JPH0351678B2 - - Google Patents

Info

Publication number
JPH0351678B2
JPH0351678B2 JP61301970A JP30197086A JPH0351678B2 JP H0351678 B2 JPH0351678 B2 JP H0351678B2 JP 61301970 A JP61301970 A JP 61301970A JP 30197086 A JP30197086 A JP 30197086A JP H0351678 B2 JPH0351678 B2 JP H0351678B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide whiskers
reaction
carbon black
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61301970A
Other languages
Japanese (ja)
Other versions
JPS63156100A (en
Inventor
Tetsuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP61301970A priority Critical patent/JPS63156100A/en
Priority to US07/096,743 priority patent/US4873070A/en
Priority to EP87308276A priority patent/EP0272773B1/en
Priority to DE8787308276T priority patent/DE3777577D1/en
Publication of JPS63156100A publication Critical patent/JPS63156100A/en
Publication of JPH0351678B2 publication Critical patent/JPH0351678B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、炭化ケイ素ウイスカーの製造方法に
関し、詳しくは、高純度であつて、且つ、直線性
にすぐれる針状炭化ケイ素ウイスカー結晶を高収
率にて製造する方法に関する。 従来の技術 炭化ケイ素ウイスカーは、軽量、高強度、高弾
性を有し、近年、複合材料の強化材として、種々
の用途が期待されている。 このような炭化ケイ素ウイスカーの製造方法は
従来、炭素を含む原料及びケイ素を含む原料の一
方又は両方を気相にて反応炉内の所定の高温の反
応域に供給する気相合成法と、炭素を含む原料及
びケイ素を含む原料として共に固体を用いる固相
合成法ととに大別される。気相合成法とは、例え
ば、特公昭50−18480号公報、特公昭52−28757号
公報、特公昭52−28759号公報等に記載されてお
り、また、固相合成法は、例えば、特開昭58−
20799号公報、特開昭58−45918号公報、特開昭58
−145700号公報等に記載されている。 上記のような従来の気相合成法は、一般に、針
状結晶を得るには有利であるが、反面、気相原料
の利用率が著しく低い、気相原料が反応炉内で分
解し、反応炉がこれら分解物によつて汚染され
る、更に、生成した炭化ケイ素ウイスカー中にこ
れら分解物が混入する等の問題を有しているの
で、炭化ケイ素ウイスカーの大量生産には不適当
であり、一方、従来の固相合成法によれば、ケイ
素を含む原料粉末と炭素を含む原料粉末とを混合
し、これを加熱して、主としてこれら粉末間の固
相反応にて直接に炭化ケイ素を生成させるので、
粉状、粒状、屈曲状の炭化ケイ素を多く生成し、
直線性にすぐれる炭化ケイ素ウイスカーを得るこ
とが困難であるほか、得られた炭化ケイ素ウイス
カーから上記のような異形の炭化ケイ素を分離除
去することが容易ではない。 そこで、本発明者らは、炭素含有原料として炭
素粉末を用い、ケイ素含有原料として二酸化ケイ
素を含有する所定形状の成形体を用いる方法を既
に提案している。この方法によれば、成形体の反
応残分としてのケイ素が生成する炭化ケイ素ウイ
スカーに混入することがなく、従つて、生成する
炭化ケイ素ウイスカーには、その生成時に副生す
るケイ素及び/又は二酸化ケイ素が微量に混入す
るにすぎない。また、反応残分としての炭素は、
反応終了後に反応生成物を大気中で燃焼させるこ
とによつて容易に除去することができるので、高
純度の炭化ケイ素ウイスカーを得ることができ
る。 本発明者らは、上記の方法について、更に、炭
素含有原料が生成する炭化ケイ素ウイスカーに及
ぼす影響について研究を重ねた結果、所定の性質
を有するカーボンブラツクを炭素含有原料として
用いることによつて、特に、直線性及び寸法を一
様性にすぐれる針状炭化ケイ素ウイスカー結晶を
高収率にて得ることができることを見出して本発
明に至つたものである。 問題点を解決するための手段 本発明による炭化ケイ素ウイスカーの製造方法
は、二酸化ケイ素を含有する成形体と、BET比
表面積100m2/g以上、平均粒子径35nm以下、
及び嵩密度0.06〜0.2g/cm3であるカーボンブラ
ツクとを水素ガス雰囲気下に1400〜1700℃の温度
に加熱することを特徴とする。 本発明の方法において、二酸化ケイ素を含有す
る成形体とは、例えば、ケイ石粉、粉状シリカゲ
ル、各種の非晶質シリカ、沈降性シリカ、粘土等
の二酸化ケイ素を含む原料を適宜の手段、例え
ば、押出成形、プレス成形、造粒等の手段によつ
て成形し、板、棒、管、粒乃至球、容器や箱、線
状又はこれらの組み合わせとしての形状を与えた
立体的な固体をいう。この成形体が例えば管状や
箱型の容器等のような成形体であるとき、固体炭
素含有原料を充填するための容器を兼ねさせるこ
とができる。 上記二酸化ケイ素含有成形体は、高い収率にて
