JPH0351640B2 - - Google Patents

Info

Publication number
JPH0351640B2
JPH0351640B2 JP59006135A JP613584A JPH0351640B2 JP H0351640 B2 JPH0351640 B2 JP H0351640B2 JP 59006135 A JP59006135 A JP 59006135A JP 613584 A JP613584 A JP 613584A JP H0351640 B2 JPH0351640 B2 JP H0351640B2
Authority
JP
Japan
Prior art keywords
satellite
solar cell
solar
panel
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006135A
Other languages
Japanese (ja)
Other versions
JPS60148800A (en
Inventor
Eihiko Kudo
Hidetoshi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59006135A priority Critical patent/JPS60148800A/en
Publication of JPS60148800A publication Critical patent/JPS60148800A/en
Publication of JPH0351640B2 publication Critical patent/JPH0351640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、スピン安定衛星の周囲にボデイマウ
ント形の太陽電池パネルを実装してなる太陽電池
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell device in which a body-mounted solar cell panel is mounted around a spin-stabilized satellite.

従来のスピン安定衛星は太陽電池パネルをその
周囲に実装しており、太陽電池は全周にわたつて
取付けられていた。これは太陽光が一方向から照
射され、太陽電池パネルが衛星とともにスピンし
ているからである。
Conventional spin-stabilized satellites have solar panels mounted around them, with solar cells attached all around the satellite. This is because sunlight shines from one direction, and the solar panels spin together with the satellite.

そのため、太陽電池パネルの発生電力は実装さ
れている全ての太陽電池に太陽光が照射された場
合の1/π(円筒パネルの場合)にすぎず全太陽
電池の半分は電力発生に寄与しないという欠点が
あつた。
Therefore, the power generated by a solar panel is only 1/π (in the case of a cylindrical panel) of the power generated when all the installed solar cells are irradiated with sunlight, and half of the total solar cells do not contribute to power generation. There were flaws.

第1図はこの種の太陽電池パネルが取付けられ
たスピン衛星の構成を示す。
FIG. 1 shows the configuration of a spin satellite equipped with this type of solar panel.

衛星本体1の全周に太陽電池パネル2が取付け
られ、さらに太陽電池パドル3が取付けられてい
る。太陽電池パドル3は衛星本体に対しデイスパ
ンし、太陽追尾を行なうためのデイスパン機構部
によつて衛星本体1に取付けられている。この例
では太陽電池パドル3に実装された太陽電池素子
は有効利用できるが、ボデイマウント形太陽電池
パネルは衛星本体と共に回転しているので先きに
述べた理由によりこの部分に実装されている太陽
電池を有効利用することはできない。
A solar battery panel 2 is attached to the entire circumference of the satellite body 1, and a solar battery paddle 3 is further attached. The solar battery paddle 3 is attached to the satellite body 1 by a dispan mechanism for disspanning the satellite body and tracking the sun. In this example, the solar cell element mounted on the solar cell paddle 3 can be used effectively, but since the body-mounted solar cell panel rotates together with the satellite body, the solar cell element mounted on the solar cell paddle 3 can be used effectively. Batteries cannot be used effectively.

本発明の目的はボデイマウント形の太陽電池パ
ネル上の太陽電池素子の全てを効率的に使用でき
るようにしたデイスパン太陽電池装置を提供する
ことにある。
An object of the present invention is to provide a dispan solar cell device in which all of the solar cell elements on a body-mounted solar cell panel can be used efficiently.

前記目的を達成するために本発明によるデイス
パン太陽電池装置はスピン安定衛星周囲に実装さ
れるボデイマウント形太陽電池パネルの半分に太
陽電池素子を取付け、このボデイマウント形太陽
電池パネルを衛星本体に対しデイスパン機構部を
介して実装し、軌道投入時、ボデイマウント形太
陽電池パネルをデイスパンさせ、かつ太陽追尾さ
せるように構成してある。
In order to achieve the above object, the dispan solar cell device according to the present invention attaches a solar cell element to half of a body-mounted solar cell panel mounted around a spin-stabilized satellite, and attaches this body-mounted solar cell panel to the satellite body. It is mounted via a de-span mechanism, and is configured to de-span the body-mounted solar cell panel and track the sun when entering orbit.

前記構成によればボデイマウント形太陽電池パ
ネル上の太陽電池素子を有効に利用でき本発明の
目的は完全に達成される。
According to the above configuration, the solar cell elements on the body-mounted solar cell panel can be effectively utilized, and the object of the present invention can be completely achieved.

