JPH0351806A - Fusion splicing method for optical fiber - Google Patents

Fusion splicing method for optical fiber

Info

Publication number
JPH0351806A
JPH0351806A JP18590589A JP18590589A JPH0351806A JP H0351806 A JPH0351806 A JP H0351806A JP 18590589 A JP18590589 A JP 18590589A JP 18590589 A JP18590589 A JP 18590589A JP H0351806 A JPH0351806 A JP H0351806A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
optical fibers
fusion splicing
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18590589A
Other languages
Japanese (ja)
Inventor
Kimio Okubo
大久保 公男
Yoshinori Noguchi
野口 好則
Haruhisa Sudo
須藤 晴久
Shuichi Watanabe
修一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18590589A priority Critical patent/JPH0351806A/en
Publication of JPH0351806A publication Critical patent/JPH0351806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To allow the exact positioning of optical fibers by removing the resin coating of at least the parts to be crimped of the optical fibers and forming a metallic coating on these parts. CONSTITUTION:The vapor-deposited coating consisting of an Ni-Cr (nickel- chromium) alloy is formed as an underlying layer adhering well to quartz material which is the constituting material of the optical fiber 12 and a metallized coating consisting of Cu (copper) having a good adhesive property to the vapor- deposited coating is formed as a metallic coating thereon. The resin coating 20 is removed by about 13mm from the end face of the polarization maintaining optical fiber 12 by an ordinary mechanical or optical method and the part bout 5mm from the end face is coated with a cylindrical masking member 22. While the fiber and the member are kept rotating, vapor deposition is executed in a suitable vapor deposition device. The relatively positional relation of the optical fibers 12 to be fusion-spliced are exactly set in this way.

Description

【発明の詳細な説明】 概要 光ファイバの融着接続方法に関し、 融着接続すべき光ファイバの相対的位置関係を正確に設
定することができ、融着接続部の強度低下が小さい融着
接続方法の提供を目的とし、光ファイバの少なくとも端
部近傍の部分を挟み持って該光ファイバの端面同士を所
定の位置関係で当接させて融着接続する方法において、
光ファイバの少なくとも上記挟み持つ部分の樹脂被覆を
除去してこの部分に金属被覆を形成しておくようにして
構成する。
[Detailed Description of the Invention] Summary Regarding a method for fusion splicing optical fibers, the present invention relates to a fusion splicing method in which the relative positional relationship of optical fibers to be fusion spliced can be accurately set, and the strength of the fusion spliced portion is less reduced. A method of fusion splicing an optical fiber by sandwiching at least a portion near the end of the optical fiber and bringing the end surfaces of the optical fiber into contact with each other in a predetermined positional relationship,
The resin coating of at least the sandwiched portion of the optical fiber is removed and a metal coating is formed on this portion.

産業上の利用分野 本発明は光ファイバの融着接続方法に関する。Industrial applications The present invention relates to a method for fusion splicing optical fibers.

光フアイバ通信の分野においては、光伝送路を長距離に
わたって敷設するために、光フアイバ同士の接続が必要
になることがある。光フアイバ同士の接続方法としては
種々の方法が提案されており、なかでも、光ファイバの
端部同士を石英の溶融温度以上の温度にて融合させる融
着接続による方法は、接続部に接着剤等の介在物が介在
しないため、損失、安定性等の面で有利であるとされて
いる。光ファイバを融着接続するに際して特に要求され
ることは、軸ずれ等に起因する損失特性の劣化を防止す
るために、融着すべき光ファイバの相対的位置関係が正
確に設定されていることであり、また、融着接続による
強度低下が小さいことである。
In the field of optical fiber communications, it is sometimes necessary to connect optical fibers to each other in order to install optical transmission lines over long distances. Various methods have been proposed for connecting optical fibers, and among them, fusion splicing, in which the ends of optical fibers are fused together at a temperature higher than the melting temperature of quartz, uses an adhesive at the joint. It is said that it is advantageous in terms of loss, stability, etc. because there are no inclusions such as. What is particularly required when fusion splicing optical fibers is that the relative positional relationship of the optical fibers to be fused be accurately set in order to prevent deterioration of loss characteristics due to axis misalignment, etc. In addition, the decrease in strength due to fusion splicing is small.

