JPH0351364Y2 - - Google Patents

Info

Publication number
JPH0351364Y2
JPH0351364Y2 JP10692285U JP10692285U JPH0351364Y2 JP H0351364 Y2 JPH0351364 Y2 JP H0351364Y2 JP 10692285 U JP10692285 U JP 10692285U JP 10692285 U JP10692285 U JP 10692285U JP H0351364 Y2 JPH0351364 Y2 JP H0351364Y2
Authority
JP
Japan
Prior art keywords
steel material
ribs
reinforcing
flanges
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10692285U
Other languages
Japanese (ja)
Other versions
JPS6216133U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10692285U priority Critical patent/JPH0351364Y2/ja
Publication of JPS6216133U publication Critical patent/JPS6216133U/ja
Application granted granted Critical
Publication of JPH0351364Y2 publication Critical patent/JPH0351364Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

《産業上の利用分野》 この考案は、土留壁や杭などの土中構築構造物
の補強用鋼材であつて固化性泥状物中に埋設する
ものに関し、特に摩擦力を増強した鋼材に関す
る。 《従来技術問題点》 周知のように、土中に土留壁や杭を構築する工
法の一種として、例えばアースオーガーなどの掘
削機械で地盤を削孔し、孔内をソイルセメントで
満たした後、補強用のH形鋼を建て込む工法があ
る。 この工法は、杭の打込み工法と比べて振動や騒
音が少いことから、市街地あるいは既設建築物の
近接工事に採用されているが、作業時間が夜間の
みに制約されたり、また支持層が極めて深い場合
など施工の経済性を考慮して、土留壁や杭の根入
長を短くすることが余儀なくされることがあつ
た。 この場合、仮設荷重や交通荷重を支持するH形
鋼が、ソイルセメント中で摩擦切れを起こしてし
まい、土留壁や杭として必要な鉛直荷重が得られ
なくなるという問題があつた。 そこで、H型鋼に例えば鉄筋を水平に溶着して
摩擦力の増強を計る手段が提案されている。 しかしながら、この手段では次のような問題が
あつた。 すなわち、ソイルセメント中に水平鉄筋を固着
したH形鋼を挿入した際に、水平鉄筋の下面にソ
イルセメントからのブリージング水が集まり、硬
化した際にこの部分の強度が低下し、鉛直荷重が
作用した時に、この部分が圧壊されて十分な摩擦
力が期待できないという問題があつた。 この考案は上述した問題点に鑑みてなされたも
のであつて、その目的とするところは、根入長を
短くした際にも十分な摩擦力が得られる土中構造
物の補強用鋼材を提供することにある。 《問題点を解決するための手段》 上記目的を達成するため、この考案は、土中に
構築される土留壁や杭などの構造物の補強用に用
いられ、固化性泥状物中に埋設される鋼材であつ
て、該鋼材は、平行に配置された一対のフランジ
と、該フランジと直交する方向に配置され、該フ
ランジを一体的に連結するウエブを有し、該フラ
ンジおよびウエブの表面に、該鋼材の長手方向の
軸と軸線が所定の傾斜角度で交差する複数の直線
状のリブを固着してなることを特徴とする。 《作用》 上記構成の補強用鋼材のリブは、鋼材の長手方
向の軸に対して傾斜しているため、ソイルセメン
トからのブリージングは、リブの下面に沿つて上
昇し、ソイルセメントが硬化した際に強度低下部
分が生じることがなく、補強用鋼材の摩擦力を確
実に増加させる。 《実施例》 以下、この考案の好適な実施例について添附図
面を参照にして詳細に説明する。 第1図はこの考案に係る土中構造物の補強用鋼
材の一実施例を示している。 同図に示す鋼材10は、平行に配置された一対
の平板状のフランジ12,12を、フランジ12
と直交するウエブ14でもつて一体的に連結した
H形断面を有するH型鋼であり、各フランジ1
2,12の外面およびウエブ14の両面にはそれ
ぞれリブ16が固着されている。 リブ16は、例えば、フランジ12,ウエブ1
4厚とほぼ同じ直径の異形鉄筋などが使用され、
鋼材10の長手方向に沿つて適宜間隔を置いて溶
接によつて複数個所に固着されている。 また、各リブ16は、長手方向に相隣接するも
のが異なつた方向に傾斜していて、この実施例で
は水平に対する角度がほぼ45度に設定され、リブ
16の軸線が相互に直交するようになつている。 上記構成の鋼材10は、地盤を削孔してソイル
セメントを満たした後に、孔内に建込まれ、土留
壁や杭の補強用部材として使用されるが、その際
の摩擦強度の増強率と鉛直荷重に対する杭頭変位
量を以下に示すモデルを用いて試験した。 まず、本考案の鋼材10は、断面が100×100×
8×6mmで長さが47cmのH形鋼に、リブ16とし
て100×8mm〓の異形鉄筋を水平に対して約45度の
角度でハ字形に傾斜させて4本固着した。 鋼材10は、上端が開口した有底筒体18内
に、以下の表に示す如く配合されたソイルセメン
ト20を充填した後、その内部に先端が約30mm程
度突出するように挿入して、第2図に示すような
試験体を制作した。 ソイルセメント20に混入する試料土として
は、関東ローム土(含水比W約55%)と沖積粘土
(含水比W約60%)の2種類を使用し、鋼材10
の上端に荷重を加え、第3図に示す荷重一杭頭変
位量の曲線を得た。
<<Industrial Application Field>> This invention relates to steel materials for reinforcing underground structures such as earth retaining walls and piles, which are buried in solidifying mud, and particularly relates to steel materials with enhanced frictional force. 《Problems with conventional technology》 As is well known, as a type of construction method for constructing earth retaining walls and piles in the soil, a hole is drilled in the ground using a digging machine such as an earth auger, and the hole is then filled with soil cement. There is a method of building H-shaped steel for reinforcement. This construction method produces less vibration and noise than the pile driving method, so it is used for construction work in urban areas or near existing buildings. In some cases, it was necessary to shorten the penetration length of earth retaining walls and piles in consideration of the economic efficiency of construction, such as in cases of deep construction. In this case, there was a problem in that the H-beams supporting temporary loads and traffic loads would wear out due to friction in the soil cement, making it impossible to obtain the vertical load necessary for retaining walls and piles. Therefore, a method has been proposed in which reinforcing bars are horizontally welded to the H-shaped steel to