JPH0351598Y2 - - Google Patents

Info

Publication number
JPH0351598Y2
JPH0351598Y2 JP1984171900U JP17190084U JPH0351598Y2 JP H0351598 Y2 JPH0351598 Y2 JP H0351598Y2 JP 1984171900 U JP1984171900 U JP 1984171900U JP 17190084 U JP17190084 U JP 17190084U JP H0351598 Y2 JPH0351598 Y2 JP H0351598Y2
Authority
JP
Japan
Prior art keywords
holding container
hydrogen
container
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984171900U
Other languages
Japanese (ja)
Other versions
JPS6187298U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984171900U priority Critical patent/JPH0351598Y2/ja
Publication of JPS6187298U publication Critical patent/JPS6187298U/ja
Application granted granted Critical
Publication of JPH0351598Y2 publication Critical patent/JPH0351598Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本発明は水素との化学反応によつて金属水素化
物を作つて水素を吸蔵できる性質を持つた水素吸
蔵合金をその使用のために保持しておく容器に関
するものである。
[Detailed description of the invention] [Industrial field of application] The present invention provides a hydrogen-absorbing alloy that has the property of producing metal hydride through a chemical reaction with hydrogen and storing hydrogen for its use. It is related to the container in which it is stored.

[従来の技術とその課題] チタン−マンガン系、チタン−鉄系、ニツケル
−ランタン系等の合金は、周知のように、比較的
多量の水素を金属水素化物として吸蔵する。そし
て必要なときに加熱または減圧することによつて
吸蔵していた水素を放出するので、水素の貯蔵、
輸送、保管、或いは、水素の精製等への利用につ
いても考えられている。
[Prior art and its problems] As is well known, alloys such as titanium-manganese, titanium-iron, and nickel-lanthanum can store relatively large amounts of hydrogen as metal hydrides. Then, when necessary, the stored hydrogen is released by heating or reducing the pressure.
It is also being considered for use in transportation, storage, hydrogen purification, etc.

ところでこの水素吸蔵合金は、当初は大きな塊
状であつたものが水素の吸蔵・放出をくり返す間
に粒径が数拾ミクロン〜数ミクロンにまで崩壊し
微粉化する特性がある。しかしてこのように水素
吸蔵合金が微粉化するとこの状態では有効熱伝導
度が約0.5kcal/mh℃と極めて低くなるので熱の
放出および吸収が悪くなるという問題が生じる。
即ち、水素吸蔵合金と水素との反応はその温度と
圧力の影響を受け、水素吸蔵反応では発熱するた
めこの熱をすみやかに外部に排除する必要があ
り、水素放出反応では吸熱するため外部から熱を
迅速に供給する必要がある。このため熱伝導度が
低いのは好ましくない。この性質を改善するため
従来では熱伝導率の高い金属材料の構造体やその
網状もしくは粒状体のものを水素吸蔵合金間に介
在させることが考えられている。しかしこのよう
な反応に寄与しない材料の増加は装置の熱容量を
大きくするなど熱効率の低下を招き好ましくな
い。
By the way, this hydrogen-absorbing alloy has the characteristic that initially it is in the form of a large lump, but as it repeatedly absorbs and releases hydrogen, the particle size collapses to several tens of microns to several microns and becomes fine powder. However, when the hydrogen storage alloy is pulverized in this way, the effective thermal conductivity in this state becomes extremely low at about 0.5 kcal/mh°C, causing a problem that heat release and absorption become poor.
In other words, the reaction between a hydrogen storage alloy and hydrogen is affected by its temperature and pressure. In a hydrogen storage reaction, heat is generated and this heat must be quickly removed to the outside. In a hydrogen release reaction, heat is absorbed and heat is removed from the outside. needs to be supplied quickly. Therefore, it is not preferable that the thermal conductivity is low. In order to improve this property, it has been conventionally considered to interpose a structure made of a metal material with high thermal conductivity, or a network or granular structure thereof between the hydrogen storage alloys. However, an increase in the amount of materials that do not contribute to such a reaction is undesirable because it increases the heat capacity of the device, resulting in a decrease in thermal efficiency.

また水素吸蔵合金は、10〜25%の範囲で水素吸
蔵時に膨張し、水素放出時に収縮する。このため
水素吸蔵合金を容器に詰めるに際しこの性質を考
慮しないと容器自体或いは内部構造物が変形する
等の弊害を生ずるおそれがある。
Furthermore, hydrogen storage alloys expand within a range of 10 to 25% when hydrogen is absorbed, and contract when hydrogen is released. Therefore, if this property is not taken into consideration when filling a container with a hydrogen storage alloy, there is a risk that problems such as deformation of the container itself or its internal structure may occur.