従来の技術 第7図により光ファイバの融着接続の原理を説明する。Conventional technology The principle of fusion splicing of optical fibers will be explained with reference to FIG.

部分的に樹脂被覆106が除去された光ファイバ102
.104の端面同士を同軸上で当接させ、当接部及びそ
の近傍を放電電橋108゜110間に生じるアーク放電
中にて加熱して溶融させることにより融着接続を行うも
のである。このような融着接続に際しては、光ファイバ
102゜104の相対的な位置関係が所定の位置関係に
ないと融着接続後の接続損失が増大するので、光ファイ
バ102,104、特にこれらの端面同士が所定の位・
置関係になるように正確に位置決めして保持しておく必
要がある。ここで、融着接続すべき光ファイバが所定の
位置関係にあるというのは、シングルモード光ファイバ
等の通常の光ファイバにあっては、同軸上で軸ずれを起
こしていない状態をいい、偏波面保存光ファイバにあっ
ては、上記に加えて主軸(偏光状態が保存される偏光の
偏光面とファイバ当接端面とが交わる軸)が一致してい
る状態をいう。従来は、上記位置決めを行うために、第
8図に示すようなりランプ機構112を用いて、光ファ
イバの少なくとも端部近傍の部分を挟み持つようにして
いた。
Optical fiber 102 with resin coating 106 partially removed
.. The end surfaces of the bridges 104 are coaxially brought into contact with each other, and the abutting portion and its vicinity are heated and melted during the arc discharge generated between the discharge bridges 108 and 110, thereby performing fusion splicing. When performing such fusion splicing, if the relative positional relationship between the optical fibers 102 and 104 is not in a predetermined positional relationship, the splice loss after fusion splicing will increase. They are in a specified position.
It is necessary to accurately position and hold the Here, when the optical fibers to be fusion spliced are in a predetermined positional relationship, it means that normal optical fibers such as single-mode optical fibers are coaxial with no misalignment; In the case of a wavefront preserving optical fiber, in addition to the above, it refers to a state in which the principal axes (the axis where the polarization plane of the polarized light whose polarization state is preserved and the fiber abutting end face intersect) coincide with each other. Conventionally, in order to perform the above-mentioned positioning, a lamp mechanism 112 as shown in FIG. 8 has been used to clamp at least the portion near the end of the optical fiber.

発明が解決しようとする課題 光ファイバの端部近傍の部分をクランプ機構により挟み
持つ場合、光ファイバの樹脂被覆を除去した部分を直接
挟み持つと、それにより生じた微細な傷や付着したゴミ
等の影響によって、融着接続後の強度が低下することが
ある。このため、従来は、第8図に示すように、樹脂被
覆106を除去していない部分にて光ファイバ102を
挟み持つようにしていた。しかし、このように樹脂被覆
を介して間接的に光ファイバを挟み持った場合、光ファ
イバの軸ずれ調整を行うとき或いは回転調整を行うとき
に、弾性的あるいは塑性的に変形する樹脂被覆の影響に
よって、光ファイバを正確に位置決めすることが困難で
あった。
Problems to be Solved by the Invention When clamping a portion near the end of an optical fiber using a clamp mechanism, if the portion of the optical fiber from which the resin coating has been removed is directly clamped, fine scratches and attached dust may occur as a result. The strength after fusion splicing may decrease due to the influence of . For this reason, conventionally, as shown in FIG. 8, the optical fiber 102 was held between the parts where the resin coating 106 was not removed. However, when optical fibers are sandwiched indirectly through resin coatings, the effects of the resin coatings deforming elastically or plastically occur when adjusting the optical fiber's axis misalignment or rotation. This makes it difficult to accurately position the optical fiber.

