JPH0351048B2 - - Google Patents

Info

Publication number
JPH0351048B2
JPH0351048B2 JP19333983A JP19333983A JPH0351048B2 JP H0351048 B2 JPH0351048 B2 JP H0351048B2 JP 19333983 A JP19333983 A JP 19333983A JP 19333983 A JP19333983 A JP 19333983A JP H0351048 B2 JPH0351048 B2 JP H0351048B2
Authority
JP
Japan
Prior art keywords
sintered body
molybdenum
ruthenium
end shield
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19333983A
Other languages
Japanese (ja)
Other versions
JPS6086731A (en
Inventor
Yasuhiro Kato
Seishi Asai
Katsuyuki Yashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP19333983A priority Critical patent/JPS6086731A/en
Publication of JPS6086731A publication Critical patent/JPS6086731A/en
Publication of JPH0351048B2 publication Critical patent/JPH0351048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 本発明は電子レンジ等に用いられるマグネトロ
ン用部品(以下、エンドシールドと呼ぶ)の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing magnetron parts (hereinafter referred to as end shields) used in microwave ovens and the like.

一般に、この種のエンドシールドはマグネトロ
ンの電極を形成するコイル状フイラメントを上下
から挾持するのに用いられている。具体的に言え
ば、エンドシールドは断面凸又は凹形形状を有す
るモリブデンの支持部材と、支持部材の平坦面に
ろう着されたろう材とを有し、このろう材によ
り、フイラメントと支持部材とを接合させてい
る。
Generally, this type of end shield is used to sandwich a coiled filament that forms the electrode of a magnetron from above and below. Specifically, the end shield includes a molybdenum support member having a convex or concave cross section and a brazing material soldered to the flat surface of the support member, and the brazing material connects the filament and the support member. It is joined.

このようなエンドシールドでは、支持部材にろ
う材が均一に付着されていることが望ましい。従
来、支持部材にろう材を付着させる方法として、
モリブデン系のろう材を塗布あるいは吹き付ける
方法が採用されている。しかし、この方法では、
ろう材の付着量が一定とならないため、最終製品
の特性のバラツキが大きいという欠点がある。
In such an end shield, it is desirable that the brazing material is uniformly adhered to the support member. Conventionally, as a method for attaching brazing material to a supporting member,
The method used is to apply or spray a molybdenum-based brazing material. However, with this method,
Since the amount of brazing filler metal deposited is not constant, there is a drawback that the properties of the final product vary widely.

一方、ろう材、例えば、ルテニウムを40重量パ
ーセント含有するルテニウム−モリブデン合金の
ろう材の薄状板を圧延加工により支持部材に圧着
する方法がある。この場合、加工の際における加
工硬化量が著しく多いため、加工、高温焼鈍を繰
り返し行なわなければならず、コスト高となると
いう欠点がある。
On the other hand, there is a method in which a thin plate of a brazing filler metal, for example, a ruthenium-molybdenum alloy containing 40 percent by weight of ruthenium, is pressed onto a support member by rolling. In this case, since the amount of work hardening during processing is extremely large, processing and high-temperature annealing must be repeated, resulting in high costs.

更に、リング状のろう材板を支持部材に溶接等
により付着させることも検討されている。しか
し、この方法では、溶接工程が入るため、エンド
シールドのコストが大幅に上昇するという欠点が
ある。
Furthermore, attaching a ring-shaped brazing filler metal plate to a support member by welding or the like is also being considered. However, this method involves a welding process, which has the disadvantage of significantly increasing the cost of the end shield.

リング状のろう材を有機接着剤を用いて支持部
材に接着することも提案されているが、この方法
においても、高真空における組み立て工程中に有
機接着剤がガス化することが多いため、マグネト
ロンとしての特性が著しく劣化するという欠点が
ある。
It has also been proposed to bond a ring-shaped brazing filler metal to a supporting member using an organic adhesive, but even with this method, the organic adhesive often gasifies during the assembly process in a high vacuum, so the magnetron The disadvantage is that the characteristics as a material are significantly deteriorated.

本発明の目的はエンドシールド組み立て時にお
けるろう着作業を能率的に行なえるマグネトロン
用部品の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing magnetron parts that allows efficient soldering work when assembling an end shield.

本発明の他の目的はろう材の付着量が一定で、
品質の安定した部品を得ることができるマグネト
ロン用部品の製造方法を提供することである。
Another object of the present invention is that the amount of brazing filler metal deposited is constant;
It is an object of the present invention to provide a method for manufacturing parts for a magnetron, which allows parts with stable quality to be obtained.