炭化ケイ素ウイスカーを得るためには、二酸化ケ
イ素を30重量%以上含有することが好ましく、特
に、40重量%以上含有することが好ましい。 また、本発明においては、炭素含有原料とし
て、特にBET比表面積100m2/g以上、平均粒子
径35nm以下、及び嵩密度0.06〜0.2g/cm3である
カーボンブラツクを用いる。 本発明の方法においては、上記二酸化ケイ素含
有成形体とカーボンブラツクとを水素ガス雰囲気
下において、例えば、電気炉のような限られた空
間内で所定温度に加熱して、炭化ケイ素ウイスカ
ーを得るものである。 かかる本発明の方法においては、炭化ケイ素ウ
イスカーは、主として、次のような反応によつて
生成するものとみられる。但し、本発明は、反応
機構によつて何ら制限されるものではない。 C(s)+2H2(g)→CH4(g) (1) SiO2(s)+CH2(g) →SiO(g)+CO(g)+2H2(g) (2) SiO2(g)2C(s)→SiC(s)+CO(g) (3) 即ち、先ず、水素ガスと固体炭素原料とが反応
(1)によつてメタンガスを生成し、これが二酸化ケ
イ素含有成形体の表面において、反応(2)によつて
一酸化ケイ素ガスが生成する。次いで、この一酸
化ケイ素ガスと炭素との反応(3)によつて、炭化ケ
イ素が生成する。従つて、総括反応式は、 SiO2(s)+3C(s) →SiC(s)+2CO(g) (4) で表わされることとなる。 本発明の方法においては、通常、二酸化ケイ素
含有成形体とカーボンブラツクは適宜の反応容器
内に充填され、反応炉内で水素雰囲気下に加熱さ
れる。第1図はその一例を示し、反応容器1内に
板状の二酸化ケイ素含有成形体2が間隔をおいて
平行に立てられ、その空隙にカーボンブラツク3
が充填されている。反応容器は例えばアルミナ製
でもよく、また、高純度炭素製であつてもよい。 前記反応式(4)においては、水素は炭化ケイ素の
生成に関与していないが、水素は、炭素のメタン
ガス化反応(1)に不可欠であるので、炭素は、水素
ガスと高い反応性を有することが要求される。他
方、反応(2)は、炭素を充填した空間全体にわたつ
てほぼ一様に進行し、その結果、炭化ケイ素ウイ
スカーは、この空間全体にわたつて生成し、他
方、この空間以外では殆ど生成しない。従つて、
本発明の方法においては、反応温度、雰囲気ガ
ス、触媒等の反応条件と共に、成形体から生じる
一酸化ケイ素を炭素を充填した反応空間中に所定
濃度に保持することが重要であり、このために、
炭素が適度の空隙をもつ凝集構造を有することが
必要である。 以上のように、上記の反応においては、水素ガ
スが炭化ケイ素ウイスカーの生成に重要な寄与を
なし、本発明によれば、反応域における雰囲気の
水素ガスを常に70%以上とすることによつて、炭
化ケイ素ウイスカーの収率を著しく高めると共
に、その針状性を著しく高めることができる。反
応域における雰囲気を常に70%以上の水素ガスを
含むようにするには、具体的には、例えば、反応
炉中に大量の水素を流通させ、上記したように、
副生する一酸化炭素の生成に伴う水素濃度の低減
を防止する。水素ガス濃度が70%よりも少ないと
きは、炭化ケイ素ウイスカーの収量が著しく低減
するのみならず、その長さも短く、また、粉状や
屈曲状等の畏敬の炭化ケイ素ウイスカーの生成量
が増大する。尚、反応炉が、例えば、二酸化ケイ
素成形体と固体炭素含有原料とを加熱反応させる
反応帯域を含む複数の帯域からなる場合は、本発
明によれば、限られた空間とは、上記反応帯域を
いい、反応炉の少なくともこの帯域の雰囲気を水
素濃度70%以上の雰囲気に保持すればよい。 カーボンブラツクのBET非表面積、粒子径及
び嵩密度の三つの物性は、相互に完全に独立した
物性ではなく、相互に関連を有しつつ、水素ガス
との反応性及び凝集構造を規定する。しかし、こ
れらのうち、BET非表面積は、カーボンブラツ
クと水素ガスとの接触量をあらわす量であり、主
として、気体との反応の指標となる。一方、平均
粒子径及び嵩密度は、カーボンブラツクの主とし
て凝集構造の指標となる。ここに、本発明の方法
によれば、BET比表面積100m2/g以上、平均粒
子径35nm以下、及び嵩密度0.06〜0.2g/cm3であ
るカーボンブラツクは、水素ガスと高い反応性を
もち、前記した条件を満たすために、粉状、粒
状、屈曲状等の異形の副生なしに、針状性の高い
炭化ケイ素ウイスカーを生成することができるの
であろう。 更に、本発明の方法によれば、反応空間を確保
するための反応促進剤を用いる必要がなく、従つ
て、炭化ケイ素ウイスカーを製造において、反応
炉壁にこれらが析出付着することがなく、また、
腐食性ガスの発生もないので、反応炉を損傷させ
ない。 本発明の方法による炭化ケイ素ウイスカーの製
造においては、好ましくは反応触媒が用いられ
る。反応触媒としては、鉄、ニツケル、コバルト
又はこれらの化合物、例えば、酸化物、硝酸塩、
炭酸塩、硫酸塩等が用いられる。これら化合物
は、粉末、水溶液その他適宜の形態で炭素含有原
料粉末に加え、混在せしめられる。これら触媒
は、特に、前記反応(3)を促進して、直線状で高純
度の炭化ケイ素ウイスカーの生成速度を早めると
共に、その結果として、併発的に生じる望ましく
ない反応を抑制する作用がある。 本発明の方法において、二酸化ケイ素含有成形
体と固体炭素原料とを水素を含む雰囲気下で加熱
する温度は、1300℃以上が好適であり、特に、
1400℃以上が好ましい。1300℃よりも低い温度で
は、炭化ケイ素ウイスカーの生成が極めて遅く、
実用上好ましくないからである。一方、余りに高
温であるときは、反応条件が過激にすぎて、ウイ
スカー径が肥大化し、また、ウイスカーに分岐や
折れ曲がり等の乱れが発生するようになる。従つ
て、反応温度は、通常、1700℃以下がよい。ま
た、加熱時間は、特に制限されるものではない
が、通常、0.5〜30時間が適当である。反応時間
が余りに短いときは、未反応原料が多量に残留
