JPH0350573B2 - - Google Patents
Info
- Publication number
- JPH0350573B2 JPH0350573B2 JP7467383A JP7467383A JPH0350573B2 JP H0350573 B2 JPH0350573 B2 JP H0350573B2 JP 7467383 A JP7467383 A JP 7467383A JP 7467383 A JP7467383 A JP 7467383A JP H0350573 B2 JPH0350573 B2 JP H0350573B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pump
- flow rate
- semipermeable membrane
- rotation speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 51
- 239000007788 liquid Substances 0.000 claims description 40
- 230000003204 osmotic effect Effects 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 239000013535 sea water Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 239000013505 freshwater Substances 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000011084 recovery Methods 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】
本発明は半透膜を利用した物質の分離操作に於
ける流量又は圧力制御に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to flow rate or pressure control in substance separation operations using semipermeable membranes.
従来この種装置の主要部は第1図のフローシー
トに示すように構成されている。第1図は海水淡
水化の例を示すもので図示されない取水装置から
取水して前処理された海水はポンプ1に吸込ま
れ、ポンプ1で昇圧して吐出し、圧力検出器2a
により制御される圧力調整弁2を通り、流量計3
aの検出部3′、半透膜4の手前の圧力検出器2
aの圧力測定点2′をとおり、半透膜4の片側に
入り、浸透圧に抗して淡水を透過して流量計5を
介して水槽6に送り出し、濃厚化した海水は水車
例えばペルトン水車7へ供給される。ペルトン水
車7の入口ノズル7′は流量計3aにより開度を
制御される。即ち、ノズル7′と流量計3aによ
り流量制御弁3を構成する。水車7により得られ
るエネルギーはポンプ駆動モータ8を助勢するた
めに用いられる。 Conventionally, the main parts of this type of apparatus are constructed as shown in the flow sheet of FIG. FIG. 1 shows an example of seawater desalination. Seawater is taken from a water intake device (not shown) and pretreated. The seawater is sucked into a pump 1, pressurized by the pump 1, and discharged.
through a pressure regulating valve 2 controlled by a flow meter 3.
Detection part 3' of a, pressure detector 2 in front of semipermeable membrane 4
It passes through the pressure measuring point 2' in a, enters one side of the semipermeable membrane 4, resists the osmotic pressure, passes through the fresh water, and is sent to the water tank 6 via the flowmeter 5. The concentrated seawater is passed through a water wheel, such as a Pelton water wheel. 7. The opening degree of the inlet nozzle 7' of the Pelton turbine 7 is controlled by a flow meter 3a. That is, the flow control valve 3 is constituted by the nozzle 7' and the flow meter 3a. The energy obtained by the water wheel 7 is used to assist the pump drive motor 8.
以上の構成においてポンプ1の吐出圧P0は通
常濃度の海水の浸透圧約25Kg/cm2に対して50Kg/
cm2であり、ポンプ1の吐出量Q0の内半透膜では
20〜40%が逆浸透して淡水化される。 In the above configuration, the discharge pressure P 0 of the pump 1 is 50 kg/cm 2 compared to the osmotic pressure of seawater at a normal concentration of approximately 25 kg/cm 2 .
cm 2 , and for the inner semipermeable membrane of pump 1 with a discharge volume of Q 0
20-40% is desalinated by reverse osmosis.
今半透膜4からの淡水出力を圧力P1、流量Q1、
濃度C1とし淡水の流量Q1を調整する装置の流量
調整は次の二通りの方法で行われる。 Now, the fresh water output from the semipermeable membrane 4 is expressed as pressure P 1 , flow rate Q 1 ,
The flow rate adjustment of the device that adjusts the concentration C 1 and the fresh water flow rate Q 1 is performed in the following two ways.
(1) 狭い範囲の流量Q1の調整
ポンプ1の吐出量Q0を一定にしておいて圧
力測定点2′の圧力を調整するように圧力調整
弁2を操作して半透膜入口圧力P′0を変化させ、
圧力P′0を増大させると淡水出力の流量Q1は増
大し、圧力P′0を減少させると淡水出力の流量
Q1は減少する。なんとなれば、今
AM 半透膜の面積
K 半透膜の種類と温度により定まる定数
PM 半透膜の海水側圧力
πM 供給液(海水)の浸透圧
π1 希薄液(淡水)の浸透圧
とすると
Q1=AMK{(PM−P1)−(πM−π1)} (1)
で定まる。P1、π1、はほぼ一定でありせまい範
囲ではπMはほぼ一定であるから淡水の流量Q1
は半透膜の加圧側の圧力PMにほぼ比例し、該
圧力PMは圧力側定点2′の半透膜入口圧力P′0
と比例するからである。(1) Adjusting the flow rate Q 1 in a narrow range Keeping the discharge volume Q 0 of the pump 1 constant, operate the pressure regulating valve 2 to adjust the pressure at the pressure measurement point 2', and adjust the semipermeable membrane inlet pressure P. ′ 0 ,
Increasing the pressure P′ 0 increases the freshwater output flow rate Q 1 , and decreasing pressure P′ 0 increases the freshwater output flow rate Q 1
Q 1 decreases. Now A M Area of the semipermeable membrane K Constant determined by the type of semipermeable membrane and temperature P M Pressure on the seawater side of the semipermeable membrane π M Osmotic pressure of the feed liquid (seawater) 1 1 of the dilute liquid (fresh water) In terms of osmotic pressure, it is determined by Q 1 =A M K {(P M −P 1 )−(π M −π 1 )} (1). P 1 , π 1 , are almost constant, and π M is almost constant in a narrow range, so the freshwater flow rate Q 1
is approximately proportional to the pressure P M on the pressure side of the semipermeable membrane, and this pressure P M is equal to the semipermeable membrane inlet pressure P' 0 at the fixed point 2' on the pressure side.
This is because it is proportional to
(2) 広い範囲の流量調整
例えば淡水出力の流量Q1を大きくしたい場
合は
流量制御弁3を固定して検出部3′の流量
従つてQ0を固定する。(2) Adjusting the flow rate over a wide range For example, if you want to increase the flow rate Q 1 of the fresh water output, fix the flow rate control valve 3 and fix the flow rate of the detection section 3', and hence Q 0 .
圧力調整弁2によつて半透膜入口圧力P′0
を高くし式(1)に基き淡水出力の流量Q1を増
大させる。 Semipermeable membrane inlet pressure P′ 0 by pressure regulating valve 2
and increase the freshwater output flow rate Q 1 based on equation (1).