以下、図面を参照して本発明をさらに詳しく説
明する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第2図は衛星本体を透視した斜視図である。 FIG. 2 is a perspective view of the satellite body.

図において、8は衛星に搭載される各機器を実
装する等、衛星を機械的に保持する構体である。
この構体8の上に電子機器が搭載される。さらに
構体8の下部には軌道保持やスピン制御のための
ガスジエツト用燃料タンク10、静止軌道投入用
のアポジモータ12が搭載される。11はガスジ
エツト用スラスタである。
In the figure, reference numeral 8 denotes a structure that mechanically holds the satellite, such as mounting various devices mounted on the satellite.
Electronic equipment is mounted on this structure 8. Furthermore, a gas jet fuel tank 10 for orbit maintenance and spin control, and an apogee motor 12 for entering a geostationary orbit are mounted on the lower part of the structure 8. 11 is a gas jet thruster.

本図は静止衛星の例を示したもので、外周に第
3〜4図のデイスパン太陽電池装置を実装してそ
れを衛星本体に対しデイスパンさせ、かつ太陽電
池実装部に太陽光が照射するように太陽追尾を行
なう。これにより従来と同数の太陽電池素子で従
来方式のスピン安定衛星を約2倍の発生電力を得
ることができる。
This figure shows an example of a geostationary satellite, in which the dispan solar cell device shown in Figs. 3 and 4 is mounted on the outer periphery, and it is despanned to the satellite body, and sunlight is irradiated to the solar cell mounting part. Sun tracking will be carried out. This makes it possible to generate approximately twice as much power as a conventional spin-stabilized satellite with the same number of solar cell elements.

第3図、第4図は本発明の第1の実施例を示す
斜視図である。この実施例は衛星本体13の外周
に実装されているボデイマウント形太陽電池パネ
ルが、非展開部16と展開部15から成り、衛星
打ち上げ時は第3図に示すようにヒンジ17によ
つて衛星本体13の外周に取付けられている。
3 and 4 are perspective views showing a first embodiment of the present invention. In this embodiment, a body-mounted solar panel mounted on the outer periphery of the satellite main body 13 consists of a non-deployable part 16 and a deployable part 15, and when the satellite is launched, it is attached to the satellite by a hinge 17 as shown in FIG. It is attached to the outer periphery of the main body 13.

第4図はこの衛星を予定された軌道に投入した
ときの図である。デイスパン機構部14によつて
非展開部16をデイスパンさせ、太陽追尾させ
る。そしてヒンジ17の固定を解除して展開部1
5をスプリング等により展開する。
Figure 4 is a diagram when this satellite is inserted into the planned orbit. The non-deployment part 16 is de-spanned by the de-span mechanism part 14 to track the sun. Then, release the fixation of the hinge 17 and expand the unfolded part 1.
5 is expanded using a spring or the like.

この例は従来と同数の太陽電池を使用して約2
倍の発生電力を得ることができる。
This example uses the same number of solar cells as the conventional one, and approximately 2
You can get twice the power generated.

なお、この場合展開されるパネルの下にもう一
枚のパネルを実装しておくと搭載機器に対する熱
および放射線シールドの役目を果し有効である。
In this case, it is effective to mount another panel below the unfolded panel to serve as a heat and radiation shield for the mounted equipment.

太陽電池パネルは衛星本体に対して完全に停止
するわけではなく、太陽追尾のためゆつくりと回
転する。この回転数は静止衛星の場合、1日当り
1回転であり、衛星本体のスピン速度(1分間に
数十回転以上)に比べ、非常に遅いため姿勢制御
に悪影響をおよぼすことはない。
The solar panels do not completely stop relative to the satellite, but rotate slowly to track the sun. In the case of a geostationary satellite, this number of revolutions is one revolution per day, which is extremely slow compared to the spin speed of the satellite itself (several dozen revolutions per minute or more), so it does not adversely affect attitude control.

デイスパン機構はスピン安定方式の通信衛星の
アンテナや気象衛星のカメラ等に数多く用いられ
ている。太陽追尾に関しても三軸制御衛星や従来
方式で述べたスピン安定衛星の太陽電池パドルで
行なわれており、本発明を実施する上で技術的な
問題はない。
Dispan mechanisms are widely used in spin-stabilized communication satellite antennas, meteorological satellite cameras, etc. Solar tracking is also carried out using solar array paddles of three-axis control satellites and spin-stabilized satellites as described in the conventional method, and there are no technical problems in implementing the present invention.