increase the frictional force. However, this method has the following problems. In other words, when an H-beam with fixed horizontal reinforcing bars is inserted into soil cement, breathing water from the soil cement collects on the bottom surface of the horizontal reinforcing bars, and when it hardens, the strength of this part decreases and vertical loads act on it. There was a problem that when this happened, this part was crushed and sufficient frictional force could not be expected. This invention was made in view of the above-mentioned problems, and its purpose is to provide a steel material for reinforcing underground structures that can provide sufficient friction even when the penetration length is shortened. It's about doing. 《Means for solving the problem》 In order to achieve the above purpose, this invention is used for reinforcing structures such as earth retaining walls and piles built in the soil, and The steel material has a pair of flanges disposed in parallel, a web disposed in a direction perpendicular to the flanges and integrally connecting the flanges, and a surface of the flanges and the web. It is characterized in that it is formed by fixing a plurality of linear ribs whose longitudinal axes and axes of the steel material intersect at a predetermined angle of inclination. <<Operation>> Since the ribs of the reinforcing steel material with the above structure are inclined with respect to the longitudinal axis of the steel material, breathing from the soil cement rises along the lower surface of the ribs, and when the soil cement hardens, The frictional force of the reinforcing steel material is reliably increased without causing any portions of reduced strength. <<Embodiments>> Hereinafter, preferred embodiments of this invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of the reinforcing steel material for underground structures according to this invention. The steel material 10 shown in the figure has a pair of flat flanges 12, 12 arranged in parallel.
It is an H-shaped steel having an H-shaped cross section integrally connected by a web 14 orthogonal to each flange 1.
Ribs 16 are fixed to the outer surfaces of 2 and 12 and to both sides of the web 14, respectively. The rib 16 is, for example, the flange 12, the web 1
4. Deformed reinforcing bars with approximately the same diameter as the thickness are used,
The steel material 10 is fixed at a plurality of locations by welding at appropriate intervals along the longitudinal direction. Further, each of the ribs 16 that are adjacent to each other in the longitudinal direction is inclined in different directions, and in this embodiment, the angle with respect to the horizontal is set to approximately 45 degrees, so that the axes of the ribs 16 are orthogonal to each other. It's summery. The steel material 10 having the above structure is built into the hole after drilling a hole in the ground and filling it with soil cement, and is used as a reinforcing member for earth retaining walls and piles. The amount of pile head displacement due to vertical load was tested using the model shown below. First, the steel material 10 of the present invention has a cross section of 100×100×
Four 100 x 8 mm deformed reinforcing bars were fixed to an 8 x 6 mm H-shaped steel with a length of 47 cm as ribs 16 by tilting them in a V-shape at an angle of about 45 degrees to the horizontal. The steel material 10 is prepared by filling a bottomed cylindrical body 18 with an open upper end with soil cement 20 mixed as shown in the table below, and then inserting the steel material 10 into the interior so that the tip protrudes by about 30 mm. A test specimen as shown in Figure 2 was produced. Two types of soil samples were used to mix in Soil Cement 20: Kanto loam soil (water content W approx. 55%) and alluvial clay (water content W approx. 60%).
A load was applied to the upper end of the pile, and the load-pile head displacement curve shown in Figure 3 was obtained.

