points, 3l... 3x3 pixel differential operator, 32... 6x6 pixel differential operator, 33... 9x9 pixel differential operator, 34...
12x12 pixel differential operator

Claims (1)

【特許請求の範囲】[Claims] 画像データを記憶する画像メモリと、該画像メモリから
所定領域の画像データを読出して濃度分布の変化点の検
出を行いその領域に適した微分オペレータサイズを決定
する微分オペレータサイズ決定回路と、該微分オペレー
タサイズ決定回路により各小領域に対して決定された微
分オペレータのサイズで微分処理を実施して画像の鮮鋭
化を行う微分回路とを有することを特徴とした画像の適
応的鮮鋭化装置。
an image memory that stores image data; a differential operator size determining circuit that reads image data of a predetermined area from the image memory, detects a change point in density distribution, and determines a differential operator size suitable for the area; An apparatus for adaptively sharpening an image, comprising: a differentiation circuit that performs differentiation processing using the size of a differentiation operator determined for each small region by an operator size determination circuit to sharpen an image.
JP1187101A 1989-07-19 1989-07-19 Adaptive sharpness increasing device for image Pending JPH0351967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187101A JPH0351967A (en) 1989-07-19 1989-07-19 Adaptive sharpness increasing device for image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187101A JPH0351967A (en) 1989-07-19 1989-07-19 Adaptive sharpness increasing device for image

Publications (1)

Publication Number Publication Date
JPH0351967A true JPH0351967A (en) 1991-03-06

Family

ID=16200125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187101A Pending JPH0351967A (en) 1989-07-19 1989-07-19 Adaptive sharpness increasing device for image

Country Status (1)

Country Link
JP (1) JPH0351967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087097A (en) * 1994-06-21 1996-01-12 Nec Corp Extracting device for direction of protrusion line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087097A (en) * 1994-06-21 1996-01-12 Nec Corp Extracting device for direction of protrusion line

Similar Documents

Publication Publication Date Title
US10614551B2 (en) Image interpolation methods and related image interpolation devices thereof
CN105260986B (en) A kind of image magnification method of anti
CN106934806A (en) It is a kind of based on text structure without with reference to figure fuzzy region dividing method out of focus
US20020114532A1 (en) Method and apparatus for deblurring and re-blurring image segments
CN111062331A (en) Mosaic detection method and device for image, electronic equipment and storage medium
CN107194877A (en) A kind of guarantor side interpolation super-resolution computational methods based on single image
JPH0351967A (en) Adaptive sharpness increasing device for image
CN108109120B (en) Illumination compensation method and device for dot matrix two-dimensional code
US20030053140A1 (en) Method of controlling image reading system and control program thereof
JP3604910B2 (en) Image reduction device and recording medium recording image reduction program
JPH0793531A (en) Picture processor
US6693669B1 (en) Method for reducing image blurring
CN110418195B (en) Real-time video abbreviating method based on optimal cutting
US6178268B1 (en) Method of and apparatus for processing image
JPH0336672A (en) Sharpening method for picture
CN113610951B (en) Automatic tracing method and device
CN114598902B (en) Video frame processing method and device and electronic equipment
JP2841942B2 (en) Image input device
CN110220475B (en) Linear CCD two-dimensional variable-speed imaging method based on image segmentation
JPH08202871A (en) Picture information processor
CN117670717A (en) Method for enhancing labeling sample for artificial intelligence training
CN116797460A (en) Image amplifying method based on 6X 5 image amplifying template
CN113963005A (en) Multi-fingerprint image segmentation display method and device and computer readable storage medium
JPH05274429A (en) Picture quality improving device
CN114626988A (en) Computer digital image rapid processing algorithm