JPH0351664A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0351664A
JPH0351664A JP1188190A JP18819089A JPH0351664A JP H0351664 A JPH0351664 A JP H0351664A JP 1188190 A JP1188190 A JP 1188190A JP 18819089 A JP18819089 A JP 18819089A JP H0351664 A JPH0351664 A JP H0351664A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
combustion gas
passage
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188190A
Other languages
Japanese (ja)
Other versions
JP2619956B2 (en
Inventor
Katsuzo Konakawa
勝蔵 粉川
Katsuhiko Yamamoto
克彦 山本
Junichi Jakudo
雀堂 純一
Tatsunori Otake
達規 桜武
Koichiro Yamaguchi
山口 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1188190A priority Critical patent/JP2619956B2/en
Publication of JPH0351664A publication Critical patent/JPH0351664A/en
Application granted granted Critical
Publication of JP2619956B2 publication Critical patent/JP2619956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes

Abstract

PURPOSE:To increase a thermal transferring capability in response to a flow rate of combustion gas and make a uniform heating of refrigerant by a method wherein a fin pitch of any of a plurality of thermal transferring fins is made non-uniform. CONSTITUTION:A natural circulation cycle of a refrigerant heating device to be heated by a burner 12 or the like is divided by a plurality of thermal transferring fins 24 and 25 closely contacted with a thermal transmitting partition wall 13 of a hot gas passage 14 where combustion gas injected from a combustion gas outlet 15 communicates with a combustion chamber II of heat insulation structure. At this time, a fin pitch of any of the thermal transferring fins 25 is changed non-uniformly in response to a flow rate and a temperature of the combustion gas. With such an arrangement, a thermal transferring load becomes constant and the refrigerant is uniformly heated, each of the portions of the refrigerant passage member 17 is uniformly heated and smoothly circulated. As a result, the refrigerant may not be locally overheated and a thermal transfer without any power can be positively carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼ガスなどの高温ガスによυ冷媒を加熱し冷
暖房装置に利用する熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger that heats a υ refrigerant using high-temperature gas such as combustion gas and is used in air-conditioning equipment.

従来の技術 被加熱側流体に冷媒を用いて、燃焼ガヌにより加熱して
液状冷媒を蒸発気化させて潜熱により熱を運び暖房を行
なうものとして第6図に示すような冷媒加熱暖房装置が
知られている。この冷媒加熱暖房装置は燃焼ガスと冷媒
との熱交換器1と放熱器2を密閉管路3で連結すると共
に、密閉管路3中に設けた冷媒搬送機4により冷媒を強
制循環するものである。第7図に前記熱交換器1を拡大
して示し、アルミなどの材料で押し出し成形しt水平方
向に延びる円筒体5の内周面に複数のフィン6を設け、
ま交円筒体5の外周面軸方向にはパイプ保持部7を設け
るとともに、このパイプ保持部7に冷媒が内部を流れる
パイプ8を埋設しtもので、バーナ9からの燃焼ガスを
円筒体5の内部に水平横方向に流して、冷媒搬送機4に
より送られてきて前記パイプ8内を流れる冷媒を加熱す
るようになっている。
BACKGROUND ART A refrigerant heating and heating apparatus as shown in Fig. 6 is known as a system that uses a refrigerant as the fluid to be heated and heats it by combustion gas to evaporate the liquid refrigerant and transport heat by latent heat and perform heating. It is being This refrigerant heating and heating device connects a heat exchanger 1 for combustion gas and refrigerant and a radiator 2 through a sealed pipe 3, and forcibly circulates the refrigerant using a refrigerant conveyor 4 installed in the sealed pipe 3. be. FIG. 7 shows an enlarged view of the heat exchanger 1, in which a plurality of fins 6 are provided on the inner peripheral surface of a cylindrical body 5 extruded from a material such as aluminum and extending in the horizontal direction.
A pipe holding part 7 is provided in the axial direction of the outer peripheral surface of the crossed cylindrical body 5, and a pipe 8 through which a refrigerant flows is embedded in this pipe holding part 7, so that the combustion gas from the burner 9 is transferred to the cylindrical body 5. The refrigerant is flowed horizontally into the interior of the pipe 8 to heat the refrigerant that is sent by the refrigerant conveyor 4 and flows inside the pipe 8.

しかし、この暖房システムでは冷媒搬送に外部動力が必
要であり、暖房運転時のワン二ングコストを低減するこ
とが望まれている。
However, this heating system requires external power to transport the refrigerant, and it is desired to reduce the running costs during heating operation.