し、一方、余りに長時間反応させても、炭化ケイ
素ウイスカーの収量の増加が僅かであるので、生
産性及び熱エネルギー費用の観点からみて、何ら
利点がないからでなる。 上記のように、二酸化ケイ素含有成形体と所定
の性質を有するカーボンブラツクとを所定の水素
雰囲気下に所定の温度に加熱した後、これを除冷
若しくは放冷し、好ましくは、反応生成物に含ま
れる余剰の炭素を酸化焼却することによつて、通
常、線状の炭化ケイ素ウイスカーを得ることがで
きる。 発明の効果 以上のように、本発明の方法によれば、二酸化
ケイ素含有成形体と所定の物性を有するカーボン
ブラツクとを水素ガス雰囲気下に加熱するので、
針状性の高い炭化ケイ素ウイスカー結晶を高収率
で製造することができる。余剰を炭素を焼却して
得られる炭化ケイ素ウイスカーは、β型であつ
て、通常、直径0.1〜2μm、長さは20〜500μmで
ある。更に、本発明の方法によれば、塩化ナトリ
ウムのようなハロゲン化金属からなる反応促進剤
を用いる必要がないので、これらの反応炉壁への
付着や反応炉を腐食させる腐食性ガスの発生もな
い。 実施例 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例によつて何ら限定されるもの
ではない。 内法縦横それぞれ130mm、深さ50mmの高純度炭
素製の箱型反応容器内に二酸化ケイ素95重量%を
含む長さ縦120mm、横40mm、高さ80mmの成形板4
枚を図示したように等間隔を配設し、反応容器の
空隙内に第1表に示す種々の性質を有するカーボ
ンブラツク40gと触媒としての酸化ニツケル0.28
gの均一な混合物を充填した。 この反応容器の上部開口に高純度炭素製の蓋を
し、反応炉に挿入し、水素ガス雰囲気下で室温か
ら6時間を要して1530℃まて昇温し、この温度に
4時間保持した後、室温まで放冷した。反応容器
から反応残物としての成形板を取り除いた後、内
容物を集め、これを空気中で600℃の温度で4時
間燃焼させ、未反応カーボンブラツクを焼却除去
して、いずれの場合も、淡緑色のβ型炭化ケイ素
ウイスカーを得た。 得られた炭化ケイ素ウイスカーの収量、粉状物
や屈曲したもの等の異形物量、径及び長さを第1
表に示す。この結果から明らかなように、本発明
の方法に従つて、所定の性質を有するカーボンブ
ラツクを用いることによつて、その種類にかかわ
らずに、高収率にて針状性の高い炭化ケイ素ウイ
スカーを得ることができる。これに対して、比較
例によれば、異形の炭化ケイ素ウイスカーの生成
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing silicon carbide whiskers, and more particularly, to a method for producing acicular silicon carbide whisker crystals with high purity and excellent linearity at a high yield. BACKGROUND ART Silicon carbide whiskers are lightweight, have high strength, and high elasticity, and have recently been expected to be used in various ways as reinforcing materials for composite materials. Conventionally, methods for producing such silicon carbide whiskers include a gas phase synthesis method in which one or both of a carbon-containing raw material and a silicon-containing raw material are supplied in a gas phase to a predetermined high-temperature reaction zone in a reactor, and a carbon It is broadly divided into solid-phase synthesis methods that use solids as raw materials containing silicon and silicon-containing raw materials. The gas phase synthesis method is described in, for example, Japanese Patent Publication No. 50-18480, Japanese Patent Publication No. 52-28757, Japanese Patent Publication No. 52-28759, etc., and the solid phase synthesis method is described, for example, in 1978-
Publication No. 20799, Japanese Patent Application Laid-Open No. 1983-45918, Japanese Patent Application Publication No. 1983
