JPH0350691A - Character recognizing device - Google Patents
Character recognizing deviceInfo
- Publication number
- JPH0350691A JPH0350691A JP1185539A JP18553989A JPH0350691A JP H0350691 A JPH0350691 A JP H0350691A JP 1185539 A JP1185539 A JP 1185539A JP 18553989 A JP18553989 A JP 18553989A JP H0350691 A JPH0350691 A JP H0350691A
- Authority
- JP
- Japan
- Prior art keywords
- point
- character
- pattern
- code
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 23
- 238000000605 extraction Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
Landscapes
- Character Discrimination (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、新聞、雑誌等の活字、ドツト文字および手書
き文字を読み取り、入力された文字、(ターンをJIS
コード等のコード情報に変換する文字認識装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention reads printed characters, dot characters, and handwritten characters from newspapers, magazines, etc., and converts input characters (turns) into JIS
The present invention relates to a character recognition device that converts into code information such as a code.
従来の技術
近年、文字認識装置がパーソナルコンピュータ等の文字
入力装置として身近に利用されるようになってきた。英
・数字・かな・記号の文字認識装置にはたとえば電子通
信学会論文誌(D)1981年9月には「トップダウン
的手法による手書き英、数、記号、片仮名文字の認識方
式」 (星野、上、光沢、伊藤、上田、櫛波)が発表さ
れている。2. Description of the Related Art In recent years, character recognition devices have come to be commonly used as character input devices for personal computers and the like. Character recognition devices for alphanumeric characters, kana characters, and symbols include, for example, "Recognition method for handwritten English, numbers, symbols, and katakana characters using a top-down method" (Hoshino, Kami, Shina, Ito, Ueda, Kushinami) have been announced.
以下に従来の文字認識装置について、以下、その動作を
説明する。The operation of the conventional character recognition device will be explained below.
まず原文字パターンを平滑化、細線化し芯線パターンを
得る。次にラスク走査して端点と分岐点を検出し、端点
とそれに結合された端点または分岐点までの長さ(スト
ローク)がしきい値より短い場合当該ストロークを芯線
パターンから除去する。再度ラスク走査し端点を検出す
ると端点を始点として端点または分岐点に出会うまでス
トロークの追跡を続ける。途中で芯線が曲がっている場
合は屈曲点を与える。次に始点から端点または分岐点ま
でのストロークに方向コード列を与える。First, the original character pattern is smoothed and thinned to obtain a core pattern. Next, rask scanning is performed to detect end points and branch points, and if the length (stroke) between the end point and the end point or branch point connected thereto is shorter than a threshold value, the stroke is removed from the skeleton pattern. When the rask is scanned again and an end point is detected, the stroke is continued from the end point as the starting point until it encounters an end point or a branch point. If the core wire is bent in the middle, give a bending point. Next, a direction code string is given to the stroke from the starting point to the end point or branch point.
以上から得られたストロークの方向コード列、端点、屈
曲点、分岐点を検出順に並べて特徴を得る。Characteristics are obtained by arranging the stroke direction code sequences, end points, bending points, and branching points obtained from the above in the order of detection.
次に当該特徴を辞書に格納された標準パターン特徴と比
較して候補カテゴリを決定する。The feature is then compared with standard pattern features stored in a dictionary to determine a candidate category.
最後に候補カテゴリから組み合わされた対カテゴリを区
別する特徴としきい値を用いた決定木によって、一方を
消去する処理をトーナメント式に行い、最後に残ったカ
テゴリを認識結果とする。Finally, using a decision tree that uses features and thresholds to distinguish the paired categories combined from the candidate categories, one is eliminated in a tournament style, and the remaining category is taken as the recognition result.
発明が解決しようとする課題
しかしながら上記の従来の構成では、「b」やrdJの
ような文字では、分類で用いる特徴が同一になることが
あるために、認識することが難しく、詳細分類で認識せ
ざるを得なかった。このように分類能力が低いために、
詳細分類用の辞書が複雑になり、辞書作成に対する負担
が増加するという問題点を有していた。Problems to be Solved by the Invention However, with the above conventional configuration, it is difficult to recognize characters such as "b" or rdJ because the characteristics used in classification may be the same, and it is difficult to recognize characters in detailed classification. I had no choice but to do it. Due to this low classification ability,
The problem is that the dictionary for detailed classification becomes complicated and the burden of creating the dictionary increases.