発明が解決しようとする課題 そこで暖房運転時のランニングコスト低減には冷媒搬送
用の外部動力を無くして無動力で熱搬送することが有効
である。無動力熱搬送により、冷媒加熱暖房を行なう場
合、液状冷媒が加熱されて発生する気体冷媒の浮力によ
る自然循環力が重要となる。ところが、前記従来の冷媒
加熱暖房装置は第7図に示すような熱交換器1が用いら
れており、冷媒は水平方向に延びるパイプ8内を流れる
ため、加熱されて気液二相混合状態の冷媒の気体成分が
スムーズに出口に向かって流れないため冷媒の淀みを生
じ、局部的な異常過熱を発生し、また燃焼室と熱交換部
が一体であるため熱交換量が燃焼状態によυ不均一とな
り、局部過熱を生じ、冷媒の熱分解や機器の異常温度上
昇が生じるなどの問題があった。
Problems to be Solved by the Invention Therefore, in order to reduce running costs during heating operation, it is effective to eliminate external power for transporting refrigerant and transport heat without power. When performing refrigerant heating and heating by non-powered heat transfer, the natural circulation force due to the buoyancy of the gas refrigerant generated when the liquid refrigerant is heated becomes important. However, the conventional refrigerant heating and heating apparatus uses a heat exchanger 1 as shown in FIG. 7, and since the refrigerant flows through a pipe 8 extending in the horizontal direction, it is heated and becomes a gas-liquid two-phase mixture. The gaseous components of the refrigerant do not flow smoothly toward the outlet, causing stagnation of the refrigerant and localized abnormal overheating.Also, since the combustion chamber and heat exchange section are integrated, the amount of heat exchanged depends on the combustion state. There were problems such as non-uniformity, local overheating, thermal decomposition of the refrigerant, and abnormal temperature rise of equipment.

本発明はこのような課題を解決するもので、無動力搬送
を可能とじてランニングコストの低減を図ることカニで
き、まt冷媒の熱分解や機器の異常温度上昇を防止して
信頼性の向上を図ることを目的とするものである。
The present invention solves these problems, and enables non-powered transportation to reduce running costs, as well as improve reliability by preventing thermal decomposition of refrigerant and abnormal temperature rise of equipment. The purpose is to achieve this goal.

課題を解決するtめの手段 この課題を解決するために本発明は、燃料供給装置に接
続し九バーナに一端側が連通して設けた燃焼室と、前記
燃焼室の他端側に連通して設は之燃焼ガス出口と、この
燃焼ガス出口に連通して設けt高温ガス通路と、前記高
温ガス通路内において高温ガス通路を覆う伝熱隔壁に密
着して設けられ上下方向に多数の通路を持つ上下複数段
の伝熱フィンと、前記伝熱隔壁の外面と密着した冷媒通
路部材と、前記燃焼室の内面を覆う断熱材とからなり、
前記複数の伝熱フィンの内、何れかの伝熱フィンのフィ
ンピッチを不均一としたものである。
Tth Means for Solving the Problem In order to solve this problem, the present invention provides a combustion chamber connected to a fuel supply device and having one end communicating with nine burners, and a combustion chamber communicating with the other end of the combustion chamber. The structure includes a combustion gas outlet, a high-temperature gas passage connected to the combustion gas outlet, and a large number of vertical passages provided in the high-temperature gas passage in close contact with a heat transfer partition wall covering the high-temperature gas passage. consisting of a plurality of upper and lower stages of heat transfer fins, a refrigerant passage member that is in close contact with the outer surface of the heat transfer partition, and a heat insulating material that covers the inner surface of the combustion chamber,
Among the plurality of heat transfer fins, the fin pitch of any one of the heat transfer fins is made non-uniform.

作用 この構成により、バーナなどで加熱される冷媒加熱装置
の自然?ti環サイクルを、断熱構造の燃焼室と連通し
て設けた燃焼ガス出口から噴出する燃焼ガスが通過する
前記高温ガス通路の伝熱隔壁に密着しt複数の伝熱フィ
ンで分割し、何れかの伝熱フィンのフィンピッチを不均
一とすることにより、燃焼ガスの流量と温度に応じて何
れかの伝熱フィンのピッチを変えて伝熱負荷を一定にす
ることにより冷媒を均一に加熱でき、冷媒通路部材の各
部を均一加熱でき、冷媒をスムーズに循環させ、かつ冷
媒を局部過熱させることがなく無動力熱搬送を確実に行
なわせ冷媒の熱分解も防止できる。
This configuration allows the natural refrigerant heating device to be heated with a burner, etc. The ring cycle is divided by a plurality of heat transfer fins that are in close contact with the heat transfer partition wall of the high temperature gas passage through which combustion gas ejected from a combustion gas outlet provided in communication with a combustion chamber having an adiabatic structure passes through. By making the fin pitch of the heat transfer fins non-uniform, the refrigerant can be heated uniformly by changing the pitch of one of the heat transfer fins according to the flow rate and temperature of the combustion gas and keeping the heat transfer load constant. Each part of the refrigerant passage member can be heated uniformly, the refrigerant can be circulated smoothly, and the refrigerant can be reliably transferred without power without being overheated locally, and thermal decomposition of the refrigerant can also be prevented.