-Described in Publication No. 145700, etc. The conventional gas phase synthesis method described above is generally advantageous in obtaining needle-shaped crystals, but on the other hand, the utilization rate of the gas phase raw material is extremely low, and the gas phase raw material decomposes in the reactor, causing the reaction to occur. It is unsuitable for mass production of silicon carbide whiskers because it has problems such as the furnace being contaminated with these decomposed products and furthermore, these decomposed products being mixed into the produced silicon carbide whiskers. On the other hand, according to the conventional solid-phase synthesis method, silicon carbide is directly produced by mixing raw material powder containing silicon and raw material powder containing carbon, heating the mixture, and directly producing silicon carbide mainly through a solid-phase reaction between these powders. so that
Generates a lot of powdered, granular, and bent silicon carbide,
It is difficult to obtain silicon carbide whiskers with excellent linearity, and it is also difficult to separate and remove irregularly shaped silicon carbide as described above from the obtained silicon carbide whiskers. Therefore, the present inventors have already proposed a method in which a carbon powder is used as the carbon-containing raw material and a molded body having a predetermined shape containing silicon dioxide is used as the silicon-containing raw material. According to this method, silicon as a reaction residue of the compact does not mix with the silicon carbide whiskers produced, and therefore, the silicon carbide whiskers produced contain silicon and/or dioxide by-product during the production. Only a trace amount of silicon is mixed in. In addition, carbon as a reaction residue is
After the reaction is completed, the reaction product can be easily removed by burning it in the atmosphere, so that highly pure silicon carbide whiskers can be obtained. The present inventors have further researched the effects of the carbon-containing raw material on the silicon carbide whiskers produced in the above method, and have found that by using carbon black having predetermined properties as the carbon-containing raw material, In particular, it was discovered that acicular silicon carbide whisker crystals with excellent linearity and size uniformity can be obtained in high yield, leading to the present invention. Means for Solving the Problems The method for producing silicon carbide whiskers according to the present invention includes a molded article containing silicon dioxide, a BET specific surface area of 100 m 2 /g or more, an average particle diameter of 35 nm or less,