課題を解決するための手段
本発明は、上記問題点を解決するため、原文字パターン
を細線化して得られた芯線パターンからストロークの方
向コード列、端点、屈曲点、分岐点を検出順に並べた特
徴だけでなく、分岐点から延びる3本の芯線の方向の組
合せを特徴として認識を行うものである。Means for Solving the Problems In order to solve the above problems, the present invention arranges stroke direction code strings, end points, bending points, and branching points in the order of detection from a core line pattern obtained by thinning an original character pattern. Recognition is performed using not only the features but also the combination of the directions of the three core lines extending from the branch point.
作用
本発明は上記した構成により、分岐点から延びる3本の
芯線の方向の組合せを抽出するから、bやdのような接
続情報が等しい文字でも容易に認識できる。Effects Since the present invention extracts combinations of directions of three core lines extending from a branch point with the above-described configuration, even characters having the same connection information, such as b and d, can be easily recognized.
実施例
第1図は本発明の一実施例における文字認識装置の機能
ブロック図を示すものである。第1図において1は画像
データを読み取るスキャナ等で構成された画像入力部、
2は画像入力部1で読み取られた画像から文字を切り出
す文字切り出し部、3は文字切り出し部2で切り出され
た原文字パターンから特徴を抽出する特徴抽出部、4は
特徴の組み合わせと対応する文字コードとを対として記
憶した辞書、5は特徴抽出部3で抽出された特徴に対応
する文字コードを辞書4から検索する文字認識部、6は
表示部である。Embodiment FIG. 1 shows a functional block diagram of a character recognition device in an embodiment of the present invention. In FIG. 1, 1 is an image input unit composed of a scanner etc. that reads image data;
2 is a character extraction unit that extracts characters from the image read by the image input unit 1, 3 is a feature extraction unit that extracts features from the original character pattern extracted by the character extraction unit 2, and 4 is a character that corresponds to a combination of features. 5 is a character recognition unit that searches the dictionary 4 for a character code corresponding to the feature extracted by the feature extraction unit 3; 6 is a display unit.
第2図は本実施例の文字認識装置の構成を示すブロック
図である。ここで21は文字パターンを読み取るスキャ
ナで読み取った文字パターンをビットデータにして出力
する。22はRAMでスキャナ21からのビットデータ
を記憶する文字パターン領域23、この文字パターン領
域23内の文字パターンを解析して得られる特徴領域2
4、特徴領域24に記憶された特徴から決定される文字
コード領域25、及び処理で使用するレジスタ領域26
を有している。27はROMで特徴とこれに対応する文
字コードを記憶した辞書領域28、及び第3図に示すフ
ローチャートに従った制御プログラムを記憶したプログ
ラム記憶領域29を有する。30はプログラム記憶領域
29に記憶された制御プログラムに従って処理を行う処
理回路である。31はデータを入力するキーボードであ
り、32は文字コード領域25に記憶された文字コード
に対応する文字を表示する表示部である。FIG. 2 is a block diagram showing the configuration of the character recognition device of this embodiment. Here, 21 outputs the character pattern read by a scanner that reads the character pattern as bit data. Reference numeral 22 denotes a character pattern area 23 in RAM that stores bit data from the scanner 21, and a characteristic area 2 obtained by analyzing the character pattern within this character pattern area 23.
4. Character code area 25 determined from the features stored in the feature area 24 and register area 26 used in processing
have. Reference numeral 27 is a ROM, and has a dictionary area 28 that stores features and character codes corresponding thereto, and a program storage area 29 that stores a control program according to the flowchart shown in FIG. 30 is a processing circuit that performs processing according to a control program stored in the program storage area 29. 31 is a keyboard for inputting data, and 32 is a display section for displaying characters corresponding to the character codes stored in the character code area 25.
以上のように構成された本実施例の文字認識装置につい
て、第3図のフローチャートに従って説明する。ステッ
プS1で文字パターンを細線化し、芯線パターンを得る
。ステップS2で当該芯線パターンを左上から右下に向
かってラスク走査し、走査の着目画素(走査画素)が芯
線パターンと重なった時に走査を停止し、ステップS3
に進む。ステップS3では芯線パターン上に重なった走
査画素が端点か否かを判定する。ここで、走査画素が黒
画素でかつ当該黒画素に隣接する8画素のうち1.3.
4画素が黒画素の点をそれぞれ端点、分岐点、交点とよ
ぶ。走査画素が端点てない場合ステップS11、端点の
場合ステップS4にとぶ。ステップsllでは芯線パタ
ーンの走査が終了したか否かを判断し、終了していない
場合ステップs2に戻るが、終了した場合は特徴抽出処
理を終了する。次にステップS4では線分追跡を行う。The character recognition device of this embodiment configured as described above will be explained according to the flowchart shown in FIG. In step S1, the character pattern is thinned to obtain a core pattern. In step S2, the skeleton pattern is scanned from the upper left to the lower right, and when the pixel of interest in scanning (scanning pixel) overlaps the skeleton pattern, scanning is stopped, and step S3
Proceed to. In step S3, it is determined whether the scanning pixels overlapping the skeleton pattern are end points. Here, among the eight pixels where the scanning pixel is a black pixel and is adjacent to the black pixel, 1.3.
