JPH0351338A - Production of high-strength and high-elastic modulus fiber - Google Patents

Production of high-strength and high-elastic modulus fiber

Info

Publication number
JPH0351338A
JPH0351338A JP18394189A JP18394189A JPH0351338A JP H0351338 A JPH0351338 A JP H0351338A JP 18394189 A JP18394189 A JP 18394189A JP 18394189 A JP18394189 A JP 18394189A JP H0351338 A JPH0351338 A JP H0351338A
Authority
JP
Japan
Prior art keywords
heating
die
zone
strength
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18394189A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
孝 山本
Masahiko Takahiro
高広 政彦
Kazuo Tsukabayashi
塚林 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Ishikawa Prefectural Government
Original Assignee
Ishikawa Prefecture
Ishikawa Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Ishikawa Prefectural Government filed Critical Ishikawa Prefecture
Priority to JP18394189A priority Critical patent/JPH0351338A/en
Publication of JPH0351338A publication Critical patent/JPH0351338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain fiber having a structure extremely resembling completely extended crystals with a high-strength and high-elastic modulus by hot-drawing amorphous or low-crystalline thermoplastic synthetic fiber in a zone and then hot-drawing the resultant fiber in a die. CONSTITUTION:Undrawn yarn (1a) of amorphous or low-crystalline thermoplastic synthetic fiber is heated in a heating zone 6 and drawn while applying tension thereto between rollers 3 and 4, then heated with a heating die 7 and drawn while applying tension thereto between the rollers 4 and 5 to afford high-strength and high-elastic modulus fiber. Furthermore, the heating is carried out at a temperature above the glass transition point up to the melting point of the aforementioned thermoplastic synthetic fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度・高弾性率繊維を製造するための新規な
方法に関するものであり、さらに詳細には、ゾーン延伸
・熱処理とダイ延伸とを連続的に非晶質あるいは低結晶
性の熱可塑性合成繊維に行うことによって完全伸び切り
結晶に極めて類似した構造を有する高強度・高弾性率繊
維を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel method for producing high-strength, high-modulus fibers, and more particularly relates to zone drawing/heat treatment and die drawing. This invention relates to a method for producing high-strength, high-modulus fibers having a structure extremely similar to fully stretched crystals by continuously subjecting amorphous or low-crystalline thermoplastic synthetic fibers to the following steps.

(従来の技術) 高強度・高弾性率繊維を製造する方法として、アラミド
繊維に代表される新規なポリマーの開発によるものの他
、汎用ポリマーの高次構造を改良するものがある。
(Prior Art) As methods for producing high-strength, high-modulus fibers, there are methods that involve the development of new polymers such as aramid fibers, as well as methods that improve the higher-order structure of general-purpose polymers.

汎用ポリマーの高次構造を改良する方法については、高
圧押出成型、高圧結晶化、超延伸、ゾーン延伸・熱処理
などが報告されている。このうちゾーン延伸・熱処理は
有効な方法として注目されている。その詳細については
特公昭60−24852に述べられている。つまりゾー
ン延伸とは、非晶質あるいは可能なかぎり低結晶性の熱
可塑性合成繊維を短い加熱帯域を通してそのガラス転移
点以上結晶化温度までの温度で周囲から局所的に加熱し
ながら緊張下に延伸して非晶質あるいは低結晶性の高配
向繊維となす技術で、ゾーン熱処理とは、上記で得られ
た繊維に分子鎖が伸びきる高度の緊張を加えつつ結晶化
温度以上の温度で短い加熱帯を通過させて周囲から局所
的に熱処理する技術である。
Reported methods for improving the higher-order structure of general-purpose polymers include high-pressure extrusion, high-pressure crystallization, ultra-stretching, zone stretching and heat treatment. Among these, zone stretching and heat treatment are attracting attention as effective methods. The details are described in Japanese Patent Publication No. 60-24852. In other words, zone stretching is stretching an amorphous or as low-crystalline thermoplastic synthetic fiber as possible through a short heating zone under tension while locally heating it from its surroundings at a temperature from its glass transition point to its crystallization temperature. zone heat treatment is a technology that produces highly oriented fibers with amorphous or low crystallinity.Zone heat treatment is a technique in which the fibers obtained above are subjected to short heat treatment at a temperature above the crystallization temperature while applying a high degree of tension to fully extend the molecular chains. This is a technology that locally heats the surrounding area by passing it through the tropics.