本発明はこのような技術的課題に鑑みて創作されたもの
で、融着接続すべき光ファイバの相対的位置関係を正確
に設定することができ、しかも、融着接続部の強度低下
が小さい光ファイバの融着接続方法の提供を目的として
いる。
The present invention was created in view of these technical issues, and it is possible to accurately set the relative positional relationship of optical fibers to be fusion-spliced, and the strength of the fusion-spliced portion is minimally reduced. The purpose is to provide a method for fusion splicing optical fibers.

課題を解決するための手段 第1図に本発明の原理説明図を示す。Means to solve problems FIG. 1 shows a diagram explaining the principle of the present invention.

本発明方法は、光ファイバ2.4の少なくとも端部近傍
の部分を挟み持って光ファイバ2,4の端面同士を所定
の位置関係で当接させて融着接続する方法において、光
ファイバ2.4の少なくとも上記挟み持つ部分の樹脂被
覆6を除去してこの部分に金属被覆8を形成しておくよ
うにしたものである。
The method of the present invention is a method of fusion splicing optical fibers 2.4 by sandwiching at least a portion near the end of the optical fibers 2.4 and bringing the end surfaces of the optical fibers 2.4 into contact with each other in a predetermined positional relationship. 4, the resin coating 6 of at least the sandwiched portion is removed and a metal coating 8 is formed on this portion.

なお、同図中二点鎖線は光ファイバ2.4を挟み持つた
めのクランプ機構等の手段を示す。
Note that the two-dot chain line in the figure indicates means such as a clamp mechanism for holding the optical fiber 2.4.

作   用 上記方法によれば、金属被覆8を介して光ファイバ2.
4を挟み持つようにしているので、光ファイバに微細な
傷が付く等により融着接続部分の強度が低下する恐れが
なくなる。また、融着接続を行うために光ファイバを挟
み持つ程度の力では金属被覆には弾性変形及び塑性変形
がほとんど生じないから、光ファイバの位置調整或いは
回転調整を正確に行うことができるようになる。
Operation According to the above method, the optical fiber 2.
4, there is no possibility that the strength of the fusion spliced portion will decrease due to minute scratches on the optical fiber. In addition, the metal coating hardly undergoes elastic or plastic deformation when the optical fibers are held together for fusion splicing, making it possible to accurately adjust the position or rotation of the optical fibers. Become.

実  施  例 以下本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の実施に使用することができる偏波面保
存光ファイバの説明図である。この偏波面保存光ファイ
バ10は、コア120両側のクラッド14中にクラッド
14とは熱膨張率が異なる材質からなる応力付与部16
.18を紡糸工程前から埋設しておくことによって、フ
ァイバ断面上で互いに直交する2つの方向、即ち、コア
12及び応力付与部16.18を貫通する主軸方向Xと
同断面上で主軸方向Xに直交する他の主軸方向yとで異
なる応力をコア12に付与して、その屈折率に異方性を
持たせて構成されている。この複屈折性により、X方向
に電界を有する偏光モードとy方向に電界を有する偏光
モードとの間に伝搬定数差が生じ、特定の偏光モードを
保持した伝搬が可能になる。
FIG. 2 is an explanatory diagram of a polarization-maintaining optical fiber that can be used to implement the present invention. This polarization-maintaining optical fiber 10 has stress applying portions 16 in the cladding 14 on both sides of the core 120, which are made of a material having a coefficient of thermal expansion different from that of the cladding 14.
.. By embedding 18 before the spinning process, two directions perpendicular to each other on the fiber cross section, namely, the main axis direction The core 12 is configured to have anisotropy in its refractive index by applying different stresses to the core 12 in other orthogonal principal axis directions y. Due to this birefringence, a propagation constant difference occurs between a polarization mode having an electric field in the X direction and a polarization mode having an electric field in the y direction, allowing propagation while maintaining a specific polarization mode.