A point where four pixels are black is called an end point, a branch point, and an intersection point, respectively. If the scanned pixel is not an end point, the process jumps to step S11, and if it is an end point, the process jumps to step S4. In step sll, it is determined whether or not the scanning of the skeleton pattern has been completed. If it has not been completed, the process returns to step s2, but if it has been completed, the feature extraction process is ended. Next, in step S4, line segment tracing is performed.
すなわち端点を始点とし、始点からのびる芯線に沿って
1画素だけ進む。1画素進んだ点を着目点とする。次に
ステップS5に進み、始点から着目点までの最短距離と
芯線の長さとを比較して、屈曲点かどうかを判断する。That is, the end point is the starting point, and the process proceeds by one pixel along the skeleton extending from the starting point. The point advanced by one pixel is set as the point of interest. Next, the process proceeds to step S5, where the shortest distance from the starting point to the point of interest is compared with the length of the core line to determine whether it is a bending point.
両方の差がしきい値以上の場合屈曲点を与えるためにス
テップs12に、未満の場合ステップS6にとぶ。ステ
ップs12では屈曲点の数と位置をレジスタ領域26内
に格納し、ステップS6に進む。S6では着目点が端点
か否かを判断する。端点の場合はステップs13に進み
、端点てない場合はステップs7に進む。ステップS7
では着目点が交点か否かを判断し、交点の場合はステッ
プsloに、それ以外の場合はステップS8に進む。ス
テップs13では始点から端点までの芯線の長さを計算
し、長さがしきい値未満の場合”ヒゲというノイズとみ
なし、特徴を抽出せずにステップS2に戻り走査を再開
するが、しきい値以上の場合はステップs18に進む。If the difference between both is greater than or equal to the threshold, the process goes to step s12 to give an inflection point, and if it is less than the threshold, the process goes to step S6. In step s12, the number and position of bending points are stored in the register area 26, and the process proceeds to step S6. In S6, it is determined whether the point of interest is an end point. If it is an end point, the process advances to step s13; if it is not an end point, the process advances to step s7. Step S7
Then, it is determined whether or not the point of interest is an intersection. If it is an intersection, the process proceeds to step slo; otherwise, the process proceeds to step S8. In step s13, the length of the skeleton from the starting point to the end point is calculated, and if the length is less than the threshold value, it is regarded as noise called "whiskers", and the process returns to step S2 without extracting any features and resumes scanning, but the length is longer than the threshold value. In this case, the process advances to step s18.
ステップslOでは始点から交点までの芯線の長さを計
算し、長さがしきい値未満の場合ステップS2に戻り、
それ以外の場合はステップs14に進む。ステップS8
では着目点が分岐点か否かを判断する。分岐点の場合は
ステップS9に進み、それ以外の場合はステップ$2に
戻る。ステップs9では始点から分岐点までの芯線の長
さを計算し、長さがしきい値未満の場合“ヒゲとみなし
、特徴を抽出せずにステップs2に戻り走査を再開する
が、しきい値以上の場合はステップs15に進む。ステ
ップs15では始点から分岐点までのストロークに方向
コードを付与する。次にステップs16では分岐点を始
点とし3つの方向に一定画素だけ線分追跡する。In step slO, the length of the skeleton from the starting point to the intersection point is calculated, and if the length is less than the threshold, the process returns to step S2,
In other cases, the process proceeds to step s14. Step S8
Then, it is determined whether the point of interest is a branching point or not. If it is a branch point, the process advances to step S9; otherwise, the process returns to step $2. In step s9, the length of the skeleton from the starting point to the branching point is calculated, and if the length is less than the threshold value, it is regarded as a whisker, and the process returns to step s2 without extracting any features and the scanning is restarted. If so, the process proceeds to step s15. In step s15, a direction code is assigned to the stroke from the starting point to the branch point. Next, in step s16, a line segment is traced by a fixed number of pixels in three directions with the branch point as the starting point.