本発明によれば、ルテニウム−モリブデンろう
材とモリブデン支持部材とを中間焼結体の形で準
備し、ろう材及び支持部材とを嵌合させた後、同
時に焼結して、両者を焼き嵌めされた複合体に
し、この複合体によりマグネトロン用部品、即
ち、エンドシールドを形成する製造方法が得られ
る。
According to the present invention, a ruthenium-molybdenum brazing material and a molybdenum supporting member are prepared in the form of an intermediate sintered body, and after the brazing material and the supporting member are fitted together, they are simultaneously sintered to shrink-fit the two. A method for manufacturing a magnetron component, ie, an end shield, is obtained.

異種金属材料又は同種金属材料を焼き嵌める方
法は金属の熱による膨張又は収縮を利用したもの
であり、通常、焼き嵌めされる2つの部材の一方
のみを加熱することによつて行なわれ、2つの部
材を同時に加熱することは行なわれていない。
The method of shrink-fitting dissimilar or similar metal materials utilizes the expansion or contraction of metals due to heat, and is usually carried out by heating only one of the two members to be shrink-fitted. There is no simultaneous heating of the parts.

具体的に言えば、本発明では、金属粉末を圧粉
体とする時点の圧粉圧力の程度によつて、この金
属圧粉体が金属体に焼成される際の収縮率が異な
ることを利用し、而も金属体となる以前の中間焼
結体で予め焼き嵌めされるように配置準備し、焼
き嵌めされる双方の中間焼結体を同時に加熱焼成
して両者の焼き嵌めを行なうと共に、マグネトロ
ン用部品を製作するマグネトロン用部品の製造方
法が得られる。
Specifically, the present invention utilizes the fact that the shrinkage rate when a metal powder compact is fired into a metal body differs depending on the degree of compaction pressure at the time the metal powder is turned into a compact. However, the intermediate sintered body before becoming a metal body is prepared in advance so as to be shrink-fitted, and both intermediate sintered bodies to be shrink-fitted are heated and fired at the same time to perform the shrink-fitting of both, A method for manufacturing magnetron parts for manufacturing magnetron parts is obtained.

まず凸形又は凹形の断面形状を備えたモリブデ
ン製の圧粉体を形成し、さらに、このモリブデン
製の圧粉体の凸部又は凹部に嵌合するルテニウム
−モリブデン合金よりなる圧粉体を形成する。次
に、これらの圧粉体を不活性ガスあるいは還元ガ
ス雰囲気中において、1000〜1300℃の温度で、中
間焼結を行う。さらに、断面状形が凸形又は凹形
のモリブデン製中間焼結体の凸部又は凹部にルテ
ニウム−モリブデン合金よりなる中間焼結体を嵌
合させる。そして、不活性ガスあるいは還元ガス
雰囲気中において、1500〜1800℃の温度で焼結を
行い、ルテニウム−モリブデン合金の焼結体をモ
リブデン製焼結体の凸部又は凹部に焼き嵌めした
エンドシールドを製造することができる。以下、
本発明を実施例によつて説明する。
First, a molybdenum green compact with a convex or concave cross-sectional shape is formed, and then a ruthenium-molybdenum alloy green compact that fits into the convex or concave portions of this molybdenum green compact is formed. Form. Next, these compacts are subjected to intermediate sintering at a temperature of 1000 to 1300°C in an inert gas or reducing gas atmosphere. Further, an intermediate sintered body made of a ruthenium-molybdenum alloy is fitted into a convex portion or a concave portion of the molybdenum intermediate sintered body having a convex or concave cross-sectional shape. Then, sintering is performed at a temperature of 1500 to 1800°C in an inert gas or reducing gas atmosphere, and the end shield is made by shrink-fitting the ruthenium-molybdenum alloy sintered body into the protrusions or recesses of the molybdenum sintered body. can be manufactured. below,
The present invention will be explained by way of examples.

モリブデンよりなる圧粉体を4.0〜5.0ton/cm2
の圧力で、その断面形状が凹形で、かつその底面
中央部に後述するモリブデン棒が挿入できるよう
な貫通孔を設けて、形成する(第1図)。この圧
粉体を還元ガス雰囲気において、1200℃の温度で
中間焼結を行つた。その結果中間焼結を行う前の
寸法と比べてその寸法が、4〜5%収縮した。
4.0 to 5.0 ton/cm 2 of compacted powder made of molybdenum
A through hole is formed at the center of the bottom surface of the hole so as to have a concave cross-sectional shape, into which a molybdenum rod (described later) can be inserted (FIG. 1). This green compact was subjected to intermediate sintering at a temperature of 1200°C in a reducing gas atmosphere. As a result, the dimensions shrunk by 4 to 5% compared to the dimensions before intermediate sintering.