淡水の回収率Q1/Q0が海水の組成、半透
膜4の性状から定まる許容値以上であれば流
量制御弁3を開いて流量Q0を増して再度圧
力調整弁2によつて半透膜入口圧力P′0を高
くし流量Q1を増大させる。そして回収率
Q1/Q2が許容値以内であれば操作を完了す
る。 If the freshwater recovery rate Q 1 /Q 0 exceeds the allowable value determined from the composition of seawater and the properties of the semipermeable membrane 4, open the flow rate control valve 3 to increase the flow rate Q 0 and then use the pressure regulating valve 2 to reduce the The membrane inlet pressure P′ 0 is increased and the flow rate Q 1 is increased. and recovery rate
If Q 1 /Q 2 is within the allowable value, the operation is completed.
以上のような従来例には次のような欠点があ
る。 The conventional example described above has the following drawbacks.
(1) ポンプ吐出圧力をバルブを用いて膜入口圧力
に迄減じている為過大な動力が必要であつた。(1) Excessive power was required because the pump discharge pressure was reduced to the membrane inlet pressure using a valve.
(2) 狭い範囲の流量調整は圧力調整弁のみで可能
であるが広範囲の流量調整は圧力調整弁、流量
調整弁を交互に操作する必要があり運転操作性
が悪かつた。(2) Flow rate adjustment in a narrow range is possible only with the pressure regulating valve, but wide range flow rate regulation requires alternate operation of the pressure regulating valve and flow rate regulating valve, resulting in poor operability.
(3) 流量計、圧力検出器、圧力調整弁が必要であ
り、特に小容量設備に於いては計装品の価格が
非常に大きな割合を占めていた。(3) Flowmeters, pressure detectors, and pressure regulating valves were required, and the cost of instrumentation components accounted for a large portion of the price, especially in small-capacity equipment.
本発明は膜分離装置における上記従来の欠点を
除去して所要動力が少く操作性のよい簡易安価な
流量制御装置を提供することを目的とする。 An object of the present invention is to eliminate the above-mentioned drawbacks of the conventional membrane separation apparatus and provide a simple and inexpensive flow control apparatus that requires less power and has good operability.
本発明はポンプの各回転数に於ける性能曲線及
び溶質の濃度と浸透圧の関係から求まる系内圧力
と希薄(又は濃縮)溶液流量との関係式を用いて
ポンプ回転数制御手段と圧力保持手段の操作を行
ない最も所要動作の少ない運転点の選定を簡
単な操作で可能としたものである。 The present invention utilizes a performance curve at each rotation speed of the pump and a relational expression between the system pressure and the flow rate of a dilute (or concentrated) solution, which is determined from the relationship between the solute concentration and osmotic pressure. By operating the means, it is possible to select the operating point that requires the least number of operations with a simple operation.
以下、本発明の実施例を図面に従つて説明す
る。第2図は制御ブロツク図を含むフローシート
である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a flow sheet including a control block diagram.
図示されない海水の取水ポンプにて取水された
海水は前処理工程を経て遠心ポンプ(以下単にポ
ンプと称す)1に吸込まれる。ポンプ1にて昇圧
し吐出された海水は圧力P0、流量Q0、濃度C0で
ある。この状態の海水は半透膜4に浸透圧以上の
逆浸透圧を加えて圧力P1、流量Q1、濃度C1の淡
水を出力し、圧力P2、流量Q2、濃度C2の濃縮化
された海水はペルトン水車7に供給されエネルギ
ーを回収し、モータ8を助勢する。 Seawater taken by a seawater intake pump (not shown) is sucked into a centrifugal pump (hereinafter simply referred to as pump) 1 through a pretreatment process. Seawater pressurized and discharged by the pump 1 has a pressure P 0 , a flow rate Q 0 , and a concentration C 0 . Seawater in this state is subjected to reverse osmosis pressure higher than osmotic pressure to the semipermeable membrane 4, which outputs fresh water with pressure P 1 , flow rate Q 1 , and concentration C 1 , and concentrates it with pressure P 2 , flow rate Q 2 , and concentration C 2 The converted seawater is supplied to the Pelton turbine 7, recovers energy, and assists the motor 8.
制御装置9はその出力端が弁駆動装置3bと弁
駆動装置3bによりストロークを調節される入口
ノズル7′よりなる流量制御弁3の制御入力端に
結ばれている。 The control device 9 has its output end connected to the control input end of the flow control valve 3, which comprises a valve drive device 3b and an inlet nozzle 7' whose stroke is adjusted by the valve drive device 3b.
制御装置9の内容をのべる。 The contents of the control device 9 will be described.
半透膜の希薄側の流量Q1は Q1=AMK△P ……(2) ただし AM 半透膜の面積 K 膜の種類と温度により定まる係数 △P≒PM−πM ……(2′) PM 半透膜近傍の供給海水の圧力 πM 供給海水の浸透圧 である。 The flow rate Q 1 on the dilute side of the semipermeable membrane is Q 1 = A M K△P ……(2) However, the area K of the A M semipermeable membrane is the coefficient determined by the type of membrane and temperature △P≒P M −π M … ...(2′) P Pressure of the supplied seawater near the semipermeable membrane π M is the osmotic pressure of the supplied seawater.
制御装置9では次の演算が行われる。 The control device 9 performs the following calculations.
(1) 希薄液流量Q1が設定のため入力される。(1) Diluent flow rate Q 1 is input for setting.
(2) ポンプ1の回転数Nが仮定される。ブロツク
11においてポンプ1の各回転数に対応するQ
−H曲線の仮定した回転数N、回転数Nに対応
するQ−H曲線21に従つてポンプ1の吐出圧
力P0が求まる。(2) The rotational speed N of the pump 1 is assumed. In block 11, Q corresponding to each rotational speed of pump 1 is
The discharge pressure P 0 of the pump 1 is determined according to the QH curve 21 corresponding to the assumed rotational speed N and the rotational speed N of the −H curve.
制御装置9のブロツク11は縦軸に水頭を横
軸に流量を表わしてある。図において曲線21
はポンプ1の性能曲線(Q−H曲線)を示し、
曲線22は入口ノズル7′における水車7への
入力特性曲線を示し、曲線23はポンプ1の性
能曲線21に対応する半透膜4の希薄液流量
Q1を示している。 Block 11 of the control device 9 shows the water head on the vertical axis and the flow rate on the horizontal axis. In the figure, curve 21
shows the performance curve (Q-H curve) of pump 1,
Curve 22 shows the input characteristic curve to the water turbine 7 at the inlet nozzle 7', and curve 23 shows the dilute flow rate of the semipermeable membrane 4 corresponding to the performance curve 21 of the pump 1.