すなわち分岐点を始点とし、始点から延びる3方向の芯
線に沿って各々一定画素だけ進め、3つの抽出点を得る
。次にステップs17で分岐点から3つの抽出点への向
きをそれぞれ計算し、方向コードを付与し、ステップs
2に戻る。ステップS14.ステップs18ではそれぞ
れ始点から交点、始点から端点までのストロークに方向
コードを付与し、その後ステップs2に戻る。That is, the branch point is the starting point, and three extraction points are obtained by moving forward by a certain number of pixels along the skeleton lines in three directions extending from the starting point. Next, in step s17, the directions from the branch point to the three extraction points are calculated, a direction code is assigned, and step s
Return to 2. Step S14. In step s18, direction codes are assigned to the strokes from the starting point to the intersection point and from the starting point to the end point, respectively, and then the process returns to step s2.
認識例題文字rbJを例に、以下その動作を説明する。The operation will be explained below using the recognition example character rbJ as an example.
まず、画像入力部1で、認識対象文字パターンを含む画
像を2値画像として入力して文字パターン領域23に記
憶する。First, the image input unit 1 inputs an image including a character pattern to be recognized as a binary image and stores it in the character pattern area 23 .
次に、文字切り出し部2で、入力され文字パターン領域
23に記憶された画像から認識対象文字パターンを切り
出す。入力した文字パターンの文字部分、背景部分の画
素値はそれぞれ1.0である。また、文字部分、背景部
分を構成する画素をそれぞれ黒画素、白画素とよぶ。Next, the character cutting section 2 cuts out a character pattern to be recognized from the input image stored in the character pattern area 23. The pixel values of the character part and the background part of the input character pattern are each 1.0. Furthermore, the pixels forming the character part and the background part are called black pixels and white pixels, respectively.
次に、特徴抽出部3で、細線化により文字パターンを芯
線パターンに変換する。認識例題文字パターンrbJの
芯線パターンを第4図(a)に示す。次に芯線パターン
を走査し検出したa点を始点として線分追跡を行い、分
岐点す点に出会うまでの各々の芯線上の画素について、
屈曲点が存在するか否か判断する。つまり始点から当該
画素までの芯線の長さと最短距離の差がしきい値以上の
とき始点から当該画素までの芯線上の中点を屈曲点とし
、始点から屈曲点へのベクトルの向きを8方向コードで
付与する。a点−す点の場合では差がしきい値未満のた
め屈曲点はない。またa点−b点間の長さがしきい値以
上なので“ヒゲではないから、第4図(b)のようにa
点からb点への線分の向きを方向コードで与える。0点
−d点のようにしきい値未満の場合は除去する。b点を
始点として3方向に一定画素だけ線分追跡して得られた
点をe、f、gとする(第4図(C))。Next, the feature extraction unit 3 converts the character pattern into a skeleton pattern by thinning. The skeleton pattern of the recognition example character pattern rbJ is shown in FIG. 4(a). Next, the skeleton pattern is scanned, the detected point a is used as the starting point, and line segment tracing is performed, and for each pixel on each skeleton until the branch point is encountered,
Determine whether an inflection point exists. In other words, when the difference between the length of the skeleton and the shortest distance from the starting point to the relevant pixel is greater than the threshold, the midpoint on the skeleton from the starting point to the relevant pixel is set as the bending point, and the direction of the vector from the starting point to the bending point is set in 8 directions. Grant with code. In the case of point a-s, there is no bending point because the difference is less than the threshold value. Also, since the length between point a and point b is greater than the threshold value, it is not a beard, so as shown in Figure 4 (b),
Give the direction of the line segment from point to point b using a direction code. If it is less than the threshold value, such as point 0-d, it is removed. Points obtained by tracing a line segment by a certain number of pixels in three directions starting from point b are designated as e, f, and g (FIG. 4(C)).
b点からe点、1点1g点への向きを計算し、方向コー
ド1,3.7が得られる。方向コードを第4図(d)に
示す。以上より端点と分岐点を結ぶストロークが存在し
、かつそのストローク方向は7の方向コードで、かつ分
岐点での線分方向コードは137であることがわかる。The direction from point b to point e and point 1 to point 1g is calculated, and the direction code 1, 3.7 is obtained. The direction code is shown in FIG. 4(d). From the above, it can be seen that there is a stroke connecting the end point and the branch point, that the stroke direction has a direction code of 7, and that the line segment direction code at the branch point is 137.
最後に、文字認識部9で特徴領域24に格納された端点
と端点、端点と分岐点、及び端点と交点を結ぶストロー
クの本数と方向コード、それと分岐点での線分の方向コ
ードに対応する標準パターン特徴を持つ文字を辞書領域
28から検索し、対応する文字コードを文字コード領域
25に格納し、表示部32に表示する。Finally, the character recognition unit 9 corresponds to the number and direction code of strokes connecting end points and end points, end points and branching points, and end points and intersections stored in the feature area 24, and the direction code of the line segment at the branching point. Characters having standard pattern characteristics are searched from the dictionary area 28, the corresponding character code is stored in the character code area 25, and displayed on the display section 32.
