JPH0350792B2 - - Google Patents

Info

Publication number
JPH0350792B2
JPH0350792B2 JP11606583A JP11606583A JPH0350792B2 JP H0350792 B2 JPH0350792 B2 JP H0350792B2 JP 11606583 A JP11606583 A JP 11606583A JP 11606583 A JP11606583 A JP 11606583A JP H0350792 B2 JPH0350792 B2 JP H0350792B2
Authority
JP
Japan
Prior art keywords
ωcm
graphite
resistance value
range
fixed carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11606583A
Other languages
Japanese (ja)
Other versions
JPS608334A (en
Inventor
Koji Ookubo
Katsumi Nishizaki
Haruo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Tosoh Corp
Original Assignee
Hodogaya Chemical Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Tosoh Corp filed Critical Hodogaya Chemical Co Ltd
Priority to JP11606583A priority Critical patent/JPS608334A/en
Publication of JPS608334A publication Critical patent/JPS608334A/en
Publication of JPH0350792B2 publication Critical patent/JPH0350792B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯電防止性能に優れた樹脂組成物に関
する。 さらに詳しくは、体積固有抵抗が108〜1010Ωcm
の範囲内で制御可能な樹脂組成物に関するもので
ある。 高分子材料は本来絶縁性であるため、電気・電
子部品などの絶縁性として広く使用されている。
しかし、近年、高分子材料の使用方法がより高度
化するに従いその要求性能も高度化し、その要求
を実現することが困難なものとなつてきている。
その一つとして、電子部品などを取り扱う際に高
分子材料に生じた静電気が原因で電子部品が損傷
を起すという問題がクローズアツプされている。
乾燥状態において高分子材料には数万ボルトの電
位が生じ、半導体などは容易に損傷してしまうの
である。 このようなトラブルを防ぐためには、体積固有
抵抗が1010Ωcm以下である必要がある。一方の体
積固有抵抗が108Ωcm以下となると高分子材料の
もつ絶縁性という特性が失なわれ感電や漏電ある
いは帯電していた電子部品が接触した時に急激に
放電を起し損傷するなど問題となる。 このような電子部品を静電気から守るという点
からは、体積固有抵抗を108〜1010Ωcmという極め
て狭い範囲に制御する必要がある。 このような目的には帯電防止剤を成形体表面に
塗布する方法があるが、短期間ではその機能を発
現するものの、経時変化が著しく、湿度の影響を
大きく受け、さらに抵抗値のバラつきが非常に大
きく満足すべきものではない。また、導電性カー
ボン、例えばケツチエンブラツクEC、アセチレ
ンブラツクなどを高分子材料に混合する方法も知
られているが、これら導電性カーボンは、それ自
体の抵抗値が10-1Ωcm程度と低いためにコンパウ
ンドとした場合に102〜106Ωcm程度の抵抗値は容
易に得られるものの108〜1010Ωcm附近の制御は極
めて困難で、混練状態、成形状態によつて大きく
バラつき実用には供しえないものである。 このように従来抵抗値を108〜1010Ωcmに精度よ
く制御する方法は知られておらず、その開発が強
く望まれていた。 本願発明者らは、この点に着目し鋭意検討した
結果、特定の黒鉛を用いることにより、その目的
を達成することが出来ることを見出し、本発明に
到達した。 以下に本発明を詳しく説明する。 本発明に使用される黒鉛としては天然土状黒鉛
が用いられ、その固定炭素分は50%〜90%の範囲
であることが望ましい。 黒鉛には天然導電性土状黒鉛の他に天然鱗片黒
鉛、人造黒鉛が存在するが、これらの黒鉛は扁平
状で粒子のアスペクト比が高く、抵抗値のコント
ロールが困難であるばかりでなく、樹脂の流れる
方向に配向しやすいために測定する方向によつて
抵抗値が大きく異なるという欠点を有しており、
本発明に適応することが出来ない。 固定炭素分が50%未満であると目的とした抵抗
値を得るために添加する黒鉛の量が多くなり、流
動性が悪く満足すべき成形体を得ることが困難と
なる。 又、90%を起えると成形体とした抵抗値のバラ
つきが多きなり108〜1010Ωcmに制御することが困
難となる。 ここで言う固定炭素分とはJIS K−6221におけ
る揮発分と灰分を引いた残分であり、以下の式で
示される。 固定炭素分=100−(灰分+揮発分)% 黒鉛の平均粒子径は100μ以下であることが望
ましい。100μを越えると抵抗値のバラつきが多
くなり、強度も低いものとなる。 黒鉛の添加量は固定炭素分によつても異なるが
5〜50重量%の範囲で選択される。 本発明において使用される有機高分子材料とし
ては、ポリエチレン、ポリプロピレンなどのポリ
オレフイン類、ポリ塩化ビニル、ポリスチレン、
ABS樹脂、ポリアミド、ポリアセタール、ポリ
カーボネート、ポリブチレンテレフタレート、ポ
リエチレンテレフタレート、ポリフエニレンオキ
サイド、ポリフエニレンサルフアイド、ポリサル
ホン、ポリエーテルサルホンなどの熱可塑性樹
脂、フエノール樹脂、不飽和ポリエステル、エポ
キシ樹脂などの熱硬化などがあげられる。 黒鉛とこれら高分子材料を混合する方法として
は、ロール、バンバリー、ニーダー等の混練機に
よる方法や、単軸または二軸の押出機による連続
混練押出しなどの方法が採用される。 混練に際し、滑剤、安定剤、難燃剤、可塑剤な
どの添加剤やガラス繊維、ウイスカーなどの補強
材、炭酸カルシウム、クレー、シリカ、マイカ、
タルクなどの無機フイラーを必要に応じて添加し
てもよい。 このようにして得られた組成物は通常の加工方
法例えばカレンダー加工、インフレーシヨン法に
よりフイルムあるいはシートとして、あるいは、
また射出成形、圧縮成形などにより様々な成形体
として成形され、ICキヤリヤー、IC試験用ジグ、
トレー、搬送ケースなどとして使用される。天然
土状黒鉛を用いた本発明組成物を用いると、成形
条件による抵抗値のバラつきが小さく108〜1010Ω
cmの製品を安定して生産することが可能である。 半導体の静電気による損傷は多大なものがあ
り、本発明の経済的効果は極めて大である。 以下に実施例により具体的に本発明を説明す
る。 実施例 1 ポリブチレンテレフタレート4.15Kgと天然土状
黒鉛(固定炭素分85%、平均粒子径6.5μ)0.85Kg
をVブレンダーに入れ40rpmで10分間混合した。
これを40mm単軸押出機により混練ペレツト化し
た。 得られたペレツトを1オンス射出成形機によつ