第5図、第6図は本発明の第2の実施例を示す
図で、展開用太陽電池パネルを多段構成した例で
ある。図において、19はボデイマウント形太陽
電池パネルの非展開部であり、その先にヒンジ2
2によつて展開部21が取付けられている。衛星
打上げ時は第1の実施例と同様、第5図に示すよ
うに衛星本体18の外周に実装され、軌道投入時
にはボデイマウント形太陽電池パネルの非展開部
19がデイスパンさせられる。そして展開部21
を展開する。
FIG. 5 and FIG. 6 are diagrams showing a second embodiment of the present invention, which is an example in which a solar cell panel for deployment is configured in multiple stages. In the figure, 19 is the undeployed part of the body-mounted solar panel, and there is a hinge 2 at the end.
The expansion part 21 is attached by 2. When the satellite is launched, as in the first embodiment, it is mounted on the outer periphery of the satellite main body 18, as shown in FIG. 5, and when it is inserted into orbit, the non-deployable portion 19 of the body-mounted solar cell panel is de-spanned. And development part 21
Expand.

この実施例はボデイマウント形太陽電池パネル
の展開部21が多段に連らなつているので展開前
後および展開中に衛星の重心位置が移動しスピン
安定に悪影響をおよぼすことが考えられる。そこ
で対策として衛星の重心位置を調節するバランス
調節機構23を設けている。
In this embodiment, since the deployment portions 21 of the body-mounted solar cell panels are connected in multiple stages, the center of gravity of the satellite moves before, during and after deployment, which may adversely affect spin stability. As a countermeasure, a balance adjustment mechanism 23 is provided to adjust the position of the center of gravity of the satellite.

なお、ボデイマウント形太陽電池パネルの展開
部は衛星の要求電力に応じて枚数を増加させるこ
とができる。
Note that the number of body-mounted solar panels can be increased depending on the power required by the satellite.

以上、詳しく説明したように本発明によればス
ピン安定衛星の周囲に実装される太陽電池パネル
に非展開部と展開部を設け、太陽電池素子を取付
け、軌道投入時展開部を開くとともに非展開部を
含むパネルの全てを衛星本体に対しデイスパンさ
せ、かつ太陽追尾を行なうことにより、全ての太
陽電池を有効利用できるという利点が生じる。
As described in detail above, according to the present invention, a solar cell panel mounted around a spin-stabilized satellite is provided with a non-deployable part and a deployable part, solar cell elements are attached, and when the solar cell panel is inserted into orbit, the deployable part is opened and the deployable part is not deployed. The advantage is that all the solar cells can be used effectively by disspanning all the panels, including the solar cells, from the satellite body and tracking the sun.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバドル付スピン安定衛星の斜視
図、第2図はデイスパン太陽電池を実装する衛星
本体の透視斜視図、第3図、第4図は本発明によ
るスピン安定衛星用デイスパン太陽電池装置の第
1の実施例を示す斜視図で、太陽電池バドルの展
開前、展開後をそれぞれ示す図である。第5図、
第6図は本発明によるスピン安定衛星用デイスパ
ン太陽電池バドルの展開前、展開後をそれぞれ示
す図である。 1,13,18……衛星本体、2……ボデイマ
ウント形太陽電池パネル、3……太陽電池パド
ル、4……パドルデイスパン機構部、5……太陽
電池素子、7,14,20……太陽電池パネルデ
イスパン機構部、8……構体、9……電子機器、
10……ガスジエツト用燃料タンク、11……ガ
スジエツト用スラクタ、12……静止軌道投入用
のアポジモータ、15,21……ボデイマウント
形太陽電池パネルの展開部、16,19……ボデ
イマウント形太陽電池パネルの非展開部、17,
22……ヒンジ、23……バランス調節機構。
Fig. 1 is a perspective view of a conventional spin-stabilized satellite with a paddle, Fig. 2 is a transparent perspective view of the satellite body on which a de-span solar cell is mounted, and Figs. 3 and 4 are dis-span solar cells for a spin-stabilized satellite according to the present invention. FIG. 1 is a perspective view showing the first embodiment of the device, and is a diagram showing the solar battery paddle before and after the deployment. Figure 5,
FIG. 6 is a diagram showing the dispan solar cell paddle for a spin-stabilized satellite according to the present invention before and after deployment, respectively. 1, 13, 18... Satellite main body, 2... Body-mounted solar panel, 3... Solar battery paddle, 4... Paddle dispan mechanism section, 5... Solar cell element, 7, 14, 20... Solar panel dispan mechanism section, 8...Structure, 9...Electronic equipment,
DESCRIPTION OF SYMBOLS 10...Fuel tank for gas jet, 11...Slactor for gas jet, 12...Apogee motor for geostationary orbit insertion, 15, 21...Deployment part of body mount type solar cell panel, 16, 19...Body mount type solar cell Non-deployed part of panel, 17,
22...Hinge, 23...Balance adjustment mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 スピン安定衛星の周囲全体を少なくとも一重
に覆うように実装されるボテイマウント形太陽電
池パネルに非展開部と展開部を設け、前記非展開
部の外側面の全体および展開後非展開部の外側面
と同一方向に向けられる前記展開部の面の全体に
太陽電池素子を取付け、前記ボデイマウント形太
陽電池パネルを衛星本体に対しデイスパン機構部
を介して実装し、軌道投入時、前記展開部を展開
してボデイマウント形太陽電池パネル全体をデイ
スパンさせるとともに、太陽追尾させるよう構成
したことを特徴とするスピン安定衛星用デイスパ
ン太陽電池装置。
1 A body-mounted solar cell panel mounted so as to cover the entire circumference of a spin-stabilized satellite at least once has a non-deployable part and a deployable part, and the entire outer surface of the non-deployable part and the outer surface of the non-deployable part after deployment. A solar cell element is attached to the entire surface of the deployable section that is oriented in the same direction, and the body-mounted solar panel is mounted on the satellite body via a dispan mechanism section, and the deployable section is deployed when entering orbit. 1. A dispan solar cell device for a spin-stabilized satellite, characterized in that it is configured to dispan the entire body-mounted solar cell panel and track the sun.
JP59006135A 1984-01-17 1984-01-17 Despun solar cell device for spin stabilizing satellite Granted JPS60148800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006135A JPS60148800A (en) 1984-01-17 1984-01-17 Despun solar cell device for spin stabilizing satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006135A JPS60148800A (en) 1984-01-17 1984-01-17 Despun solar cell device for spin stabilizing satellite