この種の偏波面保存光ファイバにあっては、融着接続を
行うに際して、接続すべきファイバ同士のコア12が軸
ずれを起こさないように軸合わせを行うだけでなく、接
続すべきファイバ同士の対応する主軸同士を一致させる
ために、回転調整を行う必要がある。そこで、この軸合
わせと回転調整とを正確に行い、しかも、ファイバ表面
に傷が付かないようにするために、以下に示すように金
属被覆を形成する。
When fusion splicing this type of polarization-maintaining optical fiber, it is necessary not only to align the cores 12 of the fibers to be spliced so that their axes do not shift, but also to align the cores 12 of the fibers to be spliced. In order to match the corresponding spindles, it is necessary to perform rotational adjustment. Therefore, in order to accurately perform this axis alignment and rotational adjustment and to prevent the fiber surface from being scratched, a metal coating is formed as shown below.

本実施例では、光ファイバの構成材料である石英に良好
に密着する下地層としてNi−Crにッケルークロム)
合金からなる蒸着被覆を形成し、その上に蒸着被覆と密
着性が良好なCu(銅)からなるメタライズ被覆を形成
し、これらをもって金属被覆としている。
In this example, Ni-Cr is used as an underlayer that adheres well to quartz, which is the constituent material of the optical fiber.
A vapor-deposited coating made of an alloy is formed, and a metalized coating made of Cu (copper) that has good adhesion to the vapor-deposited coating is formed thereon, and these are used as a metal coating.

蒸着被覆の形成方法を第3図により説明する。The method of forming the vapor deposition coating will be explained with reference to FIG.

樹脂被覆20を偏波面保存光ファイバ12の端面から例
えば13mm程度機械的又は化学的な通常の方法により
除去し、例えば端面から5 mm程度を円筒形状のマス
キング部材22により覆い、これらを回転しながら適当
な蒸着装置内で蒸着を行うものである。端面から5 m
n+程度の部分に蒸着被覆を形成しないようにしている
のは、この部分に金属被覆が形成されていると、融着接
続に際して高温下にて金属被覆と石英とが化合し強度の
低下を来す恐れがあるからである。なお、蒸着材料合金
のCrの含有量は、密着性及びCuの濡れ性を考慮して
、13〜20%であることが望ましい。
For example, about 13 mm of the resin coating 20 is removed from the end face of the polarization preserving optical fiber 12 by a conventional mechanical or chemical method, and about 5 mm from the end face is covered with a cylindrical masking member 22, which is then rotated. Vapor deposition is carried out in a suitable vapor deposition apparatus. 5 m from the end face
The reason for not forming a vapor deposited coating on the n+ area is that if a metal coating is formed on this area, the metal coating and quartz will combine at high temperatures during fusion splicing, resulting in a decrease in strength. This is because there is a risk of Note that the Cr content of the vapor deposition material alloy is preferably 13 to 20% in consideration of adhesion and Cu wettability.

蒸着被覆を形成した後にメタライズ被覆を形成する場合
には、第4図に示すように、メタライズ浴24内の無電
解Cuメツキ液をヒータ28により約80℃に加熱し、
蒸着被覆が形成された偏波面保存光ファイバを所定深さ
まで浸漬させれば良い。
When forming a metallized coating after forming a vapor-deposited coating, as shown in FIG.
What is necessary is to immerse the polarization-maintaining optical fiber on which the vapor-deposited coating has been formed to a predetermined depth.

第5図に蒸着被覆及びメタライズ被覆の断面構成を示す
。偏波面保存光ファイバ12の端部近傍を除く部分と樹
脂被覆20の一部に厚みが数百人の蒸着被覆30が形成
され、その上にメタライズ処理の浸漬深さに応じた範囲
で厚みが1μm程度のメタライズ被覆32が形成された
ものである。
FIG. 5 shows the cross-sectional structure of the vapor-deposited coating and the metallized coating. A vapor-deposited coating 30 with a thickness of several hundreds is formed on a portion of the polarization-maintaining optical fiber 12 except for the vicinity of the end and on a part of the resin coating 20. A metallized coating 32 of about 1 μm is formed.