て120×25×3mmの短冊状試験片に成形した。試
験片の中から無作為に5枚を抽出し、それぞれの
体積固有抵抗を印加電圧100VDCで測定した。結
果を表−1に示した。
The present invention relates to a resin composition with excellent antistatic performance. More specifically, the volume resistivity is 10 8 to 10 10 Ωcm
This invention relates to a resin composition that can be controlled within the range of . Since polymer materials are inherently insulating, they are widely used as insulators in electrical and electronic components.
However, in recent years, as the methods of using polymeric materials have become more sophisticated, the required performance has also become more sophisticated, and it has become difficult to realize these demands.
One such problem is that electronic parts are damaged by static electricity generated in polymeric materials when they are handled.
In dry conditions, potentials of tens of thousands of volts are generated in polymeric materials, easily damaging semiconductors and other materials. In order to prevent such troubles, the volume resistivity must be 10 10 Ωcm or less. On the other hand, when the volume resistivity is less than 10 8 Ωcm, the insulating properties of the polymer material are lost, causing problems such as electric shock, leakage, or sudden discharge and damage when electrically charged electronic components come into contact. Become. In order to protect such electronic components from static electricity, it is necessary to control the volume resistivity within an extremely narrow range of 10 8 to 10 10 Ωcm. For this purpose, there is a method of applying an antistatic agent to the surface of the molded product, but although it exhibits its function in a short period of time, it changes significantly over time, is greatly affected by humidity, and furthermore, the resistance value varies greatly. This is not something we should be very satisfied with. It is also known to mix conductive carbon, such as Ketschien Black EC and acetylene black, with polymer materials, but these conductive carbons have a low resistance value of about 10 -1 Ωcm. Although it is easy to obtain a resistance value of about 10 2 - 10 6 Ωcm when compounded into a compound, it is extremely difficult to control the resistance value around 10 8 - 10 10 Ωcm, and it varies widely depending on the kneading and molding conditions, making it difficult to put into practical use. It is impossible. As described above, there has been no known method for accurately controlling the resistance value within the range of 10 8 to 10 10 Ωcm, and the development of such a method has been strongly desired. The inventors of the present application focused on this point and, as a result of intensive study, discovered that the purpose could be achieved by using a specific graphite, and arrived at the present invention. The present invention will be explained in detail below. The graphite used in the present invention is natural earthy graphite, and its fixed carbon content is preferably in the range of 50% to 90%. Graphite includes natural conductive earth-like graphite, natural flake graphite, and artificial graphite, but these graphites are flat and have a high particle aspect ratio, making it difficult to control the resistance value and also making it difficult to control the resin. It has the disadvantage that the resistance value varies greatly depending on the direction of measurement because it tends to be oriented in the direction of flow.