and carbon black having a bulk density of 0.06 to 0.2 g/cm 3 are heated to a temperature of 1400 to 1700° C. in a hydrogen gas atmosphere. In the method of the present invention, the silicon dioxide-containing molded body is defined as a silicon dioxide-containing raw material such as silica powder, powdered silica gel, various amorphous silicas, precipitated silica, clay, etc., by an appropriate means, e.g. A three-dimensional solid that is formed by extrusion molding, press molding, granulation, etc. and given the shape of a plate, rod, tube, particle or sphere, container or box, linear shape, or a combination of these. . When this molded body is a molded body such as a tubular or box-shaped container, it can also serve as a container for filling the solid carbon-containing raw material. In order to obtain silicon carbide whiskers at a high yield, the silicon dioxide-containing molded article preferably contains silicon dioxide in an amount of 30% by weight or more, particularly preferably 40% by weight or more. In the present invention, carbon black having a BET specific surface area of 100 m 2 /g or more, an average particle diameter of 35 nm or less, and a bulk density of 0.06 to 0.2 g/cm 3 is used as the carbon-containing raw material in the present invention. In the method of the present invention, silicon carbide whiskers are obtained by heating the silicon dioxide-containing molded body and carbon black to a predetermined temperature in a limited space such as an electric furnace in a hydrogen gas atmosphere. It is. In the method of the present invention, silicon carbide whiskers are thought to be mainly produced by the following reaction. However, the present invention is not limited in any way by the reaction mechanism. C(s)+2H 2 (g)→CH 4 (g) (1) SiO 2 (s)+CH 2 (g) →SiO(g)+CO(g)+2H 2 (g) (2) SiO 2 (g) 2C (s) → SiC (s) + CO (g) (3) That is, first, hydrogen gas and solid carbon raw material react
Methane gas is produced by (1), and silicon monoxide gas is produced by reaction (2) on the surface of the silicon dioxide-containing molded article. Next, silicon carbide is produced by reaction (3) between this silicon monoxide gas and carbon. Therefore, the overall reaction formula is expressed as: SiO 2 (s) + 3C (s) → SiC (s) + 2CO (g) (4). In the method of the present invention, the silicon dioxide-containing molded body and carbon black are usually filled in a suitable reaction vessel and heated in a hydrogen atmosphere in a reaction furnace. FIG. 1 shows an example of this, in which plate-shaped silicon dioxide-containing molded bodies 2 are placed in parallel at intervals in a reaction vessel 1, and carbon black 3 is placed in the gap between them.