そこで従来から特開昭57−140301号公報および
実公昭58−21995号公報に示された水素吸蔵装置
のように、容器を回転または振動させることによ
り該合金粉末を攪拌し水素吸蔵能力を高めようと
するものも知られている。しかしこれらの装置は
容器内の水素吸蔵合金を同一方向に攪拌させるだ
けであつたので外部からの加熱および冷却が充分
に行われず、そのために満足できる吸蔵能力が達
せられないという問題があつた。
Therefore, as in the hydrogen storage device shown in Japanese Patent Application Laid-Open No. 57-140301 and Publication Utility Model Publication No. 58-21995, attempts have been made to agitate the alloy powder by rotating or vibrating the container to increase the hydrogen storage capacity. It is also known that However, since these devices only stirred the hydrogen storage alloy in the container in the same direction, sufficient external heating and cooling were not performed, and as a result, there was a problem in that a satisfactory storage capacity could not be achieved.

また、上記特開昭57−140301号公報では、回転
動する水素吸蔵合金容器への配管途中にロータリ
ージヨイントを介在させた構造であつたが、ロー
タリージヨイントのようなメカニカルシールを要
する機械部品では水素のような低分子量のガスを
流通させた場合そのシール部より漏洩するおそれ
が極めて高く爆発事故を招くおそれもあるので非
常に危険であり実用化は困難であつた。
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 57-140301, a rotary joint is interposed in the middle of the piping to the rotating hydrogen storage alloy container, but mechanical parts such as the rotary joint require a mechanical seal. However, when a low-molecular-weight gas such as hydrogen is passed through, there is an extremely high risk of leakage from the seal, which may lead to an explosion, making it extremely dangerous and difficult to put into practical use.

[問題点を解決するための手段] そこで本考案の水素吸蔵合金用容器は、水素吸
蔵合金を収容する中空円筒形の保持容器1と、該
保持容器を回転自在に支持する軸受台4,4と、
該保持容器を約360度の範囲内で反復回転させる
駆動モータ6とからなり、該保持容器内の中心に
加熱用または冷却用の熱媒流体を流通させる二重
管8,9を設け、該二重管の外周に先端が保持容
器の内周面に接近する複数の伝熱フイン10を固
着し、さらに、該保持容器内に延在する水素給排
用フイルターチユーブ16と前記二重管とを夫々
専用のフレキシブルホース14,15,17にて
保持容器の外部と連通せしめたことを特徴とする
ものである。
[Means for Solving the Problems] Therefore, the hydrogen storage alloy container of the present invention includes a hollow cylindrical holding container 1 that accommodates the hydrogen storage alloy, and bearing stands 4, 4 that rotatably support the holding container. and,
It consists of a drive motor 6 that repeatedly rotates the holding container within a range of approximately 360 degrees, and double pipes 8 and 9 are provided in the center of the holding container through which a heat medium fluid for heating or cooling is circulated. A plurality of heat transfer fins 10 whose tips approach the inner circumferential surface of the holding container are fixed to the outer periphery of the double pipe, and a filter tube 16 for supplying and discharging hydrogen extending into the holding container and the double pipe are further connected to each other. are connected to the outside of the holding container through dedicated flexible hoses 14, 15, and 17, respectively.

[作用] 二重管内を流れる熱媒流体の熱量が伝熱フイン
を介して水素吸蔵合金に効率よく伝達され、加熱
および冷却が効率的に行なわれる。また、保持容
器を約360度の範囲内で反復回転動させると共に、
フレキシブルホースにより該保持容器内の水素吸
排出用フイルターチユーブおよび前記二重管を外
部に連通させているので、ロータリージヨイント
のような連結部材を用いないでも構成でき、構造
が簡単になり設置ココストが掛らない。
[Operation] The amount of heat of the heat transfer fluid flowing in the double pipe is efficiently transferred to the hydrogen storage alloy through the heat transfer fins, and heating and cooling are efficiently performed. In addition, while repeatedly rotating the holding container within a range of about 360 degrees,
Since the hydrogen absorption and discharge filter tube in the holding container and the double pipe are communicated with the outside through a flexible hose, it can be constructed without using a connecting member such as a rotary joint, simplifying the structure and reducing installation cost. does not apply.