It cannot be applied to the present invention. If the fixed carbon content is less than 50%, the amount of graphite added to obtain the desired resistance value will be large, and the fluidity will be poor, making it difficult to obtain a satisfactory molded product. Furthermore, if the resistance value exceeds 90%, the resistance value of the molded product will vary greatly, making it difficult to control the resistance value to 10 8 to 10 10 Ωcm. The fixed carbon content referred to here is the residue obtained by subtracting the volatile content and ash content according to JIS K-6221, and is expressed by the following formula. Fixed carbon content = 100 - (ash content + volatile content)% The average particle size of graphite is preferably 100μ or less. If it exceeds 100μ, the resistance value will vary widely and the strength will be low. The amount of graphite added varies depending on the fixed carbon content, but is selected in the range of 5 to 50% by weight. Organic polymer materials used in the present invention include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene,
Thermoplastic resins such as ABS resin, polyamide, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, phenolic resin, unsaturated polyester, epoxy resin, etc. Examples include heat curing. As a method for mixing graphite and these polymeric materials, methods such as a method using a kneading machine such as a roll, a Banbury, or a kneader, and a method such as continuous kneading and extrusion using a single-screw or twin-screw extruder are employed. During kneading, additives such as lubricants, stabilizers, flame retardants, and plasticizers, reinforcing materials such as glass fiber and whiskers, calcium carbonate, clay, silica, mica,
An inorganic filler such as talc may be added as necessary. The composition thus obtained can be processed into a film or sheet by conventional processing methods such as calendering or inflation, or
It can also be molded into various molded products by injection molding, compression molding, etc., such as IC carriers, IC test jigs,
Used as trays, transport cases, etc. When the composition of the present invention using natural earthy graphite is used, there is little variation in resistance value depending on molding conditions, and it is 10 8 to 10 10 Ω.
It is possible to stably produce cm products. There is considerable damage to semiconductors due to static electricity, and the economic effects of the present invention are extremely large. The present invention will be specifically explained below using Examples. Example 1 4.15Kg of polybutylene terephthalate and 0.85Kg of natural earthy graphite (fixed carbon content 85%, average particle size 6.5μ)
was placed in a V-blender and mixed at 40 rpm for 10 minutes.
This was kneaded into pellets using a 40 mm single screw extruder. The resulting pellets were molded into test strips measuring 120 x 25 x 3 mm using a 1 oz injection molding machine. Five specimens were randomly selected from among the test specimens, and the volume resistivity of each specimen was measured at an applied voltage of 100 VDC. The results are shown in Table-1.