Shows Q 1 .
ポンプ吐出圧力P0を仮定するとポンプ吐出
量Q0が求まる。 Assuming pump discharge pressure P 0 , pump discharge amount Q 0 can be found.
(3) 濃縮液流量Q2=Q0−Q1であるから項目(2)に
おいて求めたQ0から設定値のQ1を減ずると求
まる。(3) Concentrate flow rate Q 2 = Q 0 - Q 1 , so it can be found by subtracting the set value Q 1 from Q 0 obtained in item (2).
(4) ブロツク12は縦軸に浸透圧πを横軸に溶液
の濃度CMを示してある。曲線24は溶質濃度
と浸透圧の関係を示す。半透膜4の供給側の液
濃度CMは近似的にCM≒(C0+C2)/2で定ま
る。C0、C2は回収率Q1/Q0が著しく変化しな
い限り、上記近似式でよい。従つて又C0、C2
は特に装置の通常運転中は定数とみなすことが
できる。この関係から浸透圧πMが求まる。(4) Block 12 shows the osmotic pressure π on the vertical axis and the concentration C M of the solution on the horizontal axis. Curve 24 shows the relationship between solute concentration and osmotic pressure. The liquid concentration C M on the supply side of the semipermeable membrane 4 is approximately determined by C M ≈(C 0 +C 2 )/2. As long as the recovery rate Q 1 /Q 0 does not change significantly, the above approximate formula may be used for C 0 and C 2 . Therefore, C 0 and C 2
can be considered a constant, especially during normal operation of the device. From this relationship, the osmotic pressure π M can be determined.
(5) 供給海水が温度変化の著しいときには、供給
側配管中の供給液温度を検出する温度検出器1
4を設け、
K=K0(DW/T)
ただし
K0 膜の種類により定まる常数
DW 膜内の水の拡散係数
T 給液の温度
により係数Kを算出する。給液の温度変化が小
さい場合には定数としてよい。TとDW/Tの
関係はブロツク13に曲線28で示される。(5) When the temperature of the supplied seawater changes significantly, a temperature detector 1 is installed to detect the temperature of the supplied liquid in the supply side piping.
4, K=K 0 (D W /T) where K 0 is a constant determined by the type of membrane D W is the diffusion coefficient of water in the membrane T The coefficient K is calculated based on the temperature of the supplied liquid. If the temperature change of the supplied liquid is small, it may be set as a constant. The relationship between T and D W /T is shown in block 13 by curve 28.
(6) ブロツク11,12は縦軸が同スケールで示
してあり、半透膜4の供給側圧力PMは項目(2)
で仮定したポンプ1の吐出圧力P0から半透膜
4までの供給側配管の流体の管路による損失ヘ
ツドPL1を減じたものである。半透膜4の希薄
側圧力P1はほぼ一定であり、又希薄液濃度は
一定とみてよいから希薄液の浸透圧π1は一定と
してよい。そこで逆浸透圧
△P=(PM−P1)−(πM−π1) ……(3)
を算求する。この関係はブロツク11,12間
に取り出して示されている。(6) The vertical axes of blocks 11 and 12 are shown on the same scale, and the supply side pressure P M of the semipermeable membrane 4 is shown in item (2).
It is calculated by subtracting the loss head P L1 due to the fluid conduit of the supply side pipe from the semipermeable membrane 4 to the discharge pressure P 0 of the pump 1 assumed in the above. The pressure P 1 on the dilute side of the semipermeable membrane 4 is almost constant, and the concentration of the dilute solution can be considered to be constant, so the osmotic pressure π 1 of the dilute solution can be assumed to be constant. Therefore, reverse osmotic pressure ΔP=(P M −P 1 )−(π M −π 1 ) (3) is calculated. This relationship is illustrated between blocks 11 and 12.
(7) ブロツク15はブロツク11,12と縦軸の
スケールを等しくして縦軸に浸透圧πを越える
圧力と横軸に希薄液流量Q1を示している。線
25は
Q1=AMK△P ……(2)
を表わし、半透膜4の希薄側流量が浸透圧を越
える圧力△Pにより変化する希薄液流量Q1が
直線比例で示される。式(2)により計算したQ1
をQ1CALCとする。(7) Block 15 has the same vertical axis scale as blocks 11 and 12, and the vertical axis shows the pressure exceeding the osmotic pressure π, and the horizontal axis shows the dilute solution flow rate Q1 . The line 25 represents Q 1 =A M KΔP (2), and the dilute fluid flow rate Q 1 that changes with the pressure ΔP at which the dilute side flow rate of the semipermeable membrane 4 exceeds the osmotic pressure is shown in linear proportion. Q 1 calculated by formula (2)
Let Q 1CALC be.
(8) 項目(1)で設定したQ1とQ1CALCを比較する。そ
してこの誤差が大きいときは項目(2)に戻りポン
プ吐出圧P0を再仮定して項目(2)〜(8)をループ
にしてくりかえし、Q1とQ1CALCの誤差が小にな
るまでくり返す。(8) Compare Q 1 and Q 1CALC set in item (1). If this error is large, return to item (2), reassume pump discharge pressure P 0 , and repeat items (2) to (8) in a loop until the error between Q 1 and Q 1CALC becomes small. return.
ここでブロツク11で示すように最大の希薄
液流量Q1naxに対応するポンプ1の吐出圧力P01
よりも先に項目(2)で仮定した圧力P0が小さい
範囲でQ1CALC−Q1>0なるときは再仮定のP0を
最初に仮定したP0よりも小さくし、Q1CALC−Q1
<0なるときは再仮定したP0は最初に仮定し
たP0よりも大きくする。 Here, as shown in block 11, the discharge pressure P 01 of pump 1 corresponding to the maximum diluent flow rate Q 1nax
If the pressure P 0 assumed in item (2) before becomes Q 1CALC −Q 1 > 0 in a small range, make the re-assumed P 0 smaller than the initially assumed P 0 and Q 1CALC −Q 1
When <0, the re-assumed P 0 is made larger than the initially assumed P 0 .