is filled. The reaction vessel may be made of, for example, alumina or high-purity carbon. In the reaction formula (4), hydrogen is not involved in the production of silicon carbide, but since hydrogen is essential for the methane gasification reaction (1) of carbon, carbon has high reactivity with hydrogen gas. This is required. On the other hand, reaction (2) proceeds almost uniformly throughout the carbon-filled space, and as a result, silicon carbide whiskers are produced throughout this space, while hardly any silicon carbide whiskers are produced outside this space. . Therefore,
In the method of the present invention, it is important to maintain the silicon monoxide produced from the compact at a predetermined concentration in the carbon-filled reaction space, as well as reaction conditions such as reaction temperature, atmospheric gas, and catalyst. ,
It is necessary that the carbon has an agglomerated structure with appropriate voids. As described above, in the above reaction, hydrogen gas makes an important contribution to the production of silicon carbide whiskers, and according to the present invention, hydrogen gas in the atmosphere in the reaction zone is always kept at 70% or more. , it is possible to significantly increase the yield of silicon carbide whiskers and to significantly increase their acicularity. To make the atmosphere in the reaction zone always contain 70% or more hydrogen gas, specifically, for example, by circulating a large amount of hydrogen in the reactor, as described above,
Prevents the reduction in hydrogen concentration due to the production of carbon monoxide as a by-product. When the hydrogen gas concentration is less than 70%, not only the yield of silicon carbide whiskers is significantly reduced, but also the length is short, and the amount of silicon carbide whiskers produced in powdery or bent shapes increases. . In addition, when the reaction furnace is composed of a plurality of zones including a reaction zone in which a silicon dioxide molded body and a solid carbon-containing raw material are heated and reacted, according to the present invention, the limited space is defined as the reaction zone The atmosphere in at least this zone of the reactor should be maintained at an atmosphere with a hydrogen concentration of 70% or more. The three physical properties of carbon black, BET non-surface area, particle size, and bulk density, are not completely independent physical properties, but are interrelated and define the reactivity with hydrogen gas and the agglomerated structure. However, among these, the BET non-surface area is an amount that represents the amount of contact between carbon black and hydrogen gas, and is primarily an indicator of the reaction with gas. On the other hand, the average particle diameter and bulk density are mainly indicators of the agglomerated structure of carbon black. According to the method of the present invention, carbon black having a BET specific surface area of 100 m 2 /g or more, an average particle diameter of 35 nm or less, and a bulk density of 0.06 to 0.2 g/cm 3 has high reactivity with hydrogen gas. In order to satisfy the above-mentioned conditions, silicon carbide whiskers with high acicularity can be produced without producing irregularly shaped by-products such as powder, granules, and bent shapes. Further, according to the method of the present invention, there is no need to use a reaction accelerator to secure a reaction space, and therefore, silicon carbide whiskers are not deposited and adhered to the reactor wall during the production of silicon carbide whiskers. ,
Since no corrosive gas is generated, the reactor will not be damaged. In the production of silicon carbide whiskers by the method of the invention, preferably a reaction catalyst is used. As a reaction catalyst, iron, nickel, cobalt or compounds thereof, such as oxides, nitrates,
Carbonates, sulfates, etc. are used. These compounds are added to and mixed with the carbon-containing raw material powder in the form of powder, aqueous solution, or other appropriate form. In particular, these catalysts have the effect of accelerating the reaction (3) to accelerate the production rate of linear, highly pure silicon carbide whiskers, and as a result, suppressing undesirable reactions that occur concurrently. In the method of the present invention, the temperature at which the silicon dioxide-containing molded body and the solid carbon raw material are heated in an atmosphere containing hydrogen is preferably 1300°C or higher, and in particular,
The temperature is preferably 1400°C or higher. At temperatures lower than 1300℃, silicon carbide whisker formation is extremely slow;
This is because it is not practical. On the other hand, when the temperature is too high, the reaction conditions are too extreme, the diameter of the whiskers increases, and disturbances such as branching and bending occur in the whiskers. Therefore, the reaction temperature is usually preferably 1700°C or lower. Further, the heating time is not particularly limited, but is usually suitable for 0.5 to 30 hours. If the reaction time is too short, a large amount of unreacted raw materials will remain; on the other hand, if the reaction is too long, the yield of silicon carbide whiskers will increase only slightly, so it is difficult to reduce the productivity and thermal energy costs. , because there is no advantage. As mentioned above, after heating the silicon dioxide-containing molded body and carbon black having predetermined properties to a predetermined temperature in a predetermined hydrogen atmosphere, this is slowly cooled or allowed to cool, and preferably, the reaction product is heated to a predetermined temperature. By oxidizing and incinerating the excess carbon contained, linear silicon carbide whiskers can usually be obtained. Effects of the Invention As described above, according to the method of the present invention, since a silicon dioxide-containing molded article and carbon black having predetermined physical properties are heated in a hydrogen gas atmosphere,
Highly acicular silicon carbide whisker crystals can be produced in high yield. Silicon carbide whiskers obtained by burning the excess carbon are of the β type and usually have a diameter of 0.1 to 2 μm and a length of 20 to 500 μm. Furthermore, according to the method of the present invention, there is no need to use a reaction accelerator made of a metal halide such as sodium chloride, so there is no need to use a reaction accelerator made of metal halides such as sodium chloride, so there is no need to use a reaction promoter made of metal halides such as sodium chloride. do not have. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. A molded plate 4 containing 95% by weight of silicon dioxide and having a length of 120 mm, a width of 40 mm, and a height of 80 mm is placed in a box-shaped reaction vessel made of high-purity carbon with an inner dimension of 130 mm in length and width and a depth of 50 mm.