Publications (2)

Publication Number Publication Date
JPS60148800A JPS60148800A (en) 1985-08-06
JPH0351640B2 true JPH0351640B2 (en) 1991-08-07

Family

ID=11630057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006135A Granted JPS60148800A (en) 1984-01-17 1984-01-17 Despun solar cell device for spin stabilizing satellite

Country Status (1)

Country Link
JP (1) JPS60148800A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200632A (en) * 1987-02-16 1988-08-18 Hamamatsu Photonics Kk Space light communication equipment
US6068218A (en) * 1997-05-14 2000-05-30 Hughes Electronics Corporation Agile, spinning spacecraft with sun-steerable solar cell array and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820599A (en) * 1981-07-29 1983-02-07 三菱電機株式会社 Artificial satellite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129654U (en) * 1982-02-26 1983-09-02 三菱電機株式会社 Solar panels on spin-stabilized satellites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820599A (en) * 1981-07-29 1983-02-07 三菱電機株式会社 Artificial satellite

Also Published As

Publication number Publication date
JPS60148800A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
US6050526A (en) Solar reflector systems and methods
US6194790B1 (en) Solar sail for power generation
US20020145082A1 (en) Deployable radiator for a space vehicle
US4508297A (en) Satellite on an equatorial orbit with improved solar means
JP2001509110A (en) Satellite attitude control system using low thrust thrusters
Curtis et al. Final results from the PASP Plus flight experiment
JPS6022600A (en) Despun platform type spin satellite
EP0878396B1 (en) Orientation mechanism and method for solar cell arrays on an agile spinning spacecraft
EP0977273A1 (en) Solar reflector systems and methods
JPH0351640B2 (en)
US5934620A (en) Spacecraft sun-target steering about an arbitrary body axis
JPS6210240Y2 (en)
JPS5820599A (en) Artificial satellite
JPH08230796A (en) Rocket fairing jointly used for solar cell paddl
RU2088494C1 (en) Spin-stabilized space vehicle
JPS59220499A (en) Triple spin satellite with expansion type solar cell panel
Collette et al. Design problems of spacecraft for communication missions
NOCK et al. Lunar get away special (GAS) spacecraft
BILLERBECK et al. Design of a kilowatt power system for small Comsats
JPH11152097A (en) Artificial satellite
JPH04321496A (en) Deep space probe
JPS58188300U (en) Solar panels on spin-stabilized satellites
JPH10129600A (en) Solar battery paddles
JPS6181300A (en) Solar cell panel device
Takahashi et al. MUSES-C solar array electrical and mechanical design