[実施例] 第1図、第2図において、中空円筒形の保持容
器1はその両端壁2,2に支軸3,3が突設され
該支軸3,3をフロアに設置された軸受台4,4
により回転自在に支持する。その一方の支軸3に
は歯車5を固着し、該歯車5を駆動モータ6の回
転軸に固着した歯車7に噛合させる。駆動モータ
6は正逆転が可能なもので歯車7,5を介して保
持容器1を約360度の範囲内で反復回転運動させ
る。保持容器1内の中心には小径管8と大径管9
とよりなる二重の伝導管が設けられ、大径管9の
外周には放射状に伝熱フイン10,10…が設け
られている。小径管8の一端は保持容器1の一方
の端壁2に設けられた接続管11に連通し、大径
管9の一端は同じく保持容器1の端壁に設けられ
た接続管12に連通している。そして小径管の他
端と大径管9の他端とは連通部13にて連通して
いる。接続管11,12には加熱或いは冷却用の
熱媒流体を供給および排出するためフレキシブル
ホース14,15が夫々接続されている。16は
保持容器1内に配設されたフイルターチユーブ
で、その一端は端壁から外部に突出しこれにフレ
シキブルホース17が接続され水素を保持容器1
内に供給または保持容器内から排出する。
[Example] In FIGS. 1 and 2, a hollow cylindrical holding container 1 has support shafts 3, 3 protruding from both end walls 2, 2, and the support shafts 3, 3 are mounted on bearings installed on the floor. stand 4,4
It is rotatably supported. A gear 5 is fixed to one of the support shafts 3, and the gear 5 is meshed with a gear 7 fixed to the rotating shaft of a drive motor 6. The drive motor 6 is capable of forward and reverse rotation, and repeatedly rotates the holding container 1 within a range of approximately 360 degrees via gears 7 and 5. At the center of the holding container 1 are a small diameter pipe 8 and a large diameter pipe 9.
A double conduction tube consisting of a large diameter tube 9 is provided, and heat transfer fins 10, 10, . . . are provided radially around the outer periphery of the large diameter tube 9. One end of the small diameter pipe 8 communicates with a connecting pipe 11 provided on one end wall 2 of the holding container 1, and one end of the large diameter pipe 9 communicates with a connecting pipe 12 provided on the end wall of the holding container 1. ing. The other end of the small diameter tube and the other end of the large diameter tube 9 communicate with each other through a communication portion 13. Flexible hoses 14 and 15 are connected to the connecting pipes 11 and 12, respectively, for supplying and discharging heat medium fluid for heating or cooling. Reference numeral 16 denotes a filter tube disposed inside the holding container 1, one end of which protrudes from the end wall to the outside, and a flexible hose 17 is connected to it to supply hydrogen to the holding container 1.
Supply or discharge from the holding container.

ここでは前記駆動モータ6を常時または定期的
に正逆転駆動させて保持容器1を反復回転運動さ
せる。そうすることで保持容器1内の粉粒状の水
素吸蔵合金を攪拌し伝熱フイン10,10…との
接触を良くし二重管中の冷熱媒流体との熱伝達を
活発ならしめる。
Here, the drive motor 6 is constantly or periodically driven in forward and reverse directions to repeatedly rotate the holding container 1. By doing so, the granular hydrogen storage alloy in the holding container 1 is stirred to improve contact with the heat transfer fins 10, 10, . . . and to activate heat transfer with the refrigerant fluid in the double pipe.

第3図には大径管9に対して複数枚の円板状の
伝熱フイン10″を定間隔に固着した例を示すが、
これらの例に示したように伝達フインの形態は
種々考えられる。
FIG. 3 shows an example in which a plurality of disc-shaped heat transfer fins 10'' are fixed at regular intervals to a large-diameter pipe 9.
As shown in these examples, various forms of the transmission fin are possible.