40 g of carbon black having various properties shown in Table 1 and 0.28 g of nickel oxide as a catalyst were placed in the cavity of the reaction vessel at equal intervals as shown in the figure.
A homogeneous mixture of g was charged. A high-purity carbon lid was placed on the upper opening of the reaction vessel, the vessel was inserted into a reactor, and the temperature was raised from room temperature to 1530°C over 6 hours under a hydrogen gas atmosphere, and maintained at this temperature for 4 hours. Thereafter, it was allowed to cool to room temperature. After removing the molded plate as reaction residue from the reaction vessel, the contents were collected and burned in air at a temperature of 600°C for 4 hours, unreacted carbon black was removed by incineration, and in each case, Pale green β-type silicon carbide whiskers were obtained. The yield of the obtained silicon carbide whiskers, the amount of irregularly shaped materials such as powdery ones and bent ones, the diameter and length of the silicon carbide whiskers are
Shown in the table. As is clear from this result, silicon carbide whiskers with high acicularity can be produced in high yield by using carbon black having predetermined properties in accordance with the method of the present invention, regardless of its type. can be obtained. On the other hand, according to the comparative example, formation of irregularly shaped silicon carbide whiskers

【表】 が多いうえに、収率も低く、更に、未反応カーボ
ンブラツクの焼却に長時間を要した。
[Table] In addition to the large amount of carbon black, the yield was low, and furthermore, it took a long time to incinerate the unreacted carbon black.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、反応容器に充填された二酸化ケイ素
含有成形体とカーボンブラツクとを示す。 1……反応容器、2……二酸化ケイ素含有成形
体、3……カーボンブラツク。
FIG. 1 shows a silicon dioxide-containing molded body and carbon black filled in a reaction vessel. 1...Reaction container, 2...Silicon dioxide-containing molded body, 3...Carbon black.

Claims (1)

【特許請求の範囲】 1 二酸化ケイ素とカーボンブラツクとを水素ガ
ス雰囲気下に1400〜1700℃の温度に加熱して、炭
化ケイ素ウイスカーを製造する方法において、二
酸化ケイ素を成形体として用いると共に、BET
比表面積100m2/g以上、平均粒子径35nm以下、
及び嵩密度0.06〜0.2g/cm3であるカーボンブラ
ツクを用い、水素ガスとカーボンブラツクとを反
応させて炭化水素を生成させ、この炭化水素にて
前記二酸化ケイ素を還元して、一酸化ケイ素を生
成せしめ、この一酸化ケイ素とカーボンブラツク
とを反応させて、炭化ケイ素ウイスカーを生成さ
せることを特徴とする炭化ケイ素ウイスカーの製
造方法。 2 カーボンブラツクに触媒を混在させることを
特徴とする特許請求の範囲第1項記載の炭化ケイ
素ウイスカーの製造方法。 3 触媒が鉄、ニツケル又はコバルト又はその化
合物であることを特徴とする特許請求の範囲第1
項記載の炭化ケイ素ウイスカーの製造方法。
[Claims] 1. A method for producing silicon carbide whiskers by heating silicon dioxide and carbon black to a temperature of 1400 to 1700°C in a hydrogen gas atmosphere, in which silicon dioxide is used as a molded product, and BET
Specific surface area 100m 2 /g or more, average particle size 35nm or less,
Using carbon black with a bulk density of 0.06 to 0.2 g/cm 3 , hydrogen gas and carbon black are reacted to generate hydrocarbons, and the silicon dioxide is reduced with the hydrocarbons to form silicon monoxide. 1. A method for producing silicon carbide whiskers, which comprises producing silicon carbide whiskers, and reacting the silicon monoxide with carbon black to produce silicon carbide whiskers. 2. The method for producing silicon carbide whiskers according to claim 1, which comprises mixing carbon black with a catalyst. 3. Claim 1, characterized in that the catalyst is iron, nickel, cobalt, or a compound thereof.