第6図は上述のようにして形成された金属被覆をクラン
プ機構により挟み持った状態を示す図である。同図(a
)はV字溝と平坦面とを組み合わせてなるクランプ機構
34により金属被覆部を挟み持った状態を示し、同図ら
)は一対のV字溝を組み合わせてなるクランプ機構36
により金属被覆部を挟み持った状態を示す。このように
挟み持った後に偏波面保存光ファイバについて軸合わせ
あるいは回転調整を行ったとしても、本実施例によれば
、十分な厚みの金属被覆が形成されていることから偏波
面保存光ファイバ12に傷が付くことがないし、調整を
行ったときに従来のように樹脂被覆が変形して位置ずれ
等を生じる恐れがない。従来このような位置ずれ等に起
因する接続損失が0,2dBであったものが、本実施例
によれば、0.05dBまで改善された。また、位置ず
れが生じないことにより調整作業が簡単になり、従来融
着接続作業に30分程度の時間を要していたものが10
分程度に改善された。
FIG. 6 is a diagram showing a state in which the metal coating formed as described above is held between the clamp mechanisms. The same figure (a
) shows a state in which the metal coating is held between a clamping mechanism 34 made up of a combination of a V-shaped groove and a flat surface, and a clamping mechanism 36 made up of a pair of V-shaped grooves shown in FIGS.
This shows the state in which the metal coating is held between the two. Even if the polarization-maintaining optical fiber is aligned or rotated after being held in this way, according to this embodiment, since the metal coating is formed with a sufficient thickness, the polarization-maintaining optical fiber 12 There is no possibility that the resin coating will be deformed and misaligned when adjustments are made, unlike in the conventional case. Conventionally, the connection loss caused by such positional deviation was 0.2 dB, but according to this embodiment, it was improved to 0.05 dB. In addition, adjustment work becomes easier because positional deviation does not occur, and the time required for fusion splicing, which previously took about 30 minutes, is reduced to 10 minutes.
Improved by about a minute.

本実施例では偏波面保存光ファイバについて説明したが
、シングルモード光ファイバ等の通常の光ファイバにつ
いても本発明は適用可能である。
Although the present embodiment describes a polarization-maintaining optical fiber, the present invention is also applicable to ordinary optical fibers such as single-mode optical fibers.

発明の詳細 な説明したように、本発明によれば、融着接続すべき光
ファイバの相対的位置関係を正確に設定することができ
、しかも、融着接続部の強度低下が小さい光ファイバの
融着接続方法の提供が可能になるという効果を奏する。
As described in detail, according to the present invention, it is possible to accurately set the relative positional relationship of optical fibers to be fusion spliced, and to create optical fibers with a small decrease in strength at the fusion spliced portion. This has the effect of making it possible to provide a fusion splicing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は本発明の実施に使用することができる偏波面保
存光ファイバの説明図、 第3図は本発明の実施例における蒸着方法の説明図、 第4図は本発明の実施例におけるメタライズ処理の説明
図、 第5図は本発明の実施例に右ける蒸着及びメタライズ処
理による金属被覆の断面図、 第6図は本発明の実施例において金属被覆部を挟み持っ
た状態を示す図、 第7図は融着接続の原理説明図、 第8図は融着接続に際しての光ファイバの保持方法の説
明図である。 2.4・・・光ファイバ、   6・・・樹脂被覆、8
・・・金属被覆。
FIG. 1 is an explanatory diagram of the principle of the present invention; FIG. 2 is an explanatory diagram of a polarization-maintaining optical fiber that can be used to implement the present invention; FIG. 3 is an explanatory diagram of a vapor deposition method in an embodiment of the present invention; FIG. 4 is an explanatory diagram of metallization treatment in an embodiment of the present invention, FIG. 5 is a cross-sectional view of metal coating by vapor deposition and metalization treatment in an embodiment of the present invention, and FIG. 6 is a diagram illustrating metal coating in an embodiment of the present invention. FIG. 7 is a diagram illustrating the principle of fusion splicing, and FIG. 8 is a diagram illustrating a method of holding an optical fiber during fusion splicing. 2.4...Optical fiber, 6...Resin coating, 8
...metal coating.