(発明が解決しようとする課題) 上記方法はポリエチレンテレフタレートやナイロンなど
において理論弾性率の約lO%にしか至っておらず、さ
らに高強度・高弾性な繊維を得るためにはまだ改善され
る必要がある。
(Problem to be solved by the invention) The above method has only reached about 10% of the theoretical elastic modulus for polyethylene terephthalate, nylon, etc., and still needs to be improved in order to obtain fibers with even higher strength and higher elasticity. be.

(課題を解決するための手段) そこで本発明の方法にあっては、非晶質あるいは低結晶
性の熱可塑性合成繊維を、少なくとも1個の短い加熱帯
域と、少なくとも1個の加熱されたダイの組合せによっ
て、ゾーン延伸・熱処理とダイ延伸とを連続的に行い、
高強度・高弾性率化を図るものである。短い加熱帯域お
よびダイは必要に応じてその位置を移動することができ
る。
(Means for Solving the Problems) Therefore, in the method of the present invention, an amorphous or low-crystalline thermoplastic synthetic fiber is heated in at least one short heating zone and at least one heated die. Zone stretching/heat treatment and die stretching are performed continuously by a combination of
This aims to achieve high strength and high elastic modulus. The short heating zone and die can move their position as needed.

(作用) 熱可塑性合成繊維を高強度・高弾性率化するには、いか
に多くの分子鎖を繊維軸方向に配列させ、かつ結晶化さ
せるかがポイントになる。ゾーン延伸・熱処理では、局
所的に加熱することによって軟化する部分を最小にし、
従って応力も集中するため、効率よく分子鎖を配向させ
ることができる。
(Function) In order to increase the strength and modulus of thermoplastic synthetic fibers, the key is how many molecular chains can be arranged in the fiber axis direction and crystallized. Zone stretching and heat treatment minimizes the softened area by heating locally,
Therefore, since stress is also concentrated, molecular chains can be oriented efficiently.

しかしながら、この場合の応力は張力のみであるため、
−度ゾーン延伸を行って無配向状態から配向状態にして
しまうと、それ以後ゾーン延伸を繰り返してもあまり配
向の向上はみられない。一方、ダイ延伸は、張力に加え
てせん断力も同時に働くため、ゾーン延伸よりも高配向
化が期待できる。
However, since the stress in this case is only tension,
- Once the non-oriented state is changed to the oriented state by zone stretching, the orientation does not improve much even if the zone stretching is repeated thereafter. On the other hand, in die stretching, since shear force acts simultaneously in addition to tension, higher orientation can be expected than in zone stretching.

ただし、試料の配向状態によっては口金付近で分子鎖が
糸くず状につまる危険性があるため、ダイ延伸ではむし
ろある程度配向した延伸糸の方が効果的である。よって
、この両者の欠点を補うように、はじめにゾーン延伸し
、ついでダイ延伸を行うようにすれば、より高強度・高
弾性な繊維を製造することが可能となる。
However, depending on the orientation of the sample, there is a risk that the molecular chains will become stuck in the form of threads near the die, so a drawn thread that is oriented to some extent is more effective in die drawing. Therefore, by first performing zone drawing and then die drawing to compensate for these two drawbacks, it becomes possible to produce fibers with higher strength and higher elasticity.

(実施例) この発明の一実施例の全体構成を模式的に示す。(Example) 1 schematically shows the overall configuration of an embodiment of the present invention.

第1図において、2は高強度・高弾性率化しようとする
非晶質あるいは可能な限り低結晶性の熱可塑性合成繊維
の未延伸糸1aを供給するための供給装置、3は供給さ
れた未延伸糸1aを確実に把持する一ローラ、4は延伸
糸1bを確実に把持するとともにローラ3との周速差に
よって未延伸糸1aに張力を加えるローラ、5は延伸糸
ICを確実に把持するとともにローラ4との周速差によ
って延伸糸1bに張力を加えるローラ、6は局所的に加
熱しながら緊張下に延伸するための短い加熱帯域、7は
接触加熱しながら円錐形のダイを通して延伸糸1bを強
制的に延伸するための加熱ダイ、8は延伸糸1cを巻取
るための巻取り装置である。
In FIG. 1, 2 is a feeding device for feeding an undrawn yarn 1a of an amorphous or as low-crystalline thermoplastic synthetic fiber that is intended to have high strength and high modulus, and 3 is a feeding device. A roller 4 securely grips the undrawn yarn 1a, a roller 4 securely grips the drawn yarn 1b and applies tension to the undrawn yarn 1a due to a peripheral speed difference with roller 3, and a roller 5 securely grips the drawn yarn IC. At the same time, a roller 4 applies tension to the drawn yarn 1b due to the peripheral speed difference between the roller 4, a short heating zone 6 for drawing under tension while locally heating the yarn, and a roller 7 drawing the yarn through a conical die while contact heating it. A heating die is used to forcibly draw the yarn 1b, and 8 is a winding device for winding up the drawn yarn 1c.