最初に項目(2)で仮定したポンプ1の吐出圧力
P0が希薄液流量Q1naxに対応するポンプ1の吐
出圧力P01よりも大きい範囲でQ1CALC−Q1>0
なるときは再仮定のP0を最初に仮定したP0よ
りも大きくし、Q1CALC−Q1<0になるときは再
仮定のP0を最初に仮定したP0よりも小さくな
る。 First, the discharge pressure of pump 1 assumed in item (2)
Q 1CALC −Q 1 > 0 in the range where P 0 is greater than the discharge pressure P 01 of pump 1 corresponding to the dilute liquid flow rate Q 1nax
When Q 1 CALC −Q 1 <0, the re-assumed P 0 is made smaller than the initially assumed P 0 .
以上の制御装置9は希薄液流量Q1を設定す
るとポンプ1の性能曲線が定まつており、かつ
溶液の種類により濃度と浸透圧の関係も定つて
いるのでポンプ1の吐出圧力P0と希薄液流量
Q1の関係は一義的に決定される。従つて上述
した(2)〜(8)の手順は数値表として纒めることに
より省略できる。 In the above control device 9, when the dilute solution flow rate Q 1 is set, the performance curve of the pump 1 is determined, and the relationship between concentration and osmotic pressure is also determined depending on the type of solution, so the discharge pressure P 0 of the pump 1 and dilution liquid flow rate
The relationship in Q 1 is uniquely determined. Therefore, the steps (2) to (8) described above can be omitted by compiling them into a numerical table.
以上によりポンプ吐出圧力P0と希薄液流量
Q1の関係が求まる。この場合にポンプ1の回
転数Nが仮定して一定して計算されている。 From the above, pump discharge pressure P 0 and diluted liquid flow rate
Find the relationship Q1 . In this case, the rotation speed N of the pump 1 is assumed to be constant and calculated.
第3図は第2図におけるブロツク11を取り
出して更に詳説のため回転数、希薄液流量、所
要動作の関係を示すもので、横座標に流量Qを
縦座標にポンプ吐出圧力P0、ポンプ回転数N、
ポンプ所要動作HPを表わして示してある。第
3図Aにおいてポンプ性能曲線(Q−H曲線)
21はポンプの規定回転数NRにおけるもので
あり、21−1は回転数0.8NRのポンプ性能曲
線、21−2は回転数0.9NRのときのポンプ性
能曲線である。ポンプ吐出圧力P0と希薄液流
量Q1の関係を表わす希薄液流量曲線23はポ
ンプ1の回転数が規定回転度NRの場合を示し、
希薄液流量曲線23−1,23−2は夫々ポン
プ1の回転数が0.8NR、0.9NRの場合を示す。
希薄液流量曲線23,23−1,23−2,…
の夫々の最大流量Q1nAXを示す点を結んで希薄
液最大流量曲線29が得られる。31は第1図
のような膜分離装置の制御を行う場合のポンプ
1の回転数が規定回転数NRRにおける圧力調整
弁2による出力特性を示す弁制御特性曲線であ
る。32はQ1MAXを得るためのポンプ1の運転
点のポンプ吐出量P0と吐出量Q0の関係を示す
最大効率制御線である。 Fig. 3 takes out block 11 in Fig. 2 and shows the relationship among rotational speed, diluted liquid flow rate, and required operation for more detailed explanation, with flow rate Q on the abscissa and pump discharge pressure P 0 and pump rotation on the ordinate. number N,
The required operating HP of the pump is shown. In Figure 3A, the pump performance curve (Q-H curve)
21 is the pump performance curve at the specified rotation speed N R , 21-1 is the pump performance curve when the rotation speed is 0.8 N R , and 21-2 is the pump performance curve when the rotation speed is 0.9 N R. The dilute liquid flow rate curve 23 representing the relationship between the pump discharge pressure P 0 and the dilute liquid flow rate Q 1 shows the case where the rotation speed of the pump 1 is a specified rotation speed N R ,
The dilute liquid flow rate curves 23-1 and 23-2 show cases where the rotational speed of the pump 1 is 0.8N R and 0.9N R , respectively.
Dilute liquid flow rate curves 23, 23-1, 23-2,...
A dilute liquid maximum flow rate curve 29 is obtained by connecting the points indicating the respective maximum flow rates Q 1nAX . 31 is a valve control characteristic curve showing the output characteristic of the pressure regulating valve 2 when the rotation speed of the pump 1 is a specified rotation speed NRR when controlling the membrane separation apparatus as shown in FIG. 32 is a maximum efficiency control line showing the relationship between the pump discharge amount P 0 and the discharge amount Q 0 at the operating point of the pump 1 to obtain Q 1MAX .
第3図Bはポンプ1の回転数が変化した場合
の希薄液流量Q1MAXとポンプ1の回転数との関
係を示している。 FIG. 3B shows the relationship between the diluent flow rate Q 1MAX and the rotation speed of the pump 1 when the rotation speed of the pump 1 changes.
第3図Cはポンプ1の理論吐出量Q0と理論
所要動作HPの関係とポンプ1の回転数NR、
0.8NR、0.9NR夫々に対応して動作特性線34,
34−1,34−2を示している。 Figure 3C shows the relationship between the theoretical discharge amount Q 0 of the pump 1 and the theoretical required operation HP, and the rotation speed N R of the pump 1,
The operating characteristic line 34 corresponds to 0.8N R and 0.9N R , respectively.
34-1 and 34-2 are shown.