同様にして、ルテニウム−モリブデン合金より
なる圧粉体を4.0〜5.0ton/cm2の圧力で、上記の
断面形状が凹形の圧粉体の凹部に嵌合するよう
に、かつそのとき、上記の断面形状が凹形の圧粉
体に設けた貫通孔と一致するように孔を設けて、
板状に形成する(第2図)。この板状の圧粉体を
還元ガス雰囲気において、1300℃の温度で中間焼
結を行つた。その結果、中間焼結を行う前の寸法
と比べてその寸法が8〜10%収縮した。
Similarly, a powder compact made of a ruthenium-molybdenum alloy is pressed at a pressure of 4.0 to 5.0 ton/cm 2 so that it fits into the recess of the compact having a concave cross-sectional shape, and at that time, A hole is provided so that the cross-sectional shape matches the through hole provided in the concave powder compact,
Form into a plate shape (Figure 2). This plate-shaped compact was subjected to intermediate sintering at a temperature of 1300°C in a reducing gas atmosphere. As a result, the dimensions shrunk by 8 to 10% compared to the dimensions before performing intermediate sintering.

次に、このモリブデン中間焼結体の凹部に、板
状のルテニウム−モリブデン合金中間焼結体を配
置する(第3図)。このとき、モリブデン中間焼
結体とルテニウム−モリブデン合金中間焼結体と
のスキ間は約0.3mmであつた。これを還元雰囲気
中で1800℃の温度で焼結を行つた。その結果、板
状のルテニウム−モリブデン合金の焼結体がモリ
ブデン焼結体の凹部に焼き嵌められたエンドシー
ルドが得られた(第4図)。なお、上記のモリブ
デン中間焼結体、ルテニウム−モリブデン合金中
間焼結体を、各々単体で、還元雰囲気中におい
て、1800℃の温度で、焼結を行つた場合、モリブ
デン焼結体は、圧粉体のときの寸法に比べて、そ
の寸法が15%収縮し、またルテニウム−モリブデ
ン焼結体は、同様にその寸法が、14.9%収縮する
ことがわかつた。
Next, a plate-shaped ruthenium-molybdenum alloy intermediate sintered body is placed in the recessed portion of this molybdenum intermediate sintered body (FIG. 3). At this time, the gap between the molybdenum intermediate sintered body and the ruthenium-molybdenum alloy intermediate sintered body was about 0.3 mm. This was sintered at a temperature of 1800°C in a reducing atmosphere. As a result, an end shield was obtained in which a plate-shaped ruthenium-molybdenum alloy sintered body was shrink-fitted into the recessed portion of the molybdenum sintered body (FIG. 4). In addition, when the molybdenum intermediate sintered body and the ruthenium-molybdenum alloy intermediate sintered body are individually sintered at a temperature of 1800°C in a reducing atmosphere, the molybdenum sintered body becomes a compacted powder. It was found that the dimensions of the ruthenium-molybdenum sintered body had shrunk by 15% compared to the dimensions of the body, and the dimensions of the ruthenium-molybdenum sintered body had similarly shrunk by 14.9%.

また、モリブデン焼結体とルテニウム−モリブ
デン合金焼結体との接触面を詳しく調べたとこ
ろ、両焼結体が一部分合金化していることもわか
つた。
Further, when the contact surface between the molybdenum sintered body and the ruthenium-molybdenum alloy sintered body was examined in detail, it was found that both sintered bodies were partially alloyed.

続いて、モリブデンよりなる圧粉体を4.0〜
5.0ton/cm2の圧力で、その断面形状が凸形で、か
つ、凸部の中央部には、後述するモリブデン棒が
挿入できるような貫通孔を設けて、形成する(第
5図)。この圧粉体を還元ガス雰囲気において、
1500℃の温度で中間焼結を行つた。その結果中間
焼結を行う前の寸法と比べて、その寸法が8〜10
%収縮した。
Next, a powder compact made of molybdenum was
It is formed under a pressure of 5.0 ton/cm 2 so that its cross-sectional shape is convex, and a through hole is provided in the center of the convex portion into which a molybdenum rod, which will be described later, can be inserted (FIG. 5). This green compact is placed in a reducing gas atmosphere,
Intermediate sintering was performed at a temperature of 1500°C. As a result, the size is 8 to 10% compared to the size before intermediate sintering.
% shrinkage.