しかしてこのように保持容器1中に、チタン−
マンガン系の水素吸蔵合金を7〜8分目収容し、
フレキシブルホース14から30℃の冷水を二重管
中に供給し循環させると共に、フレキシブルホー
ス17から水素を保持容器1内に供給して水素を
吸蔵させる場合、保持容器1を静止させたままで
は第4図の破断線に示したように保持容器1の中
心部と周縁部との温度差が大きく冷却効果が容器
内全体に及んでいないことが判る。これに対して
駆動モータ6により保持容器1を1分間に約1往
復回転運動させるだけで同図実線に示したように
温度分布が顕著に均一化される。また、フレキシ
ブルホース14から50℃の温水を供給し水素を放
出させる場合にも保持容器1を静止させたままで
は第5図の破断線に示したように中心部と周縁部
との温度差が大きくなり加熱効果が容器内全体に
及びにくいのに対し、保持容器1を回転運動させ
ると同図実線で示されるように温度分布が均一化
し温水による加熱効果が保持容器1中の水素吸蔵
合金の全体に行きわたる。
However, in this way, titanium-
Contains manganese-based hydrogen storage alloy for 7 to 8 minutes,
When cold water at 30°C is supplied from the flexible hose 14 into the double pipe and circulated, and hydrogen is supplied from the flexible hose 17 into the holding container 1 to store hydrogen, it is not possible to keep the holding container 1 stationary. As shown by the broken line in FIG. 4, it can be seen that there is a large temperature difference between the center and the periphery of the holding container 1, and the cooling effect does not reach the entire inside of the container. On the other hand, by simply rotating the holding container 1 approximately once per minute by the drive motor 6, the temperature distribution can be made significantly uniform as shown by the solid line in the figure. Furthermore, even when hot water of 50°C is supplied from the flexible hose 14 to release hydrogen, if the holding container 1 is left stationary, the temperature difference between the center and the peripheral portion will increase as shown by the break line in Fig. 5. On the other hand, when the holding container 1 is rotated, the temperature distribution becomes uniform as shown by the solid line in the figure, and the heating effect of the hot water spreads over the hydrogen storage alloy in the holding container 1. pervasive throughout.

[考案の効果] このように本考案の水素吸蔵合金用容器は、そ
の中心に設けた二重管に熱媒流体を流通させ該二
重管の外周に固着した伝熱フインを介して水素吸
蔵合金に活発に熱伝達がなされるようにしたの
で、冷却効果および加熱効果を該保持容器を反復
回転運動させることと相俟つて該保持容器中の水
素吸蔵合金の全体に行きわたらせることができ所
期の吸蔵能力を発揮できる。従つて水素吸蔵合金
が微粉化しても吸蔵能力等の特性の劣化が避けら
れ長期間の使用が可能となるなど有益なものであ
る。
[Effects of the invention] As described above, the hydrogen storage alloy container of the present invention allows the heating medium fluid to flow through the double pipe provided at the center and stores hydrogen through the heat transfer fins fixed to the outer periphery of the double pipe. Since heat is actively transferred to the alloy, the cooling effect and the heating effect can be spread throughout the hydrogen storage alloy in the holding container by repeatedly rotating the holding container. The desired storage capacity can be demonstrated. Therefore, even if the hydrogen storage alloy is pulverized, deterioration of properties such as storage capacity can be avoided and it can be used for a long period of time, which is beneficial.

また、フレキシブルホースを介して熱媒流体お
よび水素ガスを保持容器内に供給または排出でき
るようにしており、該保持容器は約360度の範囲
内で反復回転運動させるだけで水素吸蔵合金を攪
拌するものであるから、フレキシブルホースが巻
き付くおそれやロータリージヨイントを使用する
ことによる水素ガス漏洩事故発生のおそれもなく
低コストで簡単に構成できる利点がある。
In addition, the heat transfer fluid and hydrogen gas can be supplied or discharged into the holding container via a flexible hose, and the holding container can stir the hydrogen storage alloy by simply rotating it repeatedly within a range of about 360 degrees. Because of this, it has the advantage of being easy to construct at low cost, without the risk of a flexible hose becoming entangled or of hydrogen gas leakage caused by the use of a rotary joint.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案に係る水素吸蔵合金用容器の実施
例を示したもので、第1図はその縦断面図、第2
図は横断面図、第3図は他の実施例を示した横断
面図、第4図および第5図は保持容器内の水素吸
蔵合金の温度分布を示した線図である。 1……保持容器、3,3……支軸、4,4……
軸受台、6……駆動モータ、8……小径管、9…
…大径管、10……伝熱フアン、14,15……
フレキシブルホース、16……フイルターチユー
ブ、17……フレキシブルホース。
The drawings show an embodiment of the container for hydrogen storage alloy according to the present invention, and FIG. 1 is a vertical cross-sectional view thereof, and FIG.
The figure is a cross-sectional view, FIG. 3 is a cross-sectional view showing another embodiment, and FIGS. 4 and 5 are diagrams showing the temperature distribution of the hydrogen storage alloy in the holding container. 1... Holding container, 3, 3... Support shaft, 4, 4...
Bearing stand, 6... Drive motor, 8... Small diameter pipe, 9...
...Large diameter pipe, 10... Heat transfer fan, 14, 15...
Flexible hose, 16... Filter tube, 17... Flexible hose.