第3図A,ニに示すように規定回転数NRよ
りも小さい回転数N′例えば0.9NRなる回転数に
於ける希薄液流量Q1の最大値Q′1MAXは希薄液流
量曲線23−2上にあり、Q′1MAXを示す点ニの
縦座標を同じくするポンプ性能曲線21−2上
の点イがポンプ1の運転点となる。この点では
ポンプは回転数0.9NR、吐出圧力P0a、吐出量
Q0aで運転される。点イは説明のために圧力調
整弁2の弁制御特性曲線31が交るように選ん
である。回転数が0.9NRよりも大きい範囲例え
ば規定回転数NRにおいてはQ′1MAXに等しい点
はQ′1MAXを得る膜面圧力P0aの上下の圧力P0b、
P0cにおいて同流量QR1、QR2の二点ホ,ヘが存
在する。半透膜4には許容回収率Q1/Q0(工業
的には20〜40%)があり、希薄液流量曲線23
の極大点より圧力の高い点ホの流量QR2では運
転できない。なんとなれば点ホと同じ縦座標の
ポンプ性能曲線23の点トでは圧力P0b、吐出
量Q0bでありQR2/Q0b≒0.6となるからである。 As shown in FIGS. 3A and 3D, the maximum value Q' 1MAX of the dilute liquid flow rate Q1 at a rotation speed N' smaller than the specified rotation speed N R , for example 0.9N R , is the dilute liquid flow rate curve 23- Point A on pump performance curve 21-2, which has the same ordinate as point D indicating Q' 1MAX , is the operating point of pump 1. At this point, the pump has a rotational speed of 0.9N R , a discharge pressure of P 0a , and a discharge volume of
Q It is operated at 0a . Point A is selected for the purpose of explanation so that the valve control characteristic curve 31 of the pressure regulating valve 2 intersects with the point A. In a range where the rotational speed is greater than 0.9N R , for example, at a specified rotational speed N R , the point equal to Q′ 1MAX is the pressure P 0b above and below the membrane surface pressure P 0a that obtains Q′ 1MAX ,
At P 0c , there are two points E and F with the same flow rates Q R1 and Q R2 . The semipermeable membrane 4 has an allowable recovery rate Q 1 /Q 0 (industrially 20 to 40%), and the dilute liquid flow rate curve 23
It cannot be operated at flow rate Q R2 at point E where the pressure is higher than the maximum point of . This is because at point G of the pump performance curve 23 having the same ordinate as point E, the pressure is P 0b and the discharge amount Q 0b , so Q R2 /Q 0b ≈0.6.
流量QR1を得る為の運転点はポンプ性能曲線
21上の点ハとなり、ポンプ吐出圧力P0c、吐
出量Q0cで運転される。従つて第3図Cに示す
ように動力特性線34を切る点ハの動力HCが
所要動力となる。前述したポンプ性能曲線21
−1上の運転点イの場合の所要動力は同一横座
標上の動力特性線34−2の点イが対応し所要
動力はHaである。そして第1図に示した従来
例では圧力調整弁2により吐出圧力Q0を調整
して吐出量Q0aになるように絞り、ポンプ1は
性能曲線21上の運転点ロで示すようにポンプ
1の吐出圧力P0はP0dに制御される。そしてこ
のため第3図Aの点イ,ロ間が圧力調整弁2に
よる圧力損失となる。而して第3図C,ロに示
すように所要動力Hbとなる。従つて第3図C,
イ,ロ間のHb−Haがポンプ1を回転数0.9NR
で運転し、圧力保持手段の入口ノズル7′によ
りポンプ1の吐出圧力をP0aに制御すると省動
力部分となる。この値は従来の所要動力の約3
分の2であり、所要動力が大幅に節減できるこ
とが分る。他のポンプ回転数でも同様であり、
希薄液最大流量曲線29上にて希薄液流量Q1
を設定してそれに見合うポンプ運転点を結ぶ曲
線32上で運転点を選ぶことにより最低の動力
により膜分離装置を運転できることが理解でき
よう。以上第3図の説明ではポンプの吐出圧力
から半透膜までの流路の圧力損失は無視して説
明してある。 The operating point for obtaining the flow rate Q R1 is point C on the pump performance curve 21, and the pump is operated at a pump discharge pressure P 0c and a discharge amount Q 0c . Therefore, as shown in FIG. 3C, the required power is the power H C at the point C that cuts the power characteristic line 34. Pump performance curve 21 mentioned above
The required power in the case of operating point A on -1 corresponds to point A on the power characteristic line 34-2 on the same abscissa, and the required power is H a . In the conventional example shown in FIG . The discharge pressure P 0 of is controlled to P 0d . Therefore, the pressure loss due to the pressure regulating valve 2 occurs between points A and B in FIG. 3A. Therefore, the required power Hb becomes as shown in Fig. 3C and B. Therefore, Fig. 3C,
H b − H a between A and B rotates pump 1 at a rotation speed of 0.9N R
If the discharge pressure of the pump 1 is controlled to P 0a by the inlet nozzle 7' of the pressure holding means, it becomes a power saving part. This value is approximately 3 times the conventional power requirement.
It can be seen that the required power can be reduced significantly. The same is true for other pump rotation speeds.
Dilute liquid flow rate Q 1 on dilute liquid maximum flow rate curve 29
It will be understood that the membrane separator can be operated with the lowest power by setting the operating point and selecting the operating point on the curve 32 connecting pump operating points corresponding to the setting. In the above description of FIG. 3, the pressure loss in the flow path from the discharge pressure of the pump to the semipermeable membrane has been ignored.
第2図を用いて回転数Nを仮定して、P0と
Q1の関係を求めたものは第3図についての上
述した処よりみると設定したQ1が希薄液流量
曲線23上において希薄液最大流量曲線29と
の交点でない点へにおいて運転されており、ポ
ンプ1は運転点ハにおいて運転される場合が多
くなる確率が高い。 Using Fig. 2 and assuming the rotation speed N, P 0 and
The relationship of Q 1 was obtained by looking at the above-mentioned section in FIG . There is a high probability that the pump 1 is often operated at the operating point C.
既に項目(1)〜(8)でのべたように回転数Nを仮
定すれば設定した希薄液流量Q1に対しポンプ
1の吐出圧力P0従つて吐出量Q0を求めること
ができることをのべた。こゝにおいて希薄液流
量Q1は極大点を持つ曲線であるから、この極
大点をQ1MAXとするとQ1MAXを得る回転数Nで
ポンプを運転すると最も省動力となる。 As already mentioned in items (1) to (8), assuming the rotational speed N, it is possible to calculate the discharge pressure P0 of the pump 1 and therefore the discharge amount Q0 for the set dilute liquid flow rate Q1. Beta. Here, since the dilute liquid flow rate Q 1 is a curve with a maximum point, if this maximum point is Q 1 MAX , the power will be saved the most if the pump is operated at the rotation speed N that obtains Q 1 MAX .
そこで項目(8)につづいて以下の演算を行う。 Therefore, following item (8), perform the following calculation.