供給装置2はローラ3に同期するように駆動され、極め
て低張力で未延伸糸が供給されるようになっている。
The feeding device 2 is driven in synchronization with the rollers 3, so that the undrawn yarn is fed with extremely low tension.

加熱帯域6は極めて局所的に加熱できるように工夫され
ている。加熱温度は、ガラス転移点以上融点までの温度
に設定されるが、必要ならば初めから結晶化温度以上融
点までの温度で加熱しながら緊張下で一度に延伸・熱処
理して結晶性の高配向繊維1bとする。ガラス転移点以
上結晶化温度までの温度で延伸を行うとボイドの発生が
多く、むしろ逆に物性の低下を招く恐れがある。
The heating zone 6 is designed to provide extremely localized heating. The heating temperature is set at a temperature above the glass transition point and up to the melting point, but if necessary, stretching and heat treatment under tension can be performed from the beginning at a temperature above the crystallization temperature up to the melting point to achieve highly crystalline orientation. Let it be fiber 1b. If stretching is performed at a temperature higher than the glass transition point and up to the crystallization temperature, voids will often occur, and on the contrary, there is a risk that the physical properties will deteriorate.

加熱ダイアは加熱帯域6で高配向となった延伸糸1bを
円錐形のダイを通して接触加熱しながら強制的に延伸し
、さらに高配向高結晶性な延伸糸1cとするものである
。ダイの加熱温度は加熱帯域6と同様の温度範囲がよい
。ダイの口径は延伸しようとする繊維の直径にあわせて
設定する。
The heating dia is used to forcibly stretch the drawn yarn 1b, which has become highly oriented in the heating zone 6, through a conical die while contacting and heating it to further form a highly oriented and highly crystalline drawn yarn 1c. The heating temperature of the die is preferably in the same temperature range as the heating zone 6. The diameter of the die is set according to the diameter of the fiber to be drawn.

ローラ3.4および5はそれぞれの区間での張力あるい
は延伸倍率を正確に設定するため、確実な把持力の保持
と正確な回転数の制御が可能な機構となっている。
Since the rollers 3.4 and 5 accurately set the tension or stretching ratio in each section, they are a mechanism that can securely maintain gripping force and accurately control the number of rotations.

巻取り装置8は、一定張力で延伸糸が巻取られるように
ローラ5に同期して駆動するようになっている。
The winding device 8 is driven in synchronization with the rollers 5 so that the drawn yarn is wound with a constant tension.

また作製された延伸糸の物性によっては上記加熱帯域6
や加熱ダイアからなるゾーン延伸・熱処理部およびダイ
延伸部を逐次加えてもよい。特にダイ延伸の場合は前述
のように口金付近で分子鎖が糸くず状につまる危険性が
ある。それゆえ、延伸糸1bの配向の程度によっては一
度にダイ延伸せずに、順次口径が小さくなるように数個
のダイと延伸ローラを配列し、徐々に分子鎖の配向を高
める。
Depending on the physical properties of the drawn yarn produced, the heating zone 6
A zone stretching/heat treatment section consisting of a heating diaphragm or a heating dia and a die stretching section may be sequentially added. Particularly in the case of die drawing, as mentioned above, there is a risk that the molecular chains will become stuck in the form of lint near the die. Therefore, depending on the degree of orientation of the drawn yarn 1b, the orientation of the molecular chains is gradually increased by arranging several dies and stretching rollers so that the diameter becomes smaller in sequence, rather than performing die drawing all at once.

(発明の効果) 以上説明したこの発明の方法によれば、非晶質あるいは
可能な限り低結晶性の熱可塑性合成繊維の未延伸糸から
極めて高強度・高弾性率な繊維を得ることができる。
(Effects of the Invention) According to the method of the present invention explained above, fibers with extremely high strength and high modulus of elasticity can be obtained from undrawn yarns of thermoplastic synthetic fibers that are amorphous or have as low crystallinity as possible. .