実施例 以下、本発明の一実施例について、図面に基づいて説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings.

第1図〜第5図において、■は燃料供給装置に接続した
が一ナエ2に一端側が連通して設けた燃焼室で、この燃
焼室11は伝#8隔壁13に密着して設けられた高温ガ
ス通路部材14の燃焼ガス出口15と他端側が連通して
いる。なお、高温ガス通路部材14には排気管16を有
している。詳しくは高温ガス通路部材14に伝熱隔壁1
3が組み合わさって高温ガス通路が形成されている。前
記伝熱隔壁13の外面には熱的に連結させt冷媒通路部
材17が設けられ、この冷媒通路部材17には上下方向
に向く通路18が多数設けられている。前記冷媒通路部
材17の下端には入口ヘッダー管19が設けられ、冷媒
通路部材17の上端には出口ヘッダー管20が設けられ
ている。
In Figures 1 to 5, ■ is a combustion chamber that is connected to the fuel supply system but has one end communicating with the fuel tank 2, and this combustion chamber 11 is provided in close contact with the partition wall 13 of #8. The combustion gas outlet 15 and the other end side of the high temperature gas passage member 14 communicate with each other. Note that the high temperature gas passage member 14 has an exhaust pipe 16. In detail, the heat transfer partition 1 is attached to the high temperature gas passage member 14.
3 are combined to form a high temperature gas passage. A refrigerant passage member 17 is provided on the outer surface of the heat transfer partition wall 13 and is thermally connected to the refrigerant passage member 17, and the refrigerant passage member 17 is provided with a large number of passages 18 facing in the vertical direction. An inlet header pipe 19 is provided at the lower end of the refrigerant passage member 17, and an outlet header pipe 20 is provided at the upper end of the refrigerant passage member 17.

そして入口ヘッダー管19の一端には入口管21が接続
され、出口ヘッダー管20の一端には出口管22が接続
され、おのおのが冷媒回路と接続される。前記入口ヘッ
ダー管19の他端には下方に曲折されたオイル抜き管2
3が設けられている。また入口ヘッダー管19と出口ヘ
ッダー管20は前記上下方向の通路18により互いに連
通している。前記高温ガス通路の内部には伝熱隔壁13
の内面に熱的に接するように前記燃焼ガス出口15 f
t上下より挟む位置で伝熱フィン24.25が設けられ
、これらは波形状に屈曲されている。ところで、前記燃
焼室11は筒状であって、その内面には断熱材26が設
けられているっまた、前記伝熱フィン25は伝熱フィン
24よりフィンピッチが小さく、かつ不均一であり、こ
れら伝熱フィン24.25は伝熱隔壁13に取り付けら
れ交状即において上下方向に向く多数の通路24a、2
5a k形成し、この伝熱フィン24.25が前記高温
ガス通終部材14で覆われた状態において伝熱フィン2
4゜25の外周を通り下側の伝熱フィン25の下方中央
で集合する排気通路27が形成されるようになっている
。そして、この排気通路部は前記排気管16と連通ずる
ものである。
An inlet pipe 21 is connected to one end of the inlet header pipe 19, an outlet pipe 22 is connected to one end of the outlet header pipe 20, and each is connected to a refrigerant circuit. At the other end of the inlet header pipe 19 is an oil drain pipe 2 bent downward.
3 is provided. Further, the inlet header pipe 19 and the outlet header pipe 20 communicate with each other through the vertical passage 18. A heat transfer partition wall 13 is provided inside the high temperature gas passage.
The combustion gas outlet 15f is in thermal contact with the inner surface of the combustion gas outlet 15f.
Heat transfer fins 24 and 25 are provided at positions between the upper and lower sides of t, and these are bent into a wave shape. By the way, the combustion chamber 11 has a cylindrical shape, and a heat insulating material 26 is provided on the inner surface of the combustion chamber 11, and the heat transfer fins 25 have a smaller fin pitch than the heat transfer fins 24 and are non-uniform. These heat transfer fins 24, 25 are attached to the heat transfer partition wall 13 and have a large number of passages 24a, 2 facing vertically in an intersecting manner.
5a k, and in a state where the heat transfer fins 24 and 25 are covered with the hot gas passage member 14, the heat transfer fins 2
An exhaust passage 27 is formed which passes through the outer periphery of 4°25 and gathers at the center below the lower heat transfer fins 25. This exhaust passage portion communicates with the exhaust pipe 16.