(9) 回転数Nを仮定すると第3図においてQ1MAX
の値が求まる。(9) Assuming the rotation speed N, Q 1MAX in Figure 3
Find the value of
(10) そこで項目(9)で求めたQ1MAX、項目(8)で求め
たQ1は共に仮定したポンプ回転数Nに対する
ものであり、それらの絶対値の差をβとし、
|Q1−Q1MAX|β
であれば
Q1>Q1MAXの時はN′>N
Q1<Q1MAXの時はN′<N
なる回転数N′を再仮定し、既にのべた項目(2)
から再計算する。そして
|Q1−Q1MAX|≦βであれば
次に弁開度を調節する。(10) Therefore, Q 1MAX obtained in item (9) and Q 1 obtained in item (8) are both relative to the assumed pump rotation speed N, and the difference in their absolute values is β, and |Q 1 − If Q 1MAX | β, then Q 1 > Q 1MAX , then N'> N. Q 1 < Q 1MAX , then N'< N. Reassuming the rotation speed N', the above item (2)
Recalculate from If |Q 1 −Q 1MAX |≦β, then the valve opening degree is adjusted.
(11) P2をP2=P0−PL1−PL2で求める。ただしPL2
は半透膜4からペルトン水車7の入口ノズル
7′までの流路の抵抗による損失圧力である。
このことは制御装置9のブロツク11と同スケ
ールの縦軸で濃縮液圧力P2を表わし、横軸に
ノズル7′の特性曲線26を示すブロツク16
間に示されている。特性曲線26は
v=α√22
ただしαは常数、gは重力の加速度である。
ブロツク16によりvが求まる。(11) Find P 2 as P 2 = P 0 −P L1 −P L2 . However, P L2
is the pressure loss due to resistance in the flow path from the semipermeable membrane 4 to the inlet nozzle 7' of the Pelton turbine 7.
This means that the block 16, which is on the same scale as block 11 of the control device 9, represents the concentrate pressure P 2 on the vertical axis, and the characteristic curve 26 of the nozzle 7' on the horizontal axis.
shown in between. The characteristic curve 26 is v=α√2 2 where α is a constant and g is the acceleration of gravity.
Block 16 determines v.
(12) ブロツク17はノズル7′の弁開度Avを横軸
にとり、縦軸には流量制御弁3のストロークS
をとつて、弁開度一弁ストロークの特性曲線2
7を示している。ブロツク16によりvが求ま
ると流量制御弁3の弁開度はAv=Q2/vで求
められる。弁開度Avが求まると流量制御弁3
のストロークSが求められる。(12) In block 17, the horizontal axis represents the valve opening A v of the nozzle 7', and the vertical axis represents the stroke S of the flow control valve 3.
Characteristic curve 2 of valve opening per valve stroke
7 is shown. When v is determined by block 16, the valve opening degree of the flow rate control valve 3 is determined by A v =Q 2 /v. When the valve opening degree A v is determined, the flow control valve 3
The stroke S is calculated.
この弁ストロークSは制御装置9より信号と
して出されるのでドライバ18により増幅して
流量制御弁3を動作させる。 Since this valve stroke S is output as a signal from the control device 9, it is amplified by the driver 18 to operate the flow rate control valve 3.
尚、以上の手順はポンプ性能が定まると一義的
に決定されるため、Q1〜N、Q1〜Sの関係を表
として纒め項目(2)から項目(12)の弁ストロークSを
求めるまでの手順を省略してもよい。 The above procedure is uniquely determined once the pump performance is determined, so summarize the relationships between Q 1 ~ N and Q 1 ~ S in a table to find the valve stroke S for items (2) to (12). You may omit the steps up to.
第4図は本発明の装置の制御ブロツク図であ
る。上述した処は希薄液流量Q1を設定するとポ
ンプ回転数Nが求まり、又ストロークSの移動量
も決定する。従つて希薄液流量設定器35の設定
値Q1が入力されるとポンプ回転数の関数発生器
36は既にのべたようにしてポンプ回転数N=f
(Q1)を求めてNに相当する信号をポンプ1の制
御装置38に送り制御装置38はモータ8を制御
してポンプ1の回転数をNとする。一方希薄液流
量設定器35の設定値Q1が弁ストロークの関数
発生器37に入力されるとS=f(Q1)にもとず
いて弁ストロークSに相当する信号が出力されド
ライバ18を介して増幅されて弁駆動装置3bに
入力され弁ストロークSが調整される。 FIG. 4 is a control block diagram of the apparatus of the present invention. In the above-mentioned case, when the dilute liquid flow rate Q1 is set, the pump rotation speed N is determined, and the amount of movement of the stroke S is also determined. Therefore, when the set value Q1 of the dilute liquid flow rate setting device 35 is input, the pump rotation speed function generator 36 sets the pump rotation speed N=f as described above.
(Q 1 ) is determined and a signal corresponding to N is sent to the control device 38 of the pump 1, and the control device 38 controls the motor 8 to set the number of revolutions of the pump 1 to N. On the other hand, when the set value Q 1 of the dilute liquid flow rate setting device 35 is input to the valve stroke function generator 37, a signal corresponding to the valve stroke S is output based on S=f(Q 1 ), and the driver 18 is The signal is amplified and input to the valve drive device 3b, where the valve stroke S is adjusted.
以上によつてポンプ回転数N、弁ストロークS
が調整される。 Based on the above, the pump rotation speed N and the valve stroke S
is adjusted.
第5図は第4図の開ループ制御を閉ループとし
たものでポンプ1の吐出側に圧力検出器2bをそ
して濃縮液の配管に圧力検出器19を配し、第5
図の制御において圧力検出器2b,19が検出す
るポンプ吐出圧力P0、濃縮液圧力P2を夫夫関数
発生器36,37へ送り、関数発生器36,37
にて計算されてあるポンプ吐出圧力P0、濃縮液
圧力P2との差を希薄液最大流量曲線29上にあ
るようにして0に近づけるように制御する。第5
図において圧力検出器2b,19の何れか一つの
み備え、開閉ループを含むように構成してもよ
い。 FIG. 5 shows a closed loop version of the open loop control shown in FIG.
In the control shown in the figure, the pump discharge pressure P 0 and concentrated liquid pressure P 2 detected by the pressure detectors 2b and 19 are sent to the function generators 36 and 37.
The difference between the pump discharge pressure P 0 and the concentrated liquid pressure P 2 calculated in 1 is controlled so as to be on the diluted liquid maximum flow rate curve 29 so as to approach 0. Fifth
In the figure, only one of the pressure detectors 2b and 19 may be provided, and the structure may include an open/close loop.