同様にして、ルテニウム−モリブデン合金より
なる圧粉体を3.5〜4.4ton/cm2の圧力で、上記の
断面形状が凸形の圧粉体の凸部に嵌合するよう
に、板状に形成する(第6図)。この板状の圧粉
体を還元ガス雰囲気において、1000℃の温度で中
間焼結を行つた。その結果、中間焼結を行う前の
寸法と比べて、その寸法が、1〜2%収縮した。
Similarly, a powder compact made of a ruthenium-molybdenum alloy is formed into a plate shape under a pressure of 3.5 to 4.4 ton/cm 2 so that it fits into the convex portion of the compact with a convex cross-sectional shape. (Figure 6). This plate-shaped compact was subjected to intermediate sintering at a temperature of 1000°C in a reducing gas atmosphere. As a result, the dimensions shrunk by 1 to 2% compared to the dimensions before intermediate sintering.

次に、このモリブデン中間焼結体の凸部に、板
状のルテニウム−モリブデン合金中間焼結体を配
置する(第7図)。このとき、モリブデン中間焼
結体とルテニウム−モリブデン合金中間焼結体と
のスキ間は約0.3mmであつた。これを還元雰囲気
中で、1800℃の温度で焼結を行つた。その結果、
板状のルテニウム−モリブデン合金の焼結体がモ
リブデン焼結体の凸部に焼き嵌められたエンドシ
ールドが得られた(第8図)。なお、上記のモリ
ブデン中間焼結体、ルテニウム−モリブデン合金
中間焼結体を、各々単体で、還元雰囲気中におい
て、1800℃の温度で、焼結を行つた場合、モリブ
デン焼結体は、圧粉体のときの寸法に比べて、そ
の寸法が15%収縮し、ルテニウム−モリブデン焼
結体は、同様にその寸法が、15.1%収縮すること
がわかつた。
Next, a plate-shaped ruthenium-molybdenum alloy intermediate sintered body is placed on the convex portion of this molybdenum intermediate sintered body (FIG. 7). At this time, the gap between the molybdenum intermediate sintered body and the ruthenium-molybdenum alloy intermediate sintered body was about 0.3 mm. This was sintered at a temperature of 1800°C in a reducing atmosphere. the result,
An end shield was obtained in which a plate-shaped ruthenium-molybdenum alloy sintered body was shrink-fitted into the protrusion of the molybdenum sintered body (FIG. 8). In addition, when the molybdenum intermediate sintered body and the ruthenium-molybdenum alloy intermediate sintered body are individually sintered at a temperature of 1800°C in a reducing atmosphere, the molybdenum sintered body becomes a compacted powder. It was found that the dimensions of the ruthenium-molybdenum sintered body had shrunk by 15% compared to the dimensions of the body, and the dimensions of the ruthenium-molybdenum sintered body had similarly shrunk by 15.1%.

また、モリブデン焼結体とルテニウム−モリブ
デン合金焼結体との接触面を詳しく調べたとこ
ろ、両焼結体が一部分合金化していることもわか
つた。
Further, when the contact surface between the molybdenum sintered body and the ruthenium-molybdenum alloy sintered body was examined in detail, it was found that both sintered bodies were partially alloyed.

次に上述した断面形状が凹形及び凸形のエンド
シールドを用いたマグネトロン用電極構造につい
て第9図を参照して説明する。
Next, a magnetron electrode structure using the above-mentioned end shields having concave and convex cross-sectional shapes will be described with reference to FIG. 9.

断面形状凸形のエンドシールド1と断面形状凹
形のエンドシールド2を対向させて、コイル状の
トリウム−タングステンフイラメント3をルテニ
ウム−モリブデンよりなるろう材4にろう着す
る。さらに、モリブデン棒5を断面形状凹形のエ
ンドシールド2の貫通孔を通して、断面形状凸形
のエンドシールド1の貫通孔で溶接等により固着
して、断面形状凸形のエンドシールド1を支持す
る。なお断面形状凹形のエンドシールド2の貫通
孔の壁面には、モリブデン棒5は接触していな
い。断面形状凹形のエンドシールド2は、別のモ
リブデン棒6を、その底面に溶接等によつて固着
し、このモリブデン棒6によつて支持されてい
る。
An end shield 1 having a convex cross section and an end shield 2 having a concave cross section are opposed to each other, and a coiled thorium-tungsten filament 3 is brazed to a brazing filler metal 4 made of ruthenium-molybdenum. Further, the molybdenum rod 5 is passed through the through hole of the end shield 2 having a concave cross section and fixed by welding or the like in the through hole of the end shield 1 having a convex cross section to support the end shield 1 having a convex cross section. Note that the molybdenum rod 5 does not come into contact with the wall surface of the through hole of the end shield 2, which has a concave cross-sectional shape. The end shield 2, which has a concave cross-sectional shape, is supported by another molybdenum rod 6 fixed to its bottom surface by welding or the like.