以上のように本実施例によれば、分岐点から延びる3本
の芯線の方向を特徴としたことにより従来の特徴だけで
は区別できなかった文字でも効果的に認識することがで
きる。As described above, according to this embodiment, since the directions of the three core lines extending from the branch point are featured, even characters that could not be distinguished using conventional features alone can be effectively recognized.
発明の効果
本発明は、分岐点から延びる複数の芯線の方向を特徴と
したことにより従来の特徴だけでは区別できなかった文
字でも効果的に認識することができる優れた文字認識装
置を実現できるものである。Effects of the Invention The present invention is characterized by the direction of a plurality of core lines extending from a branch point, thereby realizing an excellent character recognition device that can effectively recognize characters that could not be distinguished using conventional characteristics alone. It is.
第1図は本発明の一実施例における文字認識装置の機能
ブロック図、第2図はブロック図、第3図はフローチャ
ート、第4図は本発明の説明図である。
1・・・・・・画像入力部、2・・・・・・文字切り出
し部、3・・・・・・特徴抽出部、4・・・・・・辞書
、5・・・・・・認識部、6・・・・・・表示部。FIG. 1 is a functional block diagram of a character recognition device according to an embodiment of the present invention, FIG. 2 is a block diagram, FIG. 3 is a flowchart, and FIG. 4 is an explanatory diagram of the present invention. 1... Image input section, 2... Character extraction section, 3... Feature extraction section, 4... Dictionary, 5... Recognition Section, 6...display section.
Claims (1)
す文字切り出し部と、前記文字切り出し部で切り出され
た文字パターンから端点、分岐点、交点を検出する特徴
点検出手段と、検出されたある分岐点から他の端点、分
岐点或いは交点までの複数の線分の各々の方向を検出す
る検出手段と、前記検出手段によって検出されたある分
岐点における線分の方向の組み合わせによって認識対象
文字パターンを認識する文字識別手段とを有することを
特徴とする文字認識装置。a character cutting section that cuts out a character pattern to be recognized from an input image; a feature point detection means that detects an end point, a branch point, or an intersection point from the character pattern cut out by the character cutting section; and a certain detected branch point. A character pattern to be recognized is recognized by a combination of a detection means for detecting the direction of each of a plurality of line segments from to another end point, branch point or intersection, and the direction of the line segment at a certain branch point detected by the detection means. What is claimed is: 1. A character recognition device comprising character recognition means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1185539A JPH0350691A (en) | 1989-07-18 | 1989-07-18 | Character recognizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1185539A JPH0350691A (en) | 1989-07-18 | 1989-07-18 | Character recognizing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0350691A true JPH0350691A (en) | 1991-03-05 |
Family
ID=16172577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1185539A Pending JPH0350691A (en) | 1989-07-18 | 1989-07-18 | Character recognizing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0350691A (en) |
-
1989
- 1989-07-18 JP JP1185539A patent/JPH0350691A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5907631A (en) | Document image processing method and system having function of determining body text region reading order | |
EP0381773B1 (en) | Character recognition apparatus | |
Xiao et al. | Knowledge-based English cursive script segmentation | |
JPH0350691A (en) | Character recognizing device | |
JP3276555B2 (en) | Format recognition device and character reader | |
JPH08161432A (en) | Method and device for segmenting character | |
JPH0452783A (en) | Graphic reader | |
JP3710164B2 (en) | Image processing apparatus and method | |
KR100332752B1 (en) | Method for recognizing character | |
JP2677271B2 (en) | Character recognition device | |
JP2000207491A (en) | Reading method and device for character string | |
JPS62281082A (en) | Character recognizing device | |
JP2509992B2 (en) | Separation character integration method | |
JP2578767B2 (en) | Image processing method | |
JPS58125183A (en) | Method for displaying unrecognizable character in optical character reader | |
JPH0877293A (en) | Character recognition device and generating method for dictionary for character recognition | |
JP2953162B2 (en) | Character recognition device | |
JPH0830717A (en) | Character recognition method and device therefor | |
JPH09223186A (en) | On-line character recognizing device | |
JPH0353392A (en) | Character recognizing device | |
JPH0792819B2 (en) | Pattern cutting and recognition method and its system | |
JPS61220081A (en) | Segmentation and recognition system for pattern | |
JPH04216171A (en) | Method for extracting contour vector | |
JPH03189888A (en) | Kind decision device for character string in drawing reader | |
JPH08263591A (en) | Device and method for character recognition |