【表】 なお、表に示すセメントなどの量は全て1m3
たりのものである。 この試験では、本考案鋼材10と比較するた
め、リブ16を設けていない同じ寸法形状のH形
鋼を用いて、従来例の試験体も上述した方法で作
成し、同じ条件で試験した。 そして、第3図に示した結果をもとに、無処理
H形鋼の摩擦力を1.0として、本考案鋼材10の
摩擦力の増加率をグラフ表示したのが第4図であ
る。 第3図および第4図の試験結果からも明らかな
ように、本考案の鋼材10では、摩擦力の増加が
関東ローム土で1.41倍、沖積粘土で2.17倍と大き
な値を示した。 試験後に試験体を解体したところ、リブ16間
の拡開した中央部分で剪断破壊をしたソイルセメ
ント20が多く認められた。このような剪断破壊
が引き起こされるのは、ソイルセメント20と鋼
材10の付着力が大きいために生じたものであ
る。 つまり、隣接するリブ16が異なつた方向に傾
斜しているため、荷重が加わつた際にリブ16,
16間のソイルセメント20が、リブ16,16
間の間隔が狭くなつている部分に押しやられるよ
うな挙動が生じ、ソイルセメント20と鋼材10
の剥離が生じにくくなり、全面的な剥離が防止さ
れる結果、剪断破壊が惹起されると考えられる。 《考案の効果》 以上、実施例で詳細に説明したように、本考案
に係る土中構造物の補強用鋼材によれば、ソイル
セメントによるブリージングの弊害を排除しつつ
大きな摩擦増強が可能となるなどの優れた効果が
得られる。
[Table] All amounts of cement, etc. shown in the table are per 1m3 . In this test, in order to compare with the steel material 10 of the present invention, a test specimen of a conventional example was also created using the method described above using an H-beam steel with the same dimensions and shape without ribs 16, and was tested under the same conditions. Based on the results shown in FIG. 3, FIG. 4 is a graph showing the rate of increase in the frictional force of the steel material 10 of the present invention, assuming that the frictional force of the untreated H-section steel is 1.0. As is clear from the test results shown in FIGS. 3 and 4, steel material 10 of the present invention showed a large increase in frictional force of 1.41 times in Kanto loam soil and 2.17 times in alluvial clay. When the test specimen was dismantled after the test, many soil cements 20 were found to have undergone shear failure in the expanded central portion between the ribs 16. Such shear failure is caused by the strong adhesive force between the soil cement 20 and the steel material 10. In other words, since the adjacent ribs 16 are inclined in different directions, when a load is applied, the ribs 16,
The soil cement 20 between the ribs 16, 16
A behavior occurs in which the soil cement 20 and the steel material 10
It is thought that shear failure is caused as a result of less peeling and complete prevention of peeling. <<Effects of the invention>> As explained above in detail in the Examples, according to the steel material for reinforcing underground structures according to the present invention, it is possible to greatly increase friction while eliminating the adverse effects of breathing caused by soil cement. Excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る鋼材の一実施例を示して
おり、同図Aは側面図、同図Bは平面図、第2図
は試験体の説明図、第3図は荷重と杭頭変位量の
グラフ、第4図は摩擦力増加率を示すグラフであ
る。 10……鋼材、12……フランジ、14……ウ
エブ、16……リブ、18……有底筒体、20…
…ソイルセメント。
Fig. 1 shows an example of the steel material according to the present invention, Fig. A is a side view, Fig. B is a plan view, Fig. 2 is an explanatory diagram of the test specimen, and Fig. 3 is a load and pile cap. The graph of the amount of displacement, FIG. 4, is a graph showing the rate of increase in frictional force. 10... Steel material, 12... Flange, 14... Web, 16... Rib, 18... Bottomed cylinder, 20...
...soil cement.

Claims (1)

【実用新案登録請求の範囲】 (1) 土中に構築される土留壁や杭などの構造物の
補強用に用いられ、固化性泥状物中に埋設され
る鋼材であつて、該鋼材は、平行に配置された
一対のフランジと、該フランジと直交する方向
に配置され、該フランジを一体的に連結するウ
エブとを有し、該フランジおよびウエブの表面
に、該鋼材の長手方向の軸と軸線が所定の傾斜
角度で交差する複数の直線状のリブを固着して
なることを特徴とする土中構造物の補強用鋼
材。 (2) 上記リブは上記鋼材の長手方向に沿つて間隔
をおいて設けられるとともに、相隣接するリブ
が異なつた方向に傾斜してなることを特徴とす
る実用新案登録請求の範囲第1項記載の土中構
造物の補強用鋼材。
[Scope of Claim for Utility Model Registration] (1) A steel material that is used for reinforcing structures such as retaining walls and piles built in the soil and is buried in solidifying mud; , has a pair of flanges arranged in parallel, and a web arranged in a direction perpendicular to the flanges and integrally connecting the flanges, and has a longitudinal axis of the steel material on the surfaces of the flange and the web. 1. A steel material for reinforcing underground structures, comprising a plurality of fixed linear ribs whose axes intersect at a predetermined angle of inclination. (2) Claim 1 of the utility model registration claim, characterized in that the ribs are provided at intervals along the longitudinal direction of the steel material, and adjacent ribs are inclined in different directions. Steel materials for reinforcing underground structures.
JP10692285U 1985-07-15 1985-07-15 Expired JPH0351364Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10692285U JPH0351364Y2 (en) 1985-07-15 1985-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10692285U JPH0351364Y2 (en) 1985-07-15 1985-07-15

Publications (2)

Publication Number Publication Date
JPS6216133U JPS6216133U (en) 1987-01-30
JPH0351364Y2 true JPH0351364Y2 (en) 1991-11-05

Family

ID=30982727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10692285U Expired JPH0351364Y2 (en) 1985-07-15 1985-07-15

Country Status (1)

Country Link
JP (1) JPH0351364Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637335B2 (en) * 1992-07-23 1997-08-06 川商ジェコス株式会社 Mountain retaining pile

Also Published As

Publication number Publication date
JPS6216133U (en) 1987-01-30

Similar Documents

Publication Publication Date Title
EP0278936B1 (en) An improved piling method
AU2004101058A4 (en) Earth Retention and Piling Systems
US3352120A (en) Reinforced concrete pile
JP2016528406A (en) Beam connection structure of temporary retaining works for earth retaining
JP2007146399A (en) Soil cement pile and construction method of the soil cement pile
CN214784154U (en) Pile support buttress type retaining wall structure with ground anchor
JPH0351364Y2 (en)
CN115627781B (en) Slope reinforcement structure for rapidly treating existing slope collapse and construction method
JP7345614B2 (en) Joint structure and structure between pile and superstructure
JP4029191B2 (en) Subsidence suppression structure, construction method of settlement suppression structure
US3820347A (en) Tapered piles and methods of using tapered piles
US3208228A (en) Prestressed articulated piling for marine foundations and the like
US5871307A (en) Pre-cast concrete panel wall
CN213233417U (en) Combined pile and combined foundation
JP4028928B2 (en) Segment structure
CN212983845U (en) Engineering pile and pile foundation
JPH0447237Y2 (en)
CN217758870U (en) Structure for preventing and treating landslide of steep gully landform
AU2012202472B2 (en) Earth Retention and Piling Systems
KR102603493B1 (en) Cap module-based column wall for building foundation
JP2987371B2 (en) Underground diaphragm wall
JPH04228714A (en) Water area construction using member to be driven into water bottom ground
EP1609914A1 (en) Method and structure for ground improvement
CN220953523U (en) Pressure type filling-free underground structure
JPH0971951A (en) Deep foundation structure using pipe pile, etc., and execution method thereof