【表】 この結果から明らかなように本発明組成物は
(8.0±1.1)×108Ωcmという極めて狭い範囲に制御
することが可能であつた。 比較例 1 天然土状黒鉛を導電性カーボンであるケツチエ
ンブラツクEC(ライオンアクゾー社製)に換え抵
抗値が108〜1010Ωcmに入る様に添加量を0.31Kgと
した以外実施例1と同様の試験を行つた。結果を
表−2に示した。
[Table] As is clear from the results, the composition of the present invention was able to control the resistance within an extremely narrow range of (8.0±1.1)×10 8 Ωcm. Comparative Example 1 Example 1 except that the natural earthy graphite was replaced with conductive carbon, Ketschien Black EC (manufactured by Lion Akzo Co., Ltd.), and the amount added was 0.31 kg so that the resistance value was within 10 8 - 10 10 Ωcm. A similar test was conducted. The results are shown in Table-2.

【表】 このように9.3×107Ωcmから1.6×1012Ωcmとい
う広い範囲にバラついてしまい、目的とする108
〜1010Ωcmの範囲に制御することは不可能であつ
た。 比較例 2 天然土状黒鉛を導電性カーボンであるアセチレ
ンブラツク(デンカブラツク)に換え、抵抗値が
108〜1010Ωcmになる様に添加量を0.51Kgに変えた
以外実施例1と同様の試験を行つた。結果を表−
3に示した。
[Table] In this way, the values vary over a wide range from 9.3×10 7 Ωcm to 1.6×10 12 Ωcm, and the desired 10 8
It was impossible to control the resistance within the range of ~10 10 Ωcm. Comparative Example 2 Natural earthy graphite was replaced with acetylene black (Denka Black), which is conductive carbon, and the resistance value was
The same test as in Example 1 was conducted except that the amount added was changed to 0.51 kg so that the resistance was 10 8 to 10 10 Ωcm. Display the results -
Shown in 3.

【表】 このように、6.4×107Ωcmから1.9×1011Ωcmと
いう広い範囲にバラついてしまい、目的とする
108〜1010Ωcmの範囲に制御することは不可能であ
つた。 実施例 2 天然土状黒鉛を固定炭素分80%平均粒子径6.5μ
のものに換え、抵抗値が108〜1010Ωcmに入るよう
に添加量を0.90Kgとして実施例1と同様の操作を
行つた。結果を表−4に示した。
[Table] As shown, it varies in a wide range from 6.4 × 10 7 Ωcm to 1.9 × 10 11 Ωcm, and the
It was impossible to control the resistance within the range of 10 8 to 10 10 Ωcm. Example 2 Natural earthy graphite with fixed carbon content of 80% and average particle size of 6.5μ
The same operation as in Example 1 was performed except that the amount added was 0.90 kg so that the resistance value was in the range of 10 8 to 10 10 Ωcm. The results are shown in Table-4.

【表】 この結果から(5.9±1.0)×108Ωcmという極め
て狭い範囲に制御することが可能であつた。 実施例 3 ポリフエニレンサルフイルド樹脂2.25Kg、ガラ
ス繊維(3mmチヨツプドストランド)2.00Kgと天
然土状黒鉛(固定炭素分85%、平均粒子径6.5μ)
0.75Kgを実施例1と同様に混練ペレツト化し同様
の試験を行つた。 結果を表−5に示した。
[Table] From this result, it was possible to control the resistance within an extremely narrow range of (5.9±1.0)×10 8 Ωcm. Example 3 2.25Kg of polyphenylene sulfide resin, 2.00Kg of glass fiber (3mm chopped strand) and natural earthy graphite (fixed carbon content 85%, average particle size 6.5μ)
0.75 kg was kneaded into pellets in the same manner as in Example 1, and the same test was conducted. The results are shown in Table-5.