以上、実施例で説明したように、本発明は、平
坦面及びこの平坦面と交叉する直立面とを有し、
かつ、凹形及び凸形のいずれか一方の断面形状を
備えたモリブデン材料の第1の中間焼結体を準備
する工程と、この第1の中間焼結体と異なる収縮
率を有し、上記の平坦面に、上記の直立面と接触
することなく覆うことができる第2の中間焼結体
を準備する工程と、第2の中間焼結体で第1の中
間焼結体を覆つた状態で、予め定められた温度で
焼結することによつて、第1及び第2の中間焼結
体をそれぞれ第1及び第2の焼結体として、第2
の焼結体を第1の焼結体の直立面に接触させる工
程によりマグネトロン用部品すなわちエンドシー
ルドを製造する方法である。
As described above in the examples, the present invention has a flat surface and an upright surface that intersects the flat surface,
and a step of preparing a first intermediate sintered body of a molybdenum material having either a concave or convex cross-sectional shape, and having a shrinkage rate different from that of the first intermediate sintered body, a step of preparing a second intermediate sintered body that can cover the flat surface of the above-mentioned upright surface without contacting the same; and a state in which the first intermediate sintered body is covered with the second intermediate sintered body. By sintering at a predetermined temperature, the first and second intermediate sintered bodies are used as first and second sintered bodies, respectively, and a second
This is a method of manufacturing a magnetron component, that is, an end shield, by a step of bringing a sintered body into contact with an upright surface of a first sintered body.

上記の製造方法によつて得られたエンドシール
ドは、一定量のろう材があらかじめ焼き嵌めされ
ているため、フイラメントのろう着が容易であ
り、最終製品のバラツキがひじように少なくな
る。またこの製造方法は、あらかじめ第1の中間
焼結体を第2の中間焼結体で覆つたのち、焼結す
るため、エンドシールドの製作が能率的にでき、
かつ圧縮率の差によつて焼き嵌めしているので、
ろう材部の脱落などがなく、品質の向上がはかれ
る。
Since the end shield obtained by the above manufacturing method has a certain amount of brazing material shrink-fitted in advance, it is easy to braze the filament, and the variation in the final product is minimized. In addition, in this manufacturing method, the first intermediate sintered body is covered with the second intermediate sintered body and then sintered, so the end shield can be manufactured efficiently.
And since it is shrink-fitted due to the difference in compression ratio,
There is no falling off of the filler metal part, and quality is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、凹部を有するモリブデン圧粉体の断
面図、第2図及び第6図は、ルテニウム−モリブ
デン合金圧粉体の断面図、第3図は、モリブデン
中間焼結体の凹部にルテニウム−モリブデン合金
中間焼結体を配置した断面図、第4図及び第8図
は、モリブデン焼結体にルテニウム−モリブデン
合金が焼き嵌めされた断面図、第5図は凸部を有
するモリブデン圧粉体の断面図、第7図は、モリ
ブデン中間焼結体の凸部にルテニウム−モリブデ
ン合金中間焼結体を配置した断面図、第9図は、
本発明によるエンドシールドを使用したマグネト
ロン用電極構造の断面図である。 1,2……エンドシールド、3……トリウム−
タングステンフイラメント、4……ろう材、5,
6……モリブデン棒。
Fig. 1 is a cross-sectional view of a molybdenum green compact having a concave portion, Figs. 2 and 6 are cross-sectional views of a ruthenium-molybdenum alloy green compact, and Fig. 3 is a sectional view of a molybdenum intermediate sintered body containing ruthenium in a concave portion. - A cross-sectional view of the molybdenum alloy intermediate sintered body arranged, Figures 4 and 8 are cross-sectional views of the ruthenium-molybdenum alloy shrink-fitted to the molybdenum sintered body, and Figure 5 is a molybdenum compacted powder having convex portions. 7 is a sectional view of the body, and FIG. 9 is a sectional view of the ruthenium-molybdenum alloy intermediate sintered body placed on the convex portion of the molybdenum intermediate sintered body.
1 is a cross-sectional view of an electrode structure for a magnetron using an end shield according to the present invention. 1, 2...End shield, 3...Thorium-
Tungsten filament, 4...brazing metal, 5,
6...Molybdenum rod.