以上により求めた最大希薄液流量Q1MAXが許容
回収率γ=Q1/Q0以上なる場合がある。この場
合には許容回収率設定器を設け
Q1MAX/Q0>γ
の場合希薄液流量としてはQ1MAXより若干小さい
値q1MAXを求め、許容希薄液流量q1MAXが
式
Q1MAX/Q0≦γ
を満足するように、許容最大希薄液流量q1MAXを
減じて行けばよい。 The maximum diluted liquid flow rate Q 1MAX determined above may exceed the allowable recovery rate γ=Q 1 /Q 0 . In this case, an allowable recovery rate setting device is provided. If Q 1MAX /Q 0 > γ, the diluent flow rate is determined to be a value q 1MAX that is slightly smaller than Q 1MAX , and the allowable dilute solution flow rate q 1MAX is calculated using the formula Q 1MAX /Q 0 ≦ The allowable maximum diluent flow rate q 1MAX may be reduced so as to satisfy γ.
半透膜の許容回収率が原水組織を考慮し、製造
者が決めている場合にはポンプ回転数Nが許容最
大希薄液流量q1MAXが定まれば一義的に定まるか
らN=f(q1MAX)によりポンプ回転数Nを求め、
弁ストロークSは該流量q1MAXを用いてS=f
(q1MAX)により流量制御弁10を制御すればよ
い。 If the allowable recovery rate of the semipermeable membrane is determined by the manufacturer in consideration of the raw water structure, the pump rotation speed N is uniquely determined once the allowable maximum dilute liquid flow rate q 1 MAX is determined, so N = f (q 1 MAX ) to find the pump rotation speed N.
The valve stroke S is calculated using the flow rate q 1MAX as S=f
(q 1MAX ) may be used to control the flow rate control valve 10.
以上により所要希薄液流量Q1を得るように流
量制御弁3が調節される。実施例は系内圧力保持
手段としてポンプ吐出側下流端に開度調節可能な
ノズルと該ノズルによりの噴出液により動作する
ペルトン水車を用いているが、これに限られるも
のではなく単に流量制御弁あるいは流量制御弁と
逆転ポンプ等他のエネルギ回収手段を配してもよ
い。本発明の既述の説明は供給溶液の状態量の圧
力P0、流量Q0を基にのべてあるが、濃縮液体の
圧力P2、流量Q2は第2図のブロツク11の曲線
22に示すようにQ0、Q1と対応しているから濃
縮液体の状態に基いて説明できることはいうまで
もないところである。 As described above, the flow rate control valve 3 is adjusted to obtain the required diluted liquid flow rate Q1 . In the embodiment, a nozzle whose opening degree can be adjusted at the downstream end of the pump discharge side and a Pelton water wheel operated by the liquid ejected from the nozzle are used as a system pressure holding means, but the invention is not limited to this, and a simple flow control valve is used. Alternatively, other energy recovery means such as a flow control valve and a reversing pump may be provided. The above description of the present invention has been based on the state quantities of the supply solution, pressure P 0 and flow rate Q 0 , but the pressure P 2 and flow rate Q 2 of the concentrated liquid are based on the curve 22 of block 11 in FIG. It goes without saying that this can be explained based on the state of the concentrated liquid since it corresponds to Q 0 and Q 1 as shown in .
本発明は半透膜を用いて溶液中の溶質を分離し
希薄溶液と濃縮溶液を得る膜分離装置において、
溶液の加圧動作をする遠心ポンプと半透膜と半透
膜よりも濃縮液側下流に系内圧力保持手段の制御
装置のみを備え、制御装置は遠心ポンプの性能曲
線と溶液中の溶質の濃度と浸透圧の関係から希薄
もしくは濃縮溶液流量に見合う系内理論圧力を算
出して圧力保持手段への供給濃縮液圧力、濃縮液
流量により圧力保持手段を動作させる機能を備え
かつ、最も所要動力の少い最大希薄液流量となる
ようなポンプ回転数にする制御手段を備えたか
ら、装置の構成数が少く配管も簡単になり安価で
ある。希薄液流量を設定すれば自動的に系内圧力
が制御されることになるので操作性がよい。 The present invention provides a membrane separation device for separating solutes in a solution using a semipermeable membrane to obtain a dilute solution and a concentrated solution.
A centrifugal pump that pressurizes the solution, a semi-permeable membrane, and a control device for maintaining the system pressure downstream of the semi-permeable membrane on the concentrated liquid side, and the control device is based on the performance curve of the centrifugal pump and the Equipped with a function that calculates the theoretical internal pressure in the system corresponding to the flow rate of a dilute or concentrated solution from the relationship between concentration and osmotic pressure and supplies it to the pressure holding means.It has the function of operating the pressure holding means based on the concentrated liquid pressure and concentrated liquid flow rate. Since the control means is provided to set the pump rotation speed to a maximum dilute solution flow rate with a small amount, the number of components of the device is small and the piping is simple and inexpensive. If the diluted liquid flow rate is set, the pressure within the system will be automatically controlled, resulting in good operability.
第1図は従来例のフローシート、第2図は本発
明の実施例のフローシート、第3図はポンプの制
御線図、第4図、第5図は制御ブロツク図であ
る。
1……ポンプ、2a,2b……圧力検出器、3
……流量制御弁、3b……弁駆動装置、4……半
透膜、7……水車、8……駆動モータ、9……制
御装置、19……圧力検出器、36,37……関
数発生器、38……制御装置。
FIG. 1 is a flow sheet of a conventional example, FIG. 2 is a flow sheet of an embodiment of the present invention, FIG. 3 is a pump control diagram, and FIGS. 4 and 5 are control block diagrams. 1...Pump, 2a, 2b...Pressure detector, 3
...Flow rate control valve, 3b... Valve drive device, 4... Semipermeable membrane, 7... Water wheel, 8... Drive motor, 9... Control device, 19... Pressure detector, 36, 37... Function Generator, 38...control device.