Claims (1)

【実用新案登録請求の範囲】 水素吸蔵合金を収容する中空円筒形の保持容器
1と、 該保持容器を回転自在に支持する軸受台4,4
と、 該保持容器を約360度の範囲内で反復回転させ
る駆動モータ6とからなり、 該保持容器内の中心に加熱用または冷却用の熱
媒流体を流通させる二重管8,9を設け、該二重
管の外周に先端が保持容器の内周面に接近する複
数の伝熱フイン10を固着し、さらに、該保持容
器内に延在する水素給排用フイルターチユーブ1
6と前記二重管とを夫々専用のフレキシブルホー
ス14,15,17にて保持容器の外部と連通せ
しめたことを特徴とする水素吸蔵合金用容器。
[Claims for Utility Model Registration] A hollow cylindrical holding container 1 that accommodates a hydrogen storage alloy, and bearing stands 4, 4 that rotatably support the holding container.
and a drive motor 6 that repeatedly rotates the holding container within a range of approximately 360 degrees, and double pipes 8 and 9 are provided in the center of the holding container through which a heating or cooling heat medium fluid flows. , a plurality of heat transfer fins 10 whose tips approach the inner circumferential surface of the holding container are fixed to the outer periphery of the double tube, and a filter tube 1 for supplying and discharging hydrogen extending into the holding container.
6 and the double pipe are connected to the outside of the holding container through dedicated flexible hoses 14, 15, and 17, respectively.
JP1984171900U 1984-11-13 1984-11-13 Expired JPH0351598Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984171900U JPH0351598Y2 (en) 1984-11-13 1984-11-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984171900U JPH0351598Y2 (en) 1984-11-13 1984-11-13

Publications (2)

Publication Number Publication Date
JPS6187298U JPS6187298U (en) 1986-06-07
JPH0351598Y2 true JPH0351598Y2 (en) 1991-11-06

Family

ID=30729576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984171900U Expired JPH0351598Y2 (en) 1984-11-13 1984-11-13

Country Status (1)

Country Link
JP (1) JPH0351598Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192927B2 (en) * 2008-06-30 2013-05-08 大陽日酸株式会社 High-pressure vessel and method of supplying a mixture using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128713A (en) * 1975-04-21 1976-11-09 Billings Energy Res Hydrogen storage method and apparatus therefor
JPS57140301A (en) * 1981-02-25 1982-08-30 Toyobo Co Ltd Occluding method for hydrogen
JPS5821995U (en) * 1981-08-04 1983-02-10 古河電気工業株式会社 sheet heating element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116038U (en) * 1979-02-07 1980-08-15

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128713A (en) * 1975-04-21 1976-11-09 Billings Energy Res Hydrogen storage method and apparatus therefor
JPS57140301A (en) * 1981-02-25 1982-08-30 Toyobo Co Ltd Occluding method for hydrogen
JPS5821995U (en) * 1981-08-04 1983-02-10 古河電気工業株式会社 sheet heating element

Also Published As

Publication number Publication date
JPS6187298U (en) 1986-06-07

Similar Documents

Publication Publication Date Title
EP0064562A1 (en) Metal hydride reactor
CN101245895B (en) Solid hydrogen storing device
CN108362153B (en) Efficient phase change energy storage packaging ball with inner fins
US9891010B2 (en) Waste heat recovery apparatus having hollow screw shaft and method for the same
CN106237910A (en) A kind of slurry Powerful dispersing device
CN104776744A (en) Tube-and-shell type multifunctional phase-change energy storage heat exchanger
CN104019686A (en) Efficient phase change cold storage heat exchange tube
JPH0351598Y2 (en)
CN108539925A (en) A kind of motor with heat sinking function
CN208620883U (en) Rotatable jacket type phase change energy storage heat accumulator
FR2831950A1 (en) Fluid temperature regulator has casing with internal fins to increase heat exchange rate between chamber and flow duct
CN114264176A (en) Cylindrical heat pipe phase change heat storage and release system
CN213657614U (en) Phase-change heat storage device
JPS62284193A (en) Heat transfer pipe
CN206992887U (en) Motor shaft assembly and the motor with motor shaft assembly
JP4648247B2 (en) Low temperature slush fluid production equipment
EP0890065A1 (en) Refrigeration capacity accumulator
CN212450649U (en) Totally enclosed rotation cooling kiln
CN220834182U (en) Multistage heat transfer device of rectifying column
CN207511286U (en) A kind of spiral cooling device
CN214308301U (en) Chemical reaction heat exchange equipment
CN221548858U (en) Cold accumulation coil pipe, hydrate cold accumulation system and mobile air conditioner
CN213995876U (en) Novel hydrobromic acid reation kettle
CN116374520B (en) Conveying device for blasting engineering
CN2447713Y (en) Pipe bundle type strong thermal diffusion exchanger