Claims (1)

【特許請求の範囲】 光ファイバ(2、4)の少なくとも端部近傍の部分を挟
み持って該光ファイバ(2、4)の端面同士を所定の位
置関係で当接させて融着接続する方法において、 光ファイバ(2、4)の少なくとも上記挟み持つ部分の
樹脂被覆(6)を除去してこの部分に金属被覆(8)を
形成しておくようにしたことを特徴とする光ファイバの
融着接続方法。
[Claims] A method of fusion splicing by sandwiching at least the portion near the end of the optical fiber (2, 4) and bringing the end faces of the optical fiber (2, 4) into contact with each other in a predetermined positional relationship. The optical fiber fusion is characterized in that the resin coating (6) of at least the sandwiched portion of the optical fiber (2, 4) is removed and a metal coating (8) is formed on this portion. How to connect.
JP18590589A 1989-07-20 1989-07-20 Fusion splicing method for optical fiber Pending JPH0351806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18590589A JPH0351806A (en) 1989-07-20 1989-07-20 Fusion splicing method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18590589A JPH0351806A (en) 1989-07-20 1989-07-20 Fusion splicing method for optical fiber

Publications (1)

Publication Number Publication Date
JPH0351806A true JPH0351806A (en) 1991-03-06

Family

ID=16178936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18590589A Pending JPH0351806A (en) 1989-07-20 1989-07-20 Fusion splicing method for optical fiber

Country Status (1)

Country Link
JP (1) JPH0351806A (en)

Similar Documents

Publication Publication Date Title
US6968103B1 (en) Optical fiber coupler and method for making same
JPH0829638A (en) Structure for connecting optical waveguide and optical fiber, mthod for connecting optical waveguide and optical fiber, optical waveguide substrate to be used for connecting optical waveguide and optical fiber, production of the substrate and optical fiber with fiber substrate to be used for connecting optical waveguide and optical fiber
CA2172646C (en) Optical attenuation fiber assembly
US5073002A (en) Self aligning pigtail
JPH02256007A (en) Junction of optical fiber to light port of optical integrated device
JP2003156648A (en) Polarization fiber and method for manufacturing the same, ribbon fiber and optical waveguide device using the same, and optical fiber array and method for manufacturing the same
JPH0351806A (en) Fusion splicing method for optical fiber
US5414788A (en) Method and apparatus for fusion splicing optical fibers
JPH04315107A (en) Method for connecting optical fiber
JPH07209542A (en) Reinforcing structure of heat resistant optical fiber juncture
JP3500765B2 (en) Optical filter manufacturing method
JPS6114609A (en) Making of naked fiber taper for metal cover fiber
JPH08122531A (en) Optical fixed attenuator
JPH0356603B2 (en)
JP3228614B2 (en) Connection structure between optical fiber and optical waveguide
WO2022138761A1 (en) Optical fiber ribbon, optical fiber connection component, and method for manufacturing optical fiber connection component
JPS61166504A (en) Optical circuit device
JPH05224075A (en) Polarization maintaining optical fiber coupler
JPH11167042A (en) Structure and method for connecting optical waveguide and optical fiber
JPS5957211A (en) Manufacture of optical fiber rotation polarized wave mode coupler
JPS58176612A (en) Connecting method of single polarization optical fiber
JPS6235308A (en) Connecting method for light guide and optical fiber
JPH063551A (en) Fusion splicing method for optical fibers
JP3329951B2 (en) Connection structure between optical element and optical component for connection
JP3313208B2 (en) Substrate type optical waveguide device and manufacturing method thereof