【表】 この結果から(7.1±1.0)×108Ωcmという極め
て狭い範囲に制御することが可能であつた。 比較例 3 天然土状黒鉛の代りに固定炭素分97%、平均粒
子径6.5μの天然鱗片状黒鉛を用い、抵抗値が108
〜1010Ωcmに入る様に添加量を0.65Kgとして実施
例3と同様の操作を行つた。結果を表−6に示し
た。
[Table] From this result, it was possible to control the resistance within an extremely narrow range of (7.1±1.0)×10 8 Ωcm. Comparative Example 3 Natural flaky graphite with a fixed carbon content of 97% and an average particle size of 6.5 μm was used instead of natural earthy graphite, and the resistance value was 10 8
The same operation as in Example 3 was carried out with the amount added being 0.65 kg so as to fall within ~10 10 Ωcm. The results are shown in Table-6.

【表】 この様に9.2×107Ωcmから1.8×1011Ωcmの範囲
でバラついてしまい108〜1010Ωcmに制御すること
は不可能であつた。
[Table] As shown, the resistance varied within the range of 9.2×10 7 Ωcm to 1.8×10 11 Ωcm, and it was impossible to control it to 10 8 to 10 10 Ωcm.

Claims (1)

【特許請求の範囲】[Claims] 1 固定炭素分50〜90%、平均粒子径100ミクロ
ン以下の天然土状黒鉛5〜50重量%と有機高分子
材料95〜50重量%からなる帯電防止性樹脂組成
物。
1. An antistatic resin composition comprising 50 to 90% fixed carbon, 5 to 50% by weight of natural earthy graphite with an average particle diameter of 100 microns or less, and 95 to 50% by weight of an organic polymer material.
JP11606583A 1983-06-29 1983-06-29 Antistatic resin composition Granted JPS608334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11606583A JPS608334A (en) 1983-06-29 1983-06-29 Antistatic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11606583A JPS608334A (en) 1983-06-29 1983-06-29 Antistatic resin composition

Publications (2)

Publication Number Publication Date
JPS608334A JPS608334A (en) 1985-01-17
JPH0350792B2 true JPH0350792B2 (en) 1991-08-02

Family

ID=14677834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11606583A Granted JPS608334A (en) 1983-06-29 1983-06-29 Antistatic resin composition

Country Status (1)

Country Link
JP (1) JPS608334A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550797B2 (en) * 1991-04-10 1996-11-06 東レ株式会社 Liquid crystal polymer resin composition
JP5392991B2 (en) * 2006-03-31 2014-01-22 アイカ工業株式会社 Conductive floor and construction method

Also Published As

Publication number Publication date
JPS608334A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JP4643007B2 (en) Synthetic resin composition
US5276080A (en) Static dissipative resin composition
Narkis et al. New injection moldable electrostatic dissipative (ESD) composites based on very low carbon black loadings
KR101375928B1 (en) Thermally conducting and electrically insulating moldable compositions and methods of manufacture thereof
US5428100A (en) Liquid crystal polyester resin composition and molded article
KR20020005607A (en) Electrically conductive thermoplastic elastomer and product made thereof
JP4971654B2 (en) PCB cassette
US3733385A (en) Method of making conducting plastic articles
US5820788A (en) Electroconductive antistatic polymers containing carbonaceous fibers
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
JPH0350792B2 (en)
JP3534841B2 (en) Conductive adhesive composition and conductive adhesive tape using the same
JPH07286103A (en) Masterbatch pellet of electrically conductive resin and product of electrically conductive thermoplastic resin
JP4456916B2 (en) Low-contamination injection molding
JP2005508073A (en) PTC conductive polymer composition
JP4789312B2 (en) PCB cassette
JPH09255872A (en) Antistatic resin composition
JPH05226092A (en) Electrostatic diffusion resin complex
Narkis et al. Innovative ESD thermoplastic composites structured through melt flow processing
JPS608324A (en) Antistatic resin composition
JP3444414B2 (en) Molded products for packaging electronic components
TW502049B (en) Electrically conductive compositions and methods for producing same
JP3669899B2 (en) Electronic component container
EP0289193A1 (en) Pressure responsive electrically conductive materials
JPH0831230A (en) Semiconductor aromatic polysulfone resin composition