上記構成において、燃料の供給装置により供給された燃
料をバーナー12で燃焼し、燃焼室11で発生した高温
ガスは燃焼ガス出口15を通シ高温ガス通路内部の伝熱
フィン24.25の通路24a e 25aを通シ、排
気通路nから排気管16に流れる。前記入口管21を通
って入口ヘッダー管19に入った液冷媒は冷媒通路部材
17の下部より多数の上下方向の通路18に分流し、一
方伝熱フイン24.25が前記通路24a。
In the above configuration, the fuel supplied by the fuel supply device is burned in the burner 12, and the high temperature gas generated in the combustion chamber 11 passes through the combustion gas outlet 15 and passes through the passage 24a of the heat transfer fins 24 and 25 inside the high temperature gas passage. e 25a and flows from the exhaust passage n to the exhaust pipe 16. The liquid refrigerant that has entered the inlet header pipe 19 through the inlet pipe 21 is divided into a plurality of vertical passages 18 from the lower part of the refrigerant passage member 17, while heat transfer fins 24 and 25 are connected to the passage 24a.

25a内を流れる高温ガスの熱を冷媒通路部材17に伝
熱し、その結果冷媒通路部材17の上下方向の通路18
内の冷媒を入口ヘッダー管19に近い下部よシ十分に7
JI#Sする。そこで加熱されt液状冷媒は気化蒸発を
開始し、液の中に気泡を生じる気液二相状態となる。発
生した気泡は浮力効果で上下方向の通路18内を上昇し
、特に燃焼ガスは燃焼室11から燃焼ガス出口15を出
た後高温ガス通路内で冷媒に伝熱するため、燃焼ガスの
温度と流れを燃焼ガス出口15で規制でき、冷媒通路部
材17の各部を均一加熱でき、スムーズかつ均一に冷媒
を蒸発させ、冷媒を局部過熱させることがなく、無動力
熱搬送を確実に行なわせ、冷媒の熱分解も生じない。均
一加熱はまた通路18内の流れの抵抗を低減させること
により気泡発生が増大し、気泡上昇力は強められ自然循
環力が強くなると共にまだ気化していない液冷媒を伴っ
て通路18の上部へ冷媒を送る気泡ポンプ作用が発生す
る。そして、伝熱フィン25のフィンピッチは伝熱フィ
ン24より小さく設定してかつフィンピッチを不均一と
しであることにより、通路抵抗を増加させずに伝熱フィ
ンδ側の伝熱面@を伝熱フィン24より大きくし燃焼ガ
ス流量に応じて伝熱能力を増加しである。すなわち、燃
焼ガスが燃焼室11から燃焼ガス出口15ヲ出た後高温
ガス通路t−通り排気管16に至る通路の燃焼ガス通過
抵抗に応じてフィンのピッチを最適に設定できる。また
、本実施例では排気管16側の伝熱フィン25ヲ全域に
わたりフィン24よりピッチを小さくしている。その究
め、排気管16に近い伝熱フィン25側は燃焼ガスが多
く流れるが伝熱面積も大きく設定できる。まt、排気管
16に対する通路248゜27t−持つ伝熱フィン24
では通路抵抗が大きく、燃焼ガスが少なく流れるが、伝
熱面積も小さいためトータルとして伝熱フィン25側と
同じ熱交換率に設定でき、全ての排気燃焼ガス温度を均
一に低くでき、トータル熱交換効率を大きくできるもの
である。まt、冷媒の流れに応じて、フィンのピッチ金
変化することにより伝熱能力に分布を設は燃焼ガスの流
れ分布にかかわらず熱交換性能をコントロールできる。
The heat of the high-temperature gas flowing inside 25a is transferred to the refrigerant passage member 17, and as a result, the passage 18 in the vertical direction of the refrigerant passage member 17
Pour the refrigerant into the lower part near the inlet header pipe 19.
JI#S. There, the liquid refrigerant is heated and begins to vaporize, becoming a gas-liquid two-phase state with bubbles forming in the liquid. The generated bubbles rise in the vertical passage 18 due to the buoyancy effect, and in particular, the combustion gas transfers heat to the refrigerant in the high-temperature gas passage after exiting the combustion gas outlet 15 from the combustion chamber 11, so the temperature of the combustion gas and The flow can be regulated by the combustion gas outlet 15, each part of the refrigerant passage member 17 can be heated uniformly, the refrigerant can be evaporated smoothly and uniformly, the refrigerant can be prevented from being locally overheated, and non-powered heat transfer can be reliably performed. No thermal decomposition occurs. Uniform heating also increases bubble generation by reducing the flow resistance in the passage 18, increasing the bubble upward force, increasing the natural circulation force, and moving the liquid refrigerant that has not yet vaporized to the upper part of the passage 18. A bubble pumping action occurs that transports the refrigerant. By setting the fin pitch of the heat transfer fins 25 smaller than that of the heat transfer fins 24 and making the fin pitch non-uniform, the heat transfer surface @ on the heat transfer fin δ side can be transferred without increasing the passage resistance. It is made larger than the heat fins 24 to increase the heat transfer ability according to the flow rate of combustion gas. That is, the pitch of the fins can be optimally set in accordance with the combustion gas passage resistance of the passage after the combustion gas exits from the combustion chamber 11 through the combustion gas outlet 15 and reaches the exhaust pipe 16 through the high temperature gas passage T. Further, in this embodiment, the pitch of the heat transfer fins 25 on the exhaust pipe 16 side is made smaller than that of the fins 24 over the entire area. As a result, a large amount of combustion gas flows on the heat transfer fin 25 side near the exhaust pipe 16, but the heat transfer area can also be set large. Also, the heat transfer fins 24 having a passage 248°27t for the exhaust pipe 16
Since the passage resistance is large and less combustion gas flows, the heat transfer area is also small, so the total heat exchange rate can be set to be the same as that on the heat transfer fin 25 side, and the temperature of all exhaust combustion gases can be uniformly lowered, resulting in a total heat exchange. This can increase efficiency. Furthermore, by changing the pitch of the fins according to the flow of the refrigerant, the heat transfer performance can be controlled regardless of the flow distribution of the combustion gas.