2. Method for producing silicon carbide whiskers as described in Section 1.
JP61301970A 1986-12-17 1986-12-17 Production of silicon carbide whisker Granted JPS63156100A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61301970A JPS63156100A (en) 1986-12-17 1986-12-17 Production of silicon carbide whisker
US07/096,743 US4873070A (en) 1986-12-17 1987-09-15 Process for producing silicon carbide whiskers
EP87308276A EP0272773B1 (en) 1986-12-17 1987-09-18 Process for production silicon carbide whiskers
DE8787308276T DE3777577D1 (en) 1986-12-17 1987-09-18 METHOD FOR PRODUCING SILICON CARBIDE WHISKERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61301970A JPS63156100A (en) 1986-12-17 1986-12-17 Production of silicon carbide whisker

Publications (2)

Publication Number Publication Date
JPS63156100A JPS63156100A (en) 1988-06-29
JPH0351678B2 true JPH0351678B2 (en) 1991-08-07

Family

ID=17903321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301970A Granted JPS63156100A (en) 1986-12-17 1986-12-17 Production of silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPS63156100A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849698A (en) * 1981-09-21 1983-03-23 Agency Of Ind Science & Technol Preparation of silicon carbide whisker
JPS58120599A (en) * 1982-01-12 1983-07-18 Onoda Cement Co Ltd Production of beta-silicon carbide whisker
JPS61127700A (en) * 1984-11-21 1986-06-14 Tokai Carbon Co Ltd Manufacture of sic whisker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849698A (en) * 1981-09-21 1983-03-23 Agency Of Ind Science & Technol Preparation of silicon carbide whisker
JPS58120599A (en) * 1982-01-12 1983-07-18 Onoda Cement Co Ltd Production of beta-silicon carbide whisker
JPS61127700A (en) * 1984-11-21 1986-06-14 Tokai Carbon Co Ltd Manufacture of sic whisker

Also Published As

Publication number Publication date
JPS63156100A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
US4619905A (en) Process for the synthesis of silicon nitride
JPH0353279B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
EP0272773B1 (en) Process for production silicon carbide whiskers
JPH0351678B2 (en)
JPS6122000A (en) Preparation of silicon carbide whisker
JPH0353280B2 (en)
JPH0351679B2 (en)
JPS62260798A (en) Production of silicon carbide whisker
JPS63156099A (en) Production of silicon carbide whisker
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JPH0633237B2 (en) Method for producing high-purity silicon carbide whisker
JPH0448760B2 (en)
JP3199757B2 (en) Catalyst for producing methane-containing gas
JPS6126600A (en) Preparation of beta type silicon carbide whisker
JP7064194B2 (en) Hydrocarbon conversion catalyst and its production method and method for producing hydrocarbon using this hydrocarbon conversion catalyst
JPS6272600A (en) Production of silicon carbide whisker
JPS63103898A (en) Production of silicon carbide whisker of high-quality
JPS63159297A (en) Production of silicon carbide whisker
JPS63156098A (en) Production of silicon carbide whisker
JPH02225400A (en) Production of silicon carbide whisker
KR100348009B1 (en) Method of making mullite whiskers
JPS62260799A (en) Production of silicon carbide whisker and device therefor
JPH03353B2 (en)
JPH0337197A (en) Production of silicon carbide whisker