Claims (1)

【特許請求の範囲】[Claims] 1 平坦面及び該平坦面と交叉する直立面とを有
し、且つ、凸形及び凹形のいずれか一方の断面形
状を備えたモリブデン材料の第1の中間焼結体を
準備する工程と、前記第1の中間焼結体と異なる
収縮率を有し、前記平坦面を前記直立面と接触す
ることなく覆うことができる第2の中間焼結体を
準備する工程と、前記第2の中間焼結体により第
1の中間焼結体の平坦面を覆つた状態で、予め定
められた温度で焼結し、第1及び第2の中間焼結
体をそれぞれ第1及び第2の焼結体とし、該第2
の焼結体を前記第1の焼結体の直立面に接触させ
る工程とを有することを特徴とするマグネトロン
部品の製造方法。
1. preparing a first intermediate sintered body of a molybdenum material having a flat surface and an upright surface intersecting the flat surface, and having either a convex or concave cross-sectional shape; preparing a second intermediate sintered body having a shrinkage rate different from that of the first intermediate sintered body and capable of covering the flat surface without contacting the upright surface; The first intermediate sintered body is sintered at a predetermined temperature while the flat surface of the first intermediate sintered body is covered with the sintered body, and the first and second intermediate sintered bodies are subjected to first and second sintering, respectively. body, and the second
A method for manufacturing a magnetron component, comprising the step of: bringing a sintered body into contact with an upright surface of the first sintered body.
JP19333983A 1983-10-18 1983-10-18 Manufacture of parts for magnetron Granted JPS6086731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19333983A JPS6086731A (en) 1983-10-18 1983-10-18 Manufacture of parts for magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19333983A JPS6086731A (en) 1983-10-18 1983-10-18 Manufacture of parts for magnetron

Publications (2)

Publication Number Publication Date
JPS6086731A JPS6086731A (en) 1985-05-16
JPH0351048B2 true JPH0351048B2 (en) 1991-08-05

Family

ID=16306245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19333983A Granted JPS6086731A (en) 1983-10-18 1983-10-18 Manufacture of parts for magnetron

Country Status (1)

Country Link
JP (1) JPS6086731A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572795B2 (en) * 2009-03-12 2014-08-20 東芝ホクト電子株式会社 ELECTRONIC TUBE COMPONENT AND MAGNETRON TUBE END HAT MANUFACTURING METHOD
JP5814236B2 (en) * 2010-07-16 2015-11-17 株式会社東芝 End hat for magnetron, method for producing the same, and magnetron

Also Published As

Publication number Publication date
JPS6086731A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
EP0230233B1 (en) Supported polycrystalline compacts
JPH0474306B2 (en)
JPS6217080A (en) Method of joining silicon carbide formed body members
JPH0351048B2 (en)
JP3718321B2 (en) End hat component for magnetron and manufacturing method thereof
US6514627B1 (en) Method for making a stacked reactor and catalyst disk for a stacked reactor
US4425299A (en) Method for bonding sintered metal pieces
US5760378A (en) Method of inductive bonding sintered compacts of heavy alloys
DE2346499B2 (en) Process for the production of bodies from powder by hot isostatic pressing in a container made of glass
JPS5846548A (en) Manufacture of cathode structural body for magnetron
JPH01308884A (en) Material-bonding process and bonded product
JPS5832339A (en) End hat for magnetron
JPH0744279Y2 (en) Double structure insulation container
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JPS6140626B2 (en)
JP2539069B2 (en) Diffusion bonding method for hollow structures
JPS5918820B2 (en) Method for manufacturing targets for X-ray tubes
JPS5936529B2 (en) How to manufacture metal thermos flasks
JPS5846549A (en) Manufacture of cathode structural body for magnetron
JPS62220297A (en) Joining method for material member
JPS62219426A (en) Manufacture of impregnated cathode structure
JPS608575B2 (en) Manufacturing method of rotating anode for X-ray tube
JPH11100605A (en) Production of sintered compact
JPH0239470B2 (en) SERAMITSUKUSUKANTOARUMINIUMUKANNOSETSUGOHOHO
JP2745983B2 (en) Glass molding for sealing