冷媒は出口管22の近傍を多く流れ端部の流量は少ない
から、この部分のフィンピッチを順次小さくすることに
工り均一伝熱効率が得られ、過熱を生じなくかつ高効率
となる。さらに伝熱フィン24.25が設けられている
部分以外の伝熱隔壁13の面も伝熱面となり、高温ガス
通路内を流れる高温ガスより効率よく吸熱し、通路18
内の気液二相状態の冷媒をさらに加熱して自然循環力を
さらに増大させる。通路18の上端に達した冷媒は出口
ヘッダー管20に流入し、出口管nよシ放熱器(図示せ
ず)に向かって流出する。このように上下方向の通路1
8の下部から上部に至るまで均一に加熱することにより
自然循環を高めるだけでなく、下部において伝熱フィン
25のピッチを小さくすることによりさらに強く加熱す
ることで自然循環力t−さらに増加させることができる
。また、高温ガス通路部材14に前記燃焼室11 ?取
り付けるとともに伝熱隔壁13を取り付け、この伝熱隔
壁Uに冷媒通路部材17が取り付けられていることによ
り、燃焼室11からの高温ガスの熱を前記伝熱フィン2
4.25から通路18に効率よく伝達することができ、
te冷媒通路部材17は多管二重壁構成である究め、冷
媒の燃焼ガス部への洩れを防止することができる。また
、高温の燃焼室■と通路18ヲ高温ガス通路部材14で
形成される高温ガス通路で完全に分離しtため、局部過
熱による冷媒の熱分解、劣化が生じることなく、かつ機
器の異常温度上昇を防止し、信頼性を向上させることが
できる。
Since the refrigerant flows mostly near the outlet pipe 22 and has a small flow rate at the end, uniform heat transfer efficiency can be obtained by sequentially decreasing the fin pitch in this part, resulting in high efficiency without overheating. Furthermore, the surface of the heat transfer partition wall 13 other than the portion where the heat transfer fins 24 and 25 are provided also serves as a heat transfer surface, and absorbs heat more efficiently than the high temperature gas flowing in the high temperature gas passage.
The gas-liquid two-phase refrigerant inside is further heated to further increase the natural circulation force. The refrigerant that reaches the upper end of the passageway 18 flows into the outlet header pipe 20 and exits through the outlet pipe n toward a radiator (not shown). In this way, the vertical passage 1
Not only is natural circulation enhanced by uniform heating from the bottom to the top of 8, but the pitch of the heat transfer fins 25 is made smaller at the bottom to further increase the natural circulation force t- by heating even stronger. I can do it. Also, the combustion chamber 11 is connected to the high temperature gas passage member 14? At the same time, the heat transfer partition 13 is attached, and the refrigerant passage member 17 is attached to the heat transfer partition U, so that the heat of the high temperature gas from the combustion chamber 11 is transferred to the heat transfer fins 2.
4.25 to the passage 18 efficiently,
The refrigerant passage member 17 has a multi-tube double-walled structure, which can prevent refrigerant from leaking into the combustion gas section. In addition, since the high-temperature combustion chamber (1) and the passage 18 are completely separated by the high-temperature gas passage formed by the high-temperature gas passage member 14, thermal decomposition and deterioration of the refrigerant due to local overheating do not occur, and the abnormal temperature of the equipment is prevented. It is possible to prevent this from occurring and improve reliability.