Claims (1)
液と濃縮溶液を得る膜分離装置において、供給溶
液の加圧動作をする遠心ポンプと、遠心ポンプの
回転数を制御する手段と、半透膜と、半透膜より
濃縮溶液側下流に配した系内圧力保持手段、及び
系内圧力保持手段の制御装置を備え、ポンプの回
転数を制御する手段並びに系内圧力保持手段の制
御装置が遠心ポンプの各回転数に於ける性能曲線
と溶液中の溶質の濃度と浸透圧の関係から設定さ
れた希薄もしくは濃縮溶液流量に見合うポンプ回
転数と系内理論圧力の関係を算出する機能を備え
たことを特徴とする半透膜による物質分離装置。 2 半透膜を用いて溶液中の溶質を分離し希薄溶
液と濃縮溶液を得る膜分離装置において、供給溶
液の加圧動作をする遠心ポンプと、遠心ポンプの
回転数を制御する手段と、供給液体あるいは濃縮
液体の圧力検出手段と、半透膜と、半透膜より濃
縮溶液側下流に配した系内圧力保持手段及び系内
圧力保持手段の制御装置を備え、ポンプの回転数
を制御する手段並びに系内圧力保持手段の制御装
置が遠心ポンプの各回転数に於ける性能曲線と溶
液中の溶質の濃度と浸透圧の関係から設定された
希薄もしくは濃縮溶液流量に見合うポンプ回転数
と系内理論圧力を算出し、圧力検出手段の指示値
が系内理論圧力と等しくなる様に圧力保持手段を
調節する制御回路を備えた半透膜による物質分離
装置。[Claims] 1. In a membrane separation device that uses a semipermeable membrane to separate solutes in a solution and obtain a dilute solution and a concentrated solution, a centrifugal pump that pressurizes the supplied solution and a centrifugal pump whose rotational speed is controlled. A means for controlling the rotation speed of the pump, a semipermeable membrane, a system pressure holding means disposed downstream of the semipermeable membrane on the concentrated solution side, and a control device for the system pressure holding means. The control device of the pressure holding means determines the pump rotation speed and system theoretical pressure corresponding to the dilute or concentrated solution flow rate set from the performance curve at each rotation speed of the centrifugal pump and the relationship between the solute concentration and osmotic pressure in the solution. A substance separation device using a semipermeable membrane, characterized by being equipped with a function to calculate relationships. 2. In a membrane separation device that uses a semipermeable membrane to separate solutes in a solution and obtain a dilute solution and a concentrated solution, a centrifugal pump that pressurizes the supplied solution, a means for controlling the rotation speed of the centrifugal pump, and a supply It is equipped with a liquid or concentrated liquid pressure detection means, a semipermeable membrane, an internal pressure holding means disposed downstream from the semipermeable membrane on the concentrated solution side, and a control device for the internal pressure holding means, and controls the rotation speed of the pump. The system and the control device for the means and system pressure holding means are designed to match the pump rotation speed and system to the dilute or concentrated solution flow rate set based on the performance curve at each rotation speed of the centrifugal pump and the relationship between the concentration of solute in the solution and osmotic pressure. A substance separation device using a semipermeable membrane, which is equipped with a control circuit that calculates the internal theoretical pressure and adjusts the pressure holding means so that the indicated value of the pressure detection means is equal to the internal theoretical pressure.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7467383A JPS59199004A (en) | 1983-04-27 | 1983-04-27 | Material separation apparatus by semipermeable membrane |
EP84901424A EP0142567B1 (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
US06/668,521 US4772385A (en) | 1983-04-11 | 1984-04-10 | Control for use with reverse osmotic treatment system |
PCT/JP1984/000180 WO1984004049A1 (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
GB08426165A GB2146263B (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
DE3490181A DE3490181C2 (en) | 1983-04-11 | 1984-04-10 | |
DE19843490181 DE3490181T1 (en) | 1983-04-11 | 1984-04-10 | Control for use in a reverse osmotic treatment system |
CA000451806A CA1233128A (en) | 1983-04-11 | 1984-04-11 | Control for use with reverse osmotic treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7467383A JPS59199004A (en) | 1983-04-27 | 1983-04-27 | Material separation apparatus by semipermeable membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59199004A JPS59199004A (en) | 1984-11-12 |
JPH0350573B2 true JPH0350573B2 (en) | 1991-08-02 |
Family
ID=13553975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7467383A Granted JPS59199004A (en) | 1983-04-11 | 1983-04-27 | Material separation apparatus by semipermeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59199004A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60235604A (en) * | 1984-05-08 | 1985-11-22 | Kurita Water Ind Ltd | Reverse osmotic membrane separation device |
JPS6186903A (en) * | 1984-10-03 | 1986-05-02 | Asahi Chem Ind Co Ltd | Ultrafiltration apparatus |
JPS62121667A (en) * | 1985-11-22 | 1987-06-02 | Iijima Seimitsu Kogyo Kk | Centrifugal type continuous filter apparatus using semipermeable membrane |
JPS6295702U (en) * | 1985-12-02 | 1987-06-18 | ||
JPS6295701U (en) * | 1985-12-02 | 1987-06-18 | ||
JPS62237988A (en) * | 1986-04-07 | 1987-10-17 | Tamura Seisakusho Co Ltd | Method for treating waste water |
JP5912506B2 (en) * | 2011-12-20 | 2016-04-27 | カヤバ システム マシナリー株式会社 | Seawater desalination equipment |
-
1983
- 1983-04-27 JP JP7467383A patent/JPS59199004A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59199004A (en) | 1984-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101853281B1 (en) | Reverse osmosis system with energy recovery devices | |
US11266959B2 (en) | Low pressure fluctuation apparatuses for blending fluids, and methods of using the same | |
US4680109A (en) | Membrane separator | |
JPH0350573B2 (en) | ||
WO2011064252A1 (en) | Regulating pressure conditions in osmotic systems | |
CN108380051B (en) | Stable energy-saving reverse osmosis system and control method thereof | |
JP3311139B2 (en) | Membrane module system | |
JPS60129103A (en) | Apparatus for preparing extremely pure water | |
JP2000093751A5 (en) | ||
WO2000076639A1 (en) | A method and a plant for production of fresh water from briny water | |
JP3327371B2 (en) | Membrane liquid concentrator | |
JPH0350572B2 (en) | ||
JP2000051663A5 (en) | ||
JPS60235604A (en) | Reverse osmotic membrane separation device | |
CN206139022U (en) | Novel reverse osmosis booster | |
JP2019000804A (en) | Membrane separator | |
WO2020193844A1 (en) | Reject valve of reverse osmosis system | |
EP1256371A1 (en) | Method for purification of water | |
JPS607770Y2 (en) | Filter cleaning device | |
JPH074224B2 (en) | Membrane separation reactor controller | |
CA3141213C (en) | Pressure balancing system for two sides of an edr film stack | |
JPS609531Y2 (en) | Variable constant flow liquid supply device | |
JPH057751A (en) | Apparatus for preparing carbonated water | |
JPH0380527B2 (en) | ||
JPS6122230B2 (en) |