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

(abc):繊維 供給装置 基準ローラ 第1段階の延伸ローラ 第2段階の延伸ローラ ゾーン延伸・熱処理のための加熱部 ダイ延伸のための加熱ダイ 巻取り装置 (abc): fiber feeding device standard roller 1st stage stretching roller Second stage stretching roller Heating section for zone stretching and heat treatment heating die for die drawing Winding device

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1個の短い加熱帯域と少なくとも1個の加熱
されたダイとの組合せによって、ゾーン延伸・熱処理と
ダイ延伸とを連続的に非晶質あるいは低結晶性の熱可塑
性合成繊維に行うことを特徴とする高強度・高弾性率繊
維の製造方法。
A combination of at least one short heating zone and at least one heated die is characterized in that zone drawing/heat treatment and die drawing are continuously carried out on amorphous or low crystallinity thermoplastic synthetic fibers. A method for producing high-strength, high-modulus fiber.
JP18394189A 1989-07-17 1989-07-17 Production of high-strength and high-elastic modulus fiber Pending JPH0351338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18394189A JPH0351338A (en) 1989-07-17 1989-07-17 Production of high-strength and high-elastic modulus fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18394189A JPH0351338A (en) 1989-07-17 1989-07-17 Production of high-strength and high-elastic modulus fiber

Publications (1)

Publication Number Publication Date
JPH0351338A true JPH0351338A (en) 1991-03-05

Family

ID=16144489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18394189A Pending JPH0351338A (en) 1989-07-17 1989-07-17 Production of high-strength and high-elastic modulus fiber

Country Status (1)

Country Link
JP (1) JPH0351338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203332A1 (en) * 2007-06-18 2010-08-12 Nitto Denko Corporation Method for producing polytetrafluoroethylene fiber and polytetrafluoroethylene fiber
JP2018159142A (en) * 2017-03-22 2018-10-11 国立大学法人信州大学 Method for producing biodegradable fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130337A (en) * 1983-01-14 1984-07-26 三菱レイヨン株式会社 High elasticity and high strength fiber or film and production thereof
JPS6345027A (en) * 1986-08-12 1988-02-26 Asahi Chem Ind Co Ltd Manufacture of polyoxymethylene tape
JPS63288210A (en) * 1987-05-19 1988-11-25 Mitsubishi Rayon Co Ltd High-strength and high-elastic modulus polyester fiber and production thereof
JPH01162834A (en) * 1987-12-21 1989-06-27 Toyobo Co Ltd Polyethylene wire material having high elasticity and high modulus 6 elasticity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130337A (en) * 1983-01-14 1984-07-26 三菱レイヨン株式会社 High elasticity and high strength fiber or film and production thereof
JPS6345027A (en) * 1986-08-12 1988-02-26 Asahi Chem Ind Co Ltd Manufacture of polyoxymethylene tape
JPS63288210A (en) * 1987-05-19 1988-11-25 Mitsubishi Rayon Co Ltd High-strength and high-elastic modulus polyester fiber and production thereof
JPH01162834A (en) * 1987-12-21 1989-06-27 Toyobo Co Ltd Polyethylene wire material having high elasticity and high modulus 6 elasticity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203332A1 (en) * 2007-06-18 2010-08-12 Nitto Denko Corporation Method for producing polytetrafluoroethylene fiber and polytetrafluoroethylene fiber
US8945453B2 (en) * 2007-06-18 2015-02-03 Nitto Denko Corporation Method for producing polytetrafluoroethylene fiber and polytetrafluoroethylene fiber
JP2018159142A (en) * 2017-03-22 2018-10-11 国立大学法人信州大学 Method for producing biodegradable fiber

Similar Documents

Publication Publication Date Title
JP3673401B2 (en) Polyolefin molded products
KR960041433A (en) Manufacturing method of poly (trimethylene terephthalate) yaya
JPH0351338A (en) Production of high-strength and high-elastic modulus fiber
KR20170037392A (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
KR100267601B1 (en) Process and device for producing polyester yarns
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
US4569811A (en) Method of making a staple-fiber band
JPH01207437A (en) Method for drawing synthetic fiber
JP2000027029A (en) Production of low shrinkage polyester yarn having high toughness
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
KR100339998B1 (en) Manufacturing method of polyester superfine yarn
RU2082840C1 (en) Filament treatment method
CN1034877C (en) Melt-spinning producing method for polyethylene uncrimping chain crystal fibre
US6301760B1 (en) Method of selectively altering physical properties of an elastane filament
JPH03241026A (en) Fibrous cord and production thereof
JP2951847B2 (en) Method for producing polyester bulky yarn
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JP2892964B2 (en) Biodegradable fiber
JPH0136921Y2 (en)
CN85107349A (en) The production method of high strength PE yarn
JPH09268429A (en) Production of polyester filament by multifilament spinning and direct drawing.
KR940011313B1 (en) Process for drawing and heat setting of polyester fiber
JP2906678B2 (en) Direct spinning and drawing method for synthetic fibers
JP2023114487A (en) Manufacturing method of net body
JP2000027028A (en) Production of low shrinkage polyester yarn having high toughness