さらに、冷媒通路部材17を内部に多数の通路を持つア
ルミニウム製の多管偏平押し出し管とし、まt伝熱フィ
ン24.25として帯状のアルミニウム製の板を波状に
屈曲させて構成し、さらに伝熱隔壁13はアルミニウム
製心材の表裏にろう材を事前にクラッドしたプレージン
グシートとして組立て、同時に一体プレージングするこ
とにより、容易にフィンのピッチを可変できかつ熱的に
連通でき、接触熱抵抗がない伝熱性能に優れ、かつ軽量
で低コストの熱交換器が得られる。
Furthermore, the refrigerant passage member 17 is made of a multi-tube flat extruded tube made of aluminum having a large number of passages inside, and the heat transfer fins 24 and 25 are made of band-shaped aluminum plates bent in a wave shape. The thermal partition wall 13 is assembled as a plating sheet in which the front and back sides of an aluminum core material are clad with brazing material in advance, and by integrally plating at the same time, the pitch of the fins can be easily varied and thermal communication can be achieved, resulting in a low contact thermal resistance. A lightweight, low-cost heat exchanger with excellent heat transfer performance can be obtained.

まt、高温ガス通路部材14ドアルミニウム製心材の片
面にろう材を事前にクラッドしたプレージングシートと
し、ブレージングにより前記伝熱フィン24.25と一
体的に構成することにより燃焼室11からの熱が伝熱フ
ィン24.25を通じて通路18に高い熱交換効率で伝
熱し、効率アップと機器のコンパクト化が可能となる。
In addition, one side of the aluminum core material of the high-temperature gas passage member 14 is made of a brazing sheet clad with a brazing material in advance, and the heat transfer fins 24 and 25 are integrated with the heat transfer fins 24 and 25 by brazing, thereby transferring heat from the combustion chamber 11. The heat is transferred to the passage 18 through the heat transfer fins 24 and 25 with high heat exchange efficiency, making it possible to increase efficiency and make the equipment more compact.

そして、前記高温ガス通路部材14をアルミニウムとし
伝熱隔壁13と一体グレージングすることは簡単な構成
でかつ気密性を維持でき、排ガスが洩れることがなく、
安全性が高いものである。
By making the high temperature gas passage member 14 aluminum and integrally glazing it with the heat transfer partition wall 13, it is a simple structure and can maintain airtightness, preventing exhaust gas from leaking.
It is highly safe.

また、冷媒中にはコンプレッサーのオイルカ常に溶存し
ておシ、加熱器で冷媒を気化させると次第にオイルが溜
ってぐる。オイルが多く溜るとその粘性と低熱伝導の九
め冷媒の気化、循環を阻害する。そこで、冷媒通路部材
17の通路18の底部の入口ヘッダー管19に接続して
オイル抜き管23を設けであるtめ、加熱器にオイルが
溜ると冷媒と一緒にオイ/I/をオイル抜き管23から
排出し、オイルを加熱器から確実に除去し冷媒の均一循
環の維持により局部過熱による冷媒の熱分解をなくし、
C頼性の向上を図れる。
Also, oil from the compressor is always dissolved in the refrigerant, and when the refrigerant is vaporized in the heater, the oil gradually accumulates. When a large amount of oil accumulates, its viscosity and low heat conductivity hinder the vaporization and circulation of the refrigerant. Therefore, an oil drain pipe 23 is provided which is connected to the inlet header pipe 19 at the bottom of the passage 18 of the refrigerant passage member 17.If oil accumulates in the heater, the oil will be drained together with the refrigerant through the oil drain pipe. 23, ensuring that oil is removed from the heater and maintaining uniform circulation of the refrigerant to eliminate thermal decomposition of the refrigerant due to local overheating.
C reliability can be improved.

発明の効果 以上のように本発明によれば、燃料供給装置に接続しt
バーナに一端側が連通して設けたm焼室と、前記燃焼室
の他端側に連通して設けた燃焼ガス出口と、この燃焼ガ
ス出口に連通して設けた高温ガス通路と、前記高温ガス
通路内において高温ガヌ通路を覆う伝熱隔壁に密着して
設けらn上下方向に多数の通路を持つ上下複数段の伝熱
フィンと、前記伝熱隔壁の外面と密着しt冷媒通路部材
と、前記燃焼室の内面を覆う断熱材とからなり、前記複
数の伝熱フィンの内、何れかの伝熱フィンのフィンピッ
チを不均一としたものであり、次の効果が得られる。
Effects of the Invention As described above, according to the present invention, the t
a combustion chamber with one end communicating with the burner; a combustion gas outlet communicating with the other end of the combustion chamber; a high-temperature gas passage communicating with the combustion gas outlet; A plurality of upper and lower heat transfer fins each having a plurality of passages in the vertical direction, which are provided in close contact with a heat transfer partition wall covering the high temperature passage within the passage, and a refrigerant passage member, which is provided in close contact with the outer surface of the heat transfer partition wall. , and a heat insulating material covering the inner surface of the combustion chamber, and the fin pitch of any of the heat transfer fins among the plurality of heat transfer fins is non-uniform, and the following effects are obtained.

すなわち、何れかの伝熱フィンのフィンピッチは不均一
としであることによ、す、通路抵抗を増加させずにその
伝熱フィン側の伝熱面積を他の伝熱フィンより大きくし
燃焼ガス流址に応じて伝熱能力を増加しである。すなわ
ち、燃焼ガスが燃焼室から燃焼ガス出口を出た後高温ガ
ス通路を通過する抵抗に応じてフィンのピッチを最適に
設定できる。まt、冷媒の流れに応じて、フィンのピッ
チを変化することにより伝熱能力に分布を設け、燃焼ガ
スの流れ分布にかかわらず熱交換性能をコントロールで
きる。まt、断熱構造の燃焼室と連通して設けた燃焼ガ
ス出口から噴出する燃焼ガスが通過する前記高温ガス通
路内に伝熱隔壁に密着しtvi数の伝熱フィンを設け、
伝熱隔壁と冷媒通路部材を備えて構成した熱交換器で燃
焼ガスの温度と流れを均一にでき、冷媒通路部材の各部
全均一加熱できて冷媒をスムーズに循環させ、かつ冷媒
を局部過熱させることがなく無動力熱搬送を確実に行な
わせ、冷媒の熱分解も防止できる。均一加熱は冷媒通路
部材の通路内の流れの抵抗を低減させることにより気泡
発生が増大し、気泡玉外力は強められて自然循環力が強
くなり、熱効換効率が増大し、機器のコンパクト化が可
能となり、また均一加熱により冷媒の局部異常過熱を防
止することにより機器の異常温度上昇防止による信頼性
の向上を図ることができる。また、無動力熱搬送が可能
となることにより、ランニングコストの低減を図ること
ができる。
In other words, since the fin pitch of any one of the heat transfer fins is nonuniform, the heat transfer area on the heat transfer fin side is larger than that of the other heat transfer fins without increasing the passage resistance, and the combustion gas is The heat transfer capacity increases depending on the flow rate. That is, the pitch of the fins can be optimally set according to the resistance with which the combustion gas passes through the high-temperature gas passage after exiting the combustion gas outlet from the combustion chamber. Furthermore, by changing the pitch of the fins according to the flow of the refrigerant, the heat transfer ability can be distributed, and the heat exchange performance can be controlled regardless of the flow distribution of the combustion gas. Further, heat transfer fins of the number tvi are provided in close contact with the heat transfer partition wall in the high temperature gas passage through which combustion gas ejected from a combustion gas outlet provided in communication with a combustion chamber having an adiabatic structure passes;
A heat exchanger configured with a heat transfer partition wall and a refrigerant passage member can equalize the temperature and flow of combustion gas, uniformly heat all parts of the refrigerant passage member, circulate the refrigerant smoothly, and locally superheat the refrigerant. It is possible to reliably carry out non-powered heat transfer without any problems, and also to prevent thermal decomposition of the refrigerant. Uniform heating reduces the flow resistance inside the refrigerant passage member, which increases bubble generation, strengthens the external force of the bubble bubbles, strengthens the natural circulation force, increases heat exchange efficiency, and makes equipment more compact. Furthermore, by preventing local abnormal overheating of the refrigerant through uniform heating, it is possible to improve reliability by preventing abnormal temperature rises in equipment. Furthermore, since non-powered heat transfer is possible, running costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の一実施例を示すもので、第1
図は熱交換器の縦断面図、第2図は冷媒通路部材の横断
面図、第3図は熱交換器の分解斜視図、第4図は下側の
伝熱フィンの横断面図、第5図は高温ガス通路内部の構
成図、第6図は従来の冷媒加熱暖房装置の回路構成図、
第7図は従来の熱交換器の斜視図である。 11・・・燃焼室、12・・・バーナ、13・・・伝熱
隔壁、14・・・高温ガス通路部材、15・・・燃焼ガ
ス出口、16・・・排気管、17・・・冷媒通路部材、
18・・・通路、19・・・入口ヘッダー管、20・・
・出口ヘッダー管、24.25・・・伝熱フィン、24
a e 25a・・・通路、あ・・・断熱材。
Figures 1 to 5 show one embodiment of the present invention.
Figure 2 is a longitudinal cross-sectional view of the heat exchanger, Figure 2 is a cross-sectional view of the refrigerant passage member, Figure 3 is an exploded perspective view of the heat exchanger, Figure 4 is a cross-sectional view of the lower heat transfer fins, Figure 5 is a diagram of the internal configuration of the high-temperature gas passage, Figure 6 is a circuit diagram of a conventional refrigerant heating system,
FIG. 7 is a perspective view of a conventional heat exchanger. DESCRIPTION OF SYMBOLS 11... Combustion chamber, 12... Burner, 13... Heat transfer partition, 14... High temperature gas passage member, 15... Combustion gas outlet, 16... Exhaust pipe, 17... Refrigerant passage member,
18... Passage, 19... Inlet header pipe, 20...
・Outlet header pipe, 24.25...Heat transfer fin, 24
a e 25a...Aisle, ah...insulation material.

Claims (1)

【特許請求の範囲】[Claims] 1、燃料供給装置に接続したバーナに一端側が連通して
設けた燃焼室と、前記燃焼室の他端側に連通して設けた
燃焼ガス出口と、この燃焼ガス出口に連通して設けた高
温ガス通路と、前記高温ガス通路内において高温ガス通
路を覆う伝熱隔壁に密着して設けられ上下方向に多数の
通路を持つ上下複数段の伝熱フインと、前記伝熱隔壁の
外面と密着した冷媒通路部材と、前記燃焼室の内面を覆
う断熱材とからなり、前記複数の伝熱フインの内、何れ
かの伝熱フインのフインピッチを不均一とした熱交換器
1. A combustion chamber with one end communicating with a burner connected to a fuel supply device, a combustion gas outlet communicating with the other end of the combustion chamber, and a high temperature combustion chamber communicating with the combustion gas outlet. a gas passage, a plurality of upper and lower stages of heat transfer fins provided in the high temperature gas passage in close contact with a heat transfer partition wall covering the high temperature gas passage and having a large number of passages in the vertical direction; A heat exchanger comprising a refrigerant passage member and a heat insulating material covering an inner surface of the combustion chamber, and in which one of the plurality of heat transfer fins has an uneven fin pitch.
JP1188190A 1989-07-20 1989-07-20 Heat exchanger Expired - Fee Related JP2619956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188190A JP2619956B2 (en) 1989-07-20 1989-07-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188190A JP2619956B2 (en) 1989-07-20 1989-07-20 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH0351664A true JPH0351664A (en) 1991-03-06
JP2619956B2 JP2619956B2 (en) 1997-06-11

Family

ID=16219344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188190A Expired - Fee Related JP2619956B2 (en) 1989-07-20 1989-07-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2619956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196652A (en) * 2010-03-23 2011-10-06 Sanden Corp Ice making machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105395A (en) * 1986-10-21 1988-05-10 Matsushita Electric Ind Co Ltd Heat exchanger
JPS6428494A (en) * 1987-07-24 1989-01-31 Matsushita Refrigeration Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105395A (en) * 1986-10-21 1988-05-10 Matsushita Electric Ind Co Ltd Heat exchanger
JPS6428494A (en) * 1987-07-24 1989-01-31 Matsushita Refrigeration Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196652A (en) * 2010-03-23 2011-10-06 Sanden Corp Ice making machine

Also Published As

Publication number Publication date
JP2619956B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPH0351664A (en) Heat exchanger
JPH0351666A (en) Heat exchanger
JPH0351665A (en) Heat exchanger
JP2845566B2 (en) Heat exchanger
JP2548380B2 (en) Heat exchanger
JP2845563B2 (en) Heat exchanger
JPH0351663A (en) Heat exchanger
JP2584047B2 (en) Heat exchanger
JPH0359346A (en) Heat exchanger
JPS5844174B2 (en) bath kettle
JP2861544B2 (en) Heat exchanger
JP2845564B2 (en) Heat exchanger
CN100557369C (en) Heat-pipe radiator
KR200411222Y1 (en) A heat pipe embedded mixing tank for both of heating and cooling
JPH05118778A (en) Heat exchanger
JP2605869B2 (en) Heat exchange equipment
JP2845565B2 (en) Heat exchanger
JP2841975B2 (en) Heat exchanger
JPH02169969A (en) Heat exchanger
JP3019548B2 (en) Heat exchanger
KR100212955B1 (en) Double pipe with multi-chamber for transfering fluid
JPH03213998A (en) Apparatus for heat transfer
JPH11230639A (en) Evaporative cooler
JP2674217B2 (en) Heat exchange equipment
JPH03158650A (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees