JPH0350554A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPH0350554A JPH0350554A JP18450689A JP18450689A JPH0350554A JP H0350554 A JPH0350554 A JP H0350554A JP 18450689 A JP18450689 A JP 18450689A JP 18450689 A JP18450689 A JP 18450689A JP H0350554 A JPH0350554 A JP H0350554A
- Authority
- JP
- Japan
- Prior art keywords
- group
- phthalocyanine
- metal
- substituted
- hydrogen atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 38
- SJHHDDDGXWOYOE-UHFFFAOYSA-N oxytitamium phthalocyanine Chemical compound [Ti+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 SJHHDDDGXWOYOE-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000012546 transfer Methods 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 14
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 13
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 7
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract 2
- 108091008695 photoreceptors Proteins 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- -1 hydrazone compound Chemical class 0.000 claims description 27
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 102000001708 Protein Isoforms Human genes 0.000 claims description 4
- 108010029485 Protein Isoforms Proteins 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000001624 naphthyl group Chemical class 0.000 claims description 3
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000004663 dialkyl amino group Chemical group 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 17
- 206010034972 Photosensitivity reaction Diseases 0.000 abstract description 3
- 230000036211 photosensitivity Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 39
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000000975 dye Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N anhydrous diethylene glycol Natural products OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001555 benzenes Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBQZXXMEJHZYMB-UHFFFAOYSA-N 1,2-diphenylhydrazine Chemical compound C=1C=CC=CC=1NNC1=CC=CC=C1 YBQZXXMEJHZYMB-UHFFFAOYSA-N 0.000 description 2
- NQMUGNMMFTYOHK-UHFFFAOYSA-N 1-methoxynaphthalene Chemical compound C1=CC=C2C(OC)=CC=CC2=C1 NQMUGNMMFTYOHK-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229930192627 Naphthoquinone Natural products 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000980 acid dye Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002791 naphthoquinones Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000001007 phthalocyanine dye Substances 0.000 description 2
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- PWEBUXCTKOWPCW-UHFFFAOYSA-N squaric acid Chemical compound OC1=C(O)C(=O)C1=O PWEBUXCTKOWPCW-UHFFFAOYSA-N 0.000 description 2
- 238000001256 steam distillation Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- BSZXAFXFTLXUFV-UHFFFAOYSA-N 1-phenylethylbenzene Chemical compound C=1C=CC=CC=1C(C)C1=CC=CC=C1 BSZXAFXFTLXUFV-UHFFFAOYSA-N 0.000 description 1
- CGYGETOMCSJHJU-UHFFFAOYSA-N 2-chloronaphthalene Chemical compound C1=CC=CC2=CC(Cl)=CC=C21 CGYGETOMCSJHJU-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- 239000001431 2-methylbenzaldehyde Substances 0.000 description 1
- RZVCEPSDYHAHLX-UHFFFAOYSA-N 3-iminoisoindol-1-amine Chemical compound C1=CC=C2C(N)=NC(=N)C2=C1 RZVCEPSDYHAHLX-UHFFFAOYSA-N 0.000 description 1
- MNFZZNNFORDXSV-UHFFFAOYSA-N 4-(diethylamino)benzaldehyde Chemical compound CCN(CC)C1=CC=C(C=O)C=C1 MNFZZNNFORDXSV-UHFFFAOYSA-N 0.000 description 1
- UESSERYYFWCTBU-UHFFFAOYSA-N 4-(n-phenylanilino)benzaldehyde Chemical compound C1=CC(C=O)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 UESSERYYFWCTBU-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- CAHQGWAXKLQREW-UHFFFAOYSA-N Benzal chloride Chemical compound ClC(Cl)C1=CC=CC=C1 CAHQGWAXKLQREW-UHFFFAOYSA-N 0.000 description 1
- CPIKMZMYLAXFCI-UHFFFAOYSA-N CNN(C=1C(=CC=CC1)C)NC Chemical compound CNN(C=1C(=CC=CC1)C)NC CPIKMZMYLAXFCI-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000907661 Pieris rapae Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002744 anti-aggregatory effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WDEQGLDWZMIMJM-UHFFFAOYSA-N benzyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate Chemical compound OCC1CC(O)CN1C(=O)OCC1=CC=CC=C1 WDEQGLDWZMIMJM-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- YRZZLAGRKZIJJI-UHFFFAOYSA-N oxyvanadium phthalocyanine Chemical compound [V+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 YRZZLAGRKZIJJI-UHFFFAOYSA-N 0.000 description 1
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920002382 photo conductive polymer Polymers 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は電子写真感光体に関し、更に詳しくは新規なチ
タニルフタロシアニン組成物結晶を電荷発生剤の有効成
分とし、かつ所定の化合物を電荷移動剤の有効成分とす
る電子写真感光体に関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, the present invention relates to an electrophotographic photoreceptor, and more particularly, a novel titanyl phthalocyanine composition crystal is used as an active ingredient of a charge generation agent, and a predetermined compound is used as a charge transfer agent. The present invention relates to an electrophotographic photoreceptor containing the active ingredient as an active ingredient.
[従木の技術]
従来からフタロシアニン類、金属フタロシアニン類は優
れた光導電性を示すことが知られており、一部は電子写
真感光体に使用されている。近年ノンインパクトプリン
タ技術の発展に伴い、レーザ光や、LEDを光源とする
高画質,高速化の可能な電子写真方式の光プリンタが広
く普及しつつあり、それらの要求に耐える感光体の開発
が盛んである。[Technology of auxiliary wood] Phthalocyanines and metal phthalocyanines have been known to exhibit excellent photoconductivity, and some of them are used in electrophotographic photoreceptors. In recent years, with the development of non-impact printer technology, electrophotographic optical printers that use laser light or LED as a light source and are capable of high image quality and high speed are becoming widespread, and the development of photoreceptors that can withstand these demands is becoming more and more popular. It's thriving.
特に、レーザを光源とする場合、小型,安価,簡便さ等
の点から、多くは半導体レーザが用いられるが、現在こ
れらに用いられる半導体レーザの発振波長は、近赤外域
の比較的長波長に限定ざれている。したがって、従来電
子写真法の複写機に用いられてきた可視領域に感度を有
する感光体を半導体レーザ用に用いるのは不適当であり
、近赤外領域にまで光感度を持つ感光体が必要となって
きている。In particular, when using a laser as a light source, semiconductor lasers are often used due to their compact size, low cost, and simplicity.However, the oscillation wavelength of the semiconductor lasers currently used for these is relatively long wavelength in the near-infrared region. It is limited. Therefore, it is inappropriate to use a photoreceptor sensitive to the visible region, which has been conventionally used in electrophotographic copiers, for semiconductor lasers, and a photoreceptor with photosensitivity extending into the near-infrared region is required. It has become to.
この要求を満たす有機系材料としては、従来、スクアリ
ック酸メチン系色素、インドリン系色素、シアニン系色
素、ピリリウム系色素、ポリアゾ系色素、フタロシアニ
ン系色素、ナフトキノン系色索等が知られている。この
うち、スクアリック酸メチン系色素、インドリン系色素
、シアニン系色素、ピリリウム系色素は長波長化が可能
であるが、実用的安定性(繰り返し特性〉に欠け、ポリ
アゾ系色素は長波長化が難しく、かつ製造面で不利であ
り、ナフトキノン系色素は感度的に難があるのが現状で
ある。Conventionally known organic materials that meet this requirement include methine squaric acid dyes, indoline dyes, cyanine dyes, pyrylium dyes, polyazo dyes, phthalocyanine dyes, and naphthoquinone dyes. Among these, methine squaric acid dyes, indoline dyes, cyanine dyes, and pyrylium dyes can be made to have longer wavelengths, but they lack practical stability (repeatability), and polyazo dyes are difficult to make longer wavelengths. , and is disadvantageous in terms of production, and naphthoquinone dyes currently have difficulties in terms of sensitivity.
これに対し、フタロシアニン系色素は、600nm以上
の長波長域に分光感度のピークがあり、かつ感度も高く
、中心金属や結晶形の種類により分光感度が変化するこ
とから、半導体レーザ用色素として適していると考えら
れ、精力的に研究開発が行われている。On the other hand, phthalocyanine dyes have a peak spectral sensitivity in the long wavelength region of 600 nm or more, and are also highly sensitive.The spectral sensitivity changes depending on the type of central metal and crystal type, so they are suitable as dyes for semiconductor lasers. It is believed that this technology has been developed, and research and development is being carried out vigorously.
これまで検討が行われたフタロシアニン化合物の中で7
80nm以上の長波長域において高感度を示す化合物と
しては、X形無金属フタロシアニン、ε形銅フタロシア
ニン、バナジルフタロシアニン等を挙げることができる
。Among the phthalocyanine compounds studied so far, 7
Examples of compounds that exhibit high sensitivity in a long wavelength range of 80 nm or more include X-type metal-free phthalocyanine, ε-type copper phthalocyanine, vanadyl phthalocyanine, and the like.
一方、高感度化のために、フタロシアニンの蒸着膜を電
荷発生層とする積層型感光体が検討ざれ、周期律表[1
a族およびIV族の金属を中心金属とするフタロシアニ
ンのなかで、比較的高い感度を有タるものが幾つか得ら
れている。このような金属フタロシアニンに関する文献
として、例えば、特開昭57−211149号公報、同
57−148745@公報、同59− 36254号公
報、同59− 44054号公報、同59− 3054
1号公報、同59− 31965号公報、同59−16
6959号公報等がある。しかしながら、蒸着膜の作製
には高真空排気装置を必要とし、設備費が高くなること
から上記の如き有機感光体は高価格のものとならざるを
得ない。On the other hand, in order to achieve higher sensitivity, a laminated photoreceptor with a vapor-deposited phthalocyanine film as a charge generation layer was considered, and
Among the phthalocyanines whose central metals are group A and group IV metals, some have been obtained that have relatively high sensitivity. Documents related to such metal phthalocyanines include, for example, JP-A-57-211149, JP-A-57-148745@, JP-A-59-36254, JP-A-59-44054, and JP-A-59-3054.
Publication No. 1, Publication No. 59-31965, Publication No. 59-16
There are publications such as No. 6959. However, the preparation of the vapor deposited film requires a high vacuum evacuation device, which increases the equipment cost, so the above-mentioned organic photoreceptor inevitably becomes expensive.
これに対し、フタロシアニンを蒸着膜としてではなく、
樹脂分敗層とし、これを電荷発生層として用いて、その
上に電荷移動層を塗布してなる複台型感光体も検討ざれ
ている。In contrast, phthalocyanine is not deposited as a film, but
A multi-unit type photoreceptor has also been considered in which a resin decomposition layer is used as a charge generation layer, and a charge transfer layer is coated thereon.
電荷移動剤としては、特開昭54−59143号公報に
あるように、高感度で残留電位が少なく、また電子写真
プロセスにしたがって繰り返し使用しても光疲労が少な
く、耐久性が優れたヒドラゾン化合物が開発ざれている
。また、特開昭61− 32850月公報にあるように
、高感度で残留電位が少なく、また電子写真プロセスに
したがって繰り返し使用しても光疲労が少なく、耐久性
が優れたトリフエニルメタン化合物が開発されている。As a charge transfer agent, as described in JP-A No. 54-59143, a hydrazone compound is used which has high sensitivity, low residual potential, little optical fatigue even when used repeatedly according to electrophotographic process, and excellent durability. has not yet been developed. In addition, as stated in Japanese Patent Application Laid-open No. 32850/1985, a triphenylmethane compound was developed that has high sensitivity and low residual potential, and has low optical fatigue and excellent durability even when used repeatedly according to the electrophotographic process. has been done.
また、複合型感光体としては、無金属フタロシアニン(
特願昭57− 66963号〉やインジウムフタロシア
ニン(特願昭59− 220493号〉を用いるものが
あり、これらは比較的高感度な感光体であるが、前者は
800 nm以上の長波長領域において急速に感度が低
下する等の欠点を有し、また後者は電荷発生層を樹脂分
散系で作製する場合には、実用化に対して感度が不充分
である等の欠点を有している。In addition, as a composite photoreceptor, metal-free phthalocyanine (
There are photoreceptors that use indium phthalocyanine (Japanese Patent Application No. 57-66963) and indium phthalocyanine (Japanese Patent Application No. 59-220493), and these are relatively highly sensitive photoreceptors; The latter has drawbacks such as a decrease in sensitivity, and the latter has drawbacks such as insufficient sensitivity for practical use when the charge generation layer is prepared from a resin dispersion system.
[発明が解決しようとする課題]
特に近年では、比較的高感度な電子写真特性を持つチタ
ニルフタロシアニンを用いるものについて検討されてお
り(特開昭59− 49544号公報、同61− 23
928号公報、同61−109056号公報、同62−
275272号公報〉、各種結晶形により特性に差異が
あることが知られている。これらの各種結晶形を作成す
るためには、特別な精製、特殊な溶剤処理を必要とする
。その処理溶剤は、分敗塗布膜形成時に用いられるもの
とは異なっている。これは得られる各種結晶が、或長処
理溶剤中では、結晶成長し易く、同溶剤を塗布用溶剤と
して用いると、結晶形、粒径の制御が難しく、塗料の安
定性がなく、結果として、静電特性が劣化し、実用上不
適当であるからである。そのため通常は、塗料化の際に
は結晶或長を促進し難いクロロホルム等の塩素系溶剤が
用いられるが、これらの溶剤はチタニルフタロシアニン
に対して分敗性が必ずしも良くなく、塗料の分故安定性
の面で問題である。[Problems to be Solved by the Invention] Particularly in recent years, methods using titanyl phthalocyanine, which has relatively high sensitivity electrophotographic properties, have been studied (Japanese Unexamined Patent Publication Nos. 59-49544 and 61-23).
No. 928, No. 61-109056, No. 62-
275272], it is known that there are differences in properties depending on various crystal forms. Creating these various crystal forms requires special purification and special solvent treatments. The processing solvent is different from that used in forming the decomposition coating. This is because the various crystals obtained tend to grow in a certain long-treatment solvent, and when the same solvent is used as a coating solvent, it is difficult to control the crystal shape and particle size, resulting in poor paint stability. This is because the electrostatic properties deteriorate, making it unsuitable for practical use. For this reason, chlorinated solvents such as chloroform, which do not easily promote crystal growth, are usually used when making paints, but these solvents do not necessarily have good decomposition properties for titanyl phthalocyanine, making it difficult to stabilize the decomposition of paints. This is a problem in terms of sexuality.
一方で、チタニルフタロシアニンは一般にイオン化ポテ
ンシャルが大きく、イオン化ポテンシャルの小さいヒド
ラゾン化合物とともに用いると、イオン化ポテンシャル
の差が大きいためチタニルフタロシアニンからヒドラゾ
ン化合物へのホールの注入が容易に起こる。このため、
帯電性が悪く、耐久性に乏しい。電荷発生剤と電荷移動
剤とを単一層中に含む分散系の感光体に用いる場合も、
帯電性を保持しつつ、感度向上のために電荷発生剤を多
量に含めることは困難であるという課題がある。On the other hand, titanyl phthalocyanine generally has a large ionization potential, and when used together with a hydrazone compound that has a small ionization potential, holes are easily injected from the titanyl phthalocyanine into the hydrazone compound because of the large difference in ionization potential. For this reason,
Poor charging properties and poor durability. When used in a dispersed photoreceptor containing a charge generation agent and a charge transfer agent in a single layer,
There is a problem in that it is difficult to include a large amount of a charge generating agent in order to improve sensitivity while maintaining chargeability.
本発明は、以上述べたような従来の課題を解決するため
になされたもので、電荷発生剤および電荷移動剤を含む
電子写真感光体において、優れた光導電性を有するチタ
ニルフタロシアニン組成物結晶を電荷発生剤として用い
、ざらに特定の化合物を電荷移動剤として用いることに
より、高感度で帯電保持性や耐久性に優れた電子写真感
光体を提供することを目的とする。The present invention has been made in order to solve the conventional problems as described above, and uses a titanyl phthalocyanine composition crystal having excellent photoconductivity in an electrophotographic photoreceptor containing a charge generating agent and a charge transfer agent. It is an object of the present invention to provide an electrophotographic photoreceptor with high sensitivity and excellent charge retention and durability by using a specific compound as a charge generation agent and a specific compound as a charge transfer agent.
[課題を解決するための手段]
本発明は、電荷発生剤と電荷移動剤を含む電子写真感光
体において、
(a)電荷発生剤が、無金属フタロシアニン窒素同構体
、金属フタロシアニン窒素同構体、無金属フタロシアニ
ン、金属フタロシアニン、無金属ナフタロシアニンまた
は金属ナフタロシアニン(ただし、無金属フタロシアニ
ン窒素同構体、金属フタロシアニン窒素同構体、無金属
フタロシアニンおよび金属フタロシアニンはベンゼン核
に置換基を有してもよく、また、無金属ナフタロシアニ
ンおよび金属ナフタロシアニンはナフチル核に置換基を
有してもよい〉のうちの1種もしくは2種以上を全体で
50重量部以下と、チタニルフタロシアニンを100重
量部含むチタニルフタロシアニン組成物結晶を有効成分
とし、該組成物結晶は、赤外吸収スペクトルにおいて、
1490±2cm−I!J”、1415±2cm−In
”、1332±2cm−m−’、1119±2 Cm一
富、1o72±2cm” 、,1060±2 cm−’
961±2 cm−1 、893±2cm−IA−
’780±2 cm” 751±2cm−Il−’
および730±2cm−I!t−’に特徴的な強い吸収
を有し、がっCuKδを線源とするX線回折スペクトル
において、ブラッグ角(2θ±0.2度〉が27.3度
に最大の回折ピ−クを示し、θ±0.24.1度に強い
回折ピークを示すか、あるいはCLIKδを線源とする
X線回折スペクトルにおいて、ブラッグ角{2θ±0.
2度}が27.3度に最大の回折ピークを示し、7.4
度、22.3度、24.1度、25.3度、28.5度
に強い回折ピークを示し、(b)電荷移動剤が、一般式
[■];
(式中、R1は水素原子、置換もしくは未置換のアルキ
ル基、置換もしくは未置換のアルコキシル基、ハロゲン
、置換もしくは未置換のアミノ基、モルフオルノ基、ピ
ペリジノ基またはフ工二ル基とともにカルバゾノ基を形
成してもよく、R2は水素原子、置換もしくは未置換の
アルキル基を示し、R3、R4は水素原子、置換もしく
は未置換のアルキル基、置換もしくは未置換のアリール
基、またはピリジル基、ピロロジノ基、カルバゾノ基等
の環を形或しても良い)
で表されるヒドラゾン化合物と、
一般式[■]:
(式中、Aは電子供与基、R5は水素原子、置換もしく
は未置換のアルキル基、置換もしくは未置換のアルコキ
シル基、R6およびR7は、同一もしくは異なり、それ
ぞれ水素原子、置換もしくは未置換のアルキル基、置換
もしくは未置換の7ラルキル基、置換もしくは未置換の
アリール基を示す〉
で示される化合物を有効成分とすることを特徴とする電
子写真感光体である。[Means for Solving the Problems] The present invention provides an electrophotographic photoreceptor containing a charge generating agent and a charge transfer agent, in which (a) the charge generating agent is a non-metallic phthalocyanine nitrogen isomer, a metal phthalocyanine nitrogen isomer, or a non-metallic phthalocyanine nitrogen isomer. Metal phthalocyanine, metal phthalocyanine, metal-free naphthalocyanine or metal naphthalocyanine (however, metal-free phthalocyanine nitrogen isoform, metal phthalocyanine nitrogen isoform, metal-free phthalocyanine and metal phthalocyanine may have a substituent on the benzene nucleus, , a metal-free naphthalocyanine and a metal naphthalocyanine which may have a substituent on the naphthyl nucleus, in a total amount of 50 parts by weight or less of one or more of the following, and 100 parts by weight of titanyl phthalocyanine. In the infrared absorption spectrum, the composition crystal has a compound crystal as an active ingredient,
1490±2cm-I! J”, 1415±2cm-In
", 1332 ± 2 cm-m-', 1119 ± 2 Cm Kazutomi, 1o72 ± 2 cm", , 1060 ± 2 cm-'
961±2 cm-1, 893±2 cm-IA-
'780±2cm"751±2cm-Il-'
and 730 ± 2 cm-I! In the X-ray diffraction spectrum using CuKδ as a radiation source, the maximum diffraction peak is at a Bragg angle (2θ±0.2 degrees) of 27.3 degrees. and shows a strong diffraction peak at θ±0.24.1 degrees, or in the X-ray diffraction spectrum using CLIKδ as the radiation source, Bragg angle {2θ±0.
2 degrees} shows the maximum diffraction peak at 27.3 degrees, and 7.4
(b) The charge transfer agent exhibits strong diffraction peaks at 22.3 degrees, 24.1 degrees, 25.3 degrees, and 28.5 degrees; , a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group, a halogen, a substituted or unsubstituted amino group, a morphorno group, a piperidino group or a phenyl group, and R2 may form a carbazono group. Represents a hydrogen atom, a substituted or unsubstituted alkyl group, and R3 and R4 represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a ring such as a pyridyl group, pyrrolodino group, or carbazono group. ) and a hydrazone compound represented by the general formula [■]: (wherein A is an electron donating group, R5 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group) , R6 and R7 are the same or different and each represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted 7-ralkyl group, a substituted or unsubstituted aryl group> The active ingredient is a compound represented by This is an electrophotographic photoreceptor characterized by the following.
本発明によれば、電荷移動剤として、上記一般式[I]
および[II]で示される化合物を併用することにより
、チタニルフタロシアニン組成物結晶とのイオン化ポテ
ンシャルの差を補うことができるため、高感度で帯電性
に優れ、電子写真プロセスにしたがって繰り返し使用し
ても光疲労が少なく、耐久性の優れた電子写真感光体を
得ることができる。According to the present invention, as a charge transfer agent, the general formula [I]
By using compounds represented by An electrophotographic photoreceptor with low optical fatigue and excellent durability can be obtained.
以下、本発明を詳細に説明する。The present invention will be explained in detail below.
本発明で用いられるフタロシアニン類化合物、ナフタロ
シアニン類化合物は、モーザーおよびトーマスの「フタ
ロシアニン化合物」 (ラインホールド社, 1963
)、「フタロシアニンJ (CRC出版, 1913
3)等の公知方法および他の適当な方法によって得られ
るものを使用する。The phthalocyanine compounds and naphthalocyanine compounds used in the present invention are described in "Phthalocyanine Compounds" by Moser and Thomas (Reinhold Co., 1963).
), “Phthalocyanine J (CRC Publishing, 1913
Those obtained by known methods such as 3) and other suitable methods are used.
例えばチタニルフタロシアニンは、1,2−ジシアノベ
ンゼン(O−フタ口ジニトリル〉またはその誘導体と金
属または金属化合物から公知の方法に従って、容易に合
成することができる。For example, titanyl phthalocyanine can be easily synthesized from 1,2-dicyanobenzene (O-phthalodinitrile) or a derivative thereof and a metal or metal compound according to a known method.
例えば、チタニルフタロシアニン類の場合、下記(1)
または(2)に示す反応式に従って容易に合戒すること
ができる。For example, in the case of titanyl phthalocyanines, the following (1)
Alternatively, it can be easily combined according to the reaction formula shown in (2).
(以下余白)
PcTi=0
(但し、PCはフタロシアニン残基を示す)有機溶剤と
しては、ニトロベンゼン、キノリン、α−クロロナフタ
レン、β−クロロナフタレン、α−メチルナフタレン、
メトキシナフタレン、ジフエニルエーテル、ジフエニル
メタン、ジフエニルエタン、エチレングリコールジアル
キルエーテル、ジエチレングリコールジアルキルエーテ
ル、トリエチレングリコールジアルキルエーテル等の反
応に不活性な高沸点有機溶剤が好ましく、反応温度は通
常150〜300’C,特に200〜250℃が好まし
い。(Left below) PcTi=0 (PC indicates phthalocyanine residue) Organic solvents include nitrobenzene, quinoline, α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene,
A high boiling point organic solvent inert to the reaction of methoxynaphthalene, diphenyl ether, diphenylmethane, diphenylethane, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, etc. is preferable, and the reaction temperature is usually 150 to 300'C, especially 200-250°C is preferred.
本発明においては、かくして得られる粗チタニルフタロ
シアニン化合物をそのまま、もしくは次に述べるような
方法で精製したものを用いる。精製する場合には、非結
晶化処理の後、テトラヒド口フランにて処理する。その
際、予め適当な有機溶剤類、例えばメタノール、エタノ
ール、イソプロビルアルコール等のアルコール類、テト
ラヒド口フラン、1,4−ジオキサン等のエーテル類を
用いて縮合反応に用いた有機溶剤を除去した後、熱水処
理するのが好ましい。特に熱水処理後の洗液のp日が約
5〜7になるまで洗浄するのが好ましい。In the present invention, the thus obtained crude titanyl phthalocyanine compound is used as it is or after being purified by the method described below. In the case of purification, treatment is performed with tetrahydrofuran after the amorphization treatment. At that time, after removing the organic solvent used in the condensation reaction using an appropriate organic solvent, for example, alcohols such as methanol, ethanol, and isopropyl alcohol, and ethers such as tetrahydrofuran and 1,4-dioxane. , preferably hydrothermal treatment. In particular, it is preferable to wash until the p-day of the washing solution after hot water treatment reaches about 5 to 7.
引き続いて、2−エトキシエタノール、ジグライム、ジ
オキサン、テトラヒド口フラン、N,N−ジメチルホル
ムアミド、N−メチルピロリドン、ピリジン、モルホリ
ン等の電子供与性の溶媒で処理することがざらに好まし
い。Subsequent treatment with an electron-donating solvent such as 2-ethoxyethanol, diglyme, dioxane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidone, pyridine, and morpholine is more preferred.
次に、フタロシアニン窒素同構体としては、各種のボル
フィン類、例えばフタロシアニンのベンゼン核の1つ以
上をキノリン核に置き換えたテトラピリジノボルフィラ
ジン等があり、また金属フタロシアニンとしては、銅、
ニッケル、コバルト、亜鉛、錫、アルミニウム、チタン
等の各種のものを挙げることができる。Next, as phthalocyanine nitrogen isoconstructs, there are various volfins, such as tetrapyridinovolphyrazine, in which one or more of the benzene nuclei of phthalocyanine is replaced with a quinoline nucleus, and as metal phthalocyanines, copper,
Various materials such as nickel, cobalt, zinc, tin, aluminum, and titanium can be mentioned.
また、フタロシアニン類、ナフタロシアニン類の置換基
としては、アミノ基、ニトロ基、アルキル基、アルコキ
シ基、シアノ基、メルカプト基、ハロゲン原子等があり
、スルホンM基、カルボン酸基、またはその金属塩、ア
ンモニウム塩、アミン塩等を比較的簡単なものとして例
示することができる。更にベンゼン核にアルキレン基、
スルホニル基、カルボニル基、イミノ基等を介して、種
々の置換基を導入することができ、これら従来フタロシ
アニン顔料の技術的分野において凝集防止剤あるいは結
晶変換防止剤として公知のものく例えば米国特許第39
73981号、同4088507号参照〉、もしくは未
知のものが挙げられる。各置換基の導入法は公知のもの
は省略する。また、公知でないものについては実施例中
に合或例として記載する。Substituents for phthalocyanines and naphthalocyanines include amino groups, nitro groups, alkyl groups, alkoxy groups, cyano groups, mercapto groups, halogen atoms, etc., sulfone M groups, carboxylic acid groups, or metal salts thereof. , ammonium salts, amine salts, etc. can be exemplified as relatively simple examples. Furthermore, an alkylene group is added to the benzene nucleus,
Various substituents can be introduced via a sulfonyl group, a carbonyl group, an imino group, etc., and these are known as anti-aggregation agents or crystal conversion inhibitors in the technical field of phthalocyanine pigments, for example, in US Pat. 39
Nos. 73981 and 4088507), or unknown ones. Known methods for introducing each substituent are omitted. In addition, things that are not publicly known will be described as examples in the Examples.
本発明において、チタニルフタロシアニンとベンゼン核
に置換基を有してもよい無金属および金属フタロシアニ
ン窒素同構体、無金属および金属フタロシアニンもしく
はナフチル核に置換基を有してもよい無金属および金属
ナフタロシアニンとの組或比率は100/50 (重量
比〉以上であればよいが、望ましくは100/20〜0
.1(重量比〉とする。100/0.1以上では、結晶
が混晶組成以外に単独結晶を多く含むようになり、赤外
吸収スペクトルや、X線回折スペクトルでの本発明の新
規材料の識別が難しくなる場合がある(以下、これらの
混合組或物についてチタニルフタロシアニン組或物と呼
ぶ〉。In the present invention, titanyl phthalocyanine and metal-free and metal phthalocyanine nitrogen isoconstructs that may have a substituent on the benzene nucleus, metal-free and metal phthalocyanines, or metal-free and metal naphthalocyanines that may have a substituent on the naphthyl nucleus. It is sufficient that the ratio is 100/50 (weight ratio) or more, but preferably 100/20 to 0
.. 1 (weight ratio). If it is 100/0.1 or more, the crystal will contain many single crystals in addition to the mixed crystal composition, and the infrared absorption spectrum and X-ray diffraction spectrum of the new material of the present invention will be Identification may become difficult (hereinafter, these mixed groups are referred to as titanyl phthalocyanine groups).
本発明のチタニルフタロシアニン組成物は、チタニルフ
タロシアニンと、他のフタロシアニン類とを混合し、該
混合物の非結晶性組成物をテトラヒド口フランにて処理
、結晶化することによって製造することができる。The titanyl phthalocyanine composition of the present invention can be produced by mixing titanyl phthalocyanine and other phthalocyanines, and treating the amorphous composition of the mixture with tetrahydrofuran to crystallize it.
非結晶性チタニルフタロシアニン組成物は単一の化学的
方法、機械的な方法でも得られるが、より好ましくは各
種の方法の組み合わせによって得ることができる。The amorphous titanyl phthalocyanine composition can be obtained by a single chemical or mechanical method, but more preferably by a combination of various methods.
例えば、アシッドベースティング法,アシツドスラリー
法等の方法で粒子間の凝集を弱め、次いで機械的処理方
法で摩砕することにより、非結晶性粒子を得ることがで
きる。摩砕時に使用される装置としては、二−ダー,バ
ンバリーミキサーアトライター,エッジランナーミル,
ロールミル,ボールミル,サンドミル,SPEXミル,
ホモミキサー,ディスバーザー,アジター,ジョークラ
ッシャー,スタンプミル,カッターミル,マイクロナイ
ザー等があるが、これらに限られるものではない。また
、化学的処理方法として良く知られたアシッドペーステ
ィング法は、95%以上の硫酸に顔料を溶解もしくは硫
酸塩にしたものを水または氷水中に注ぎ再析出させる方
法であるが、硫酸および水を望ましくは5℃以下に保ち
、硫酸を高速攪拌ざれた水中にゆっくりと注入すること
により、ざらに条件良く非結晶性粒子を得ることができ
る。For example, amorphous particles can be obtained by weakening agglomeration between particles using a method such as an acid basing method or an acid slurry method, and then grinding using a mechanical processing method. Equipment used during grinding includes seconder, Banbury mixer attritor, edge runner mill,
Roll mill, ball mill, sand mill, SPEX mill,
Examples include, but are not limited to, homomixers, dispersers, agitators, jaw crushers, stamp mills, cutter mills, and micronizers. In addition, the acid pasting method, which is well known as a chemical treatment method, is a method in which a pigment is dissolved or made into a sulfate in 95% or more sulfuric acid and then poured into water or ice water to re-precipitate. By keeping the temperature preferably at 5° C. or lower and slowly injecting sulfuric acid into water that is being stirred at high speed, amorphous particles can be obtained under roughly good conditions.
その他、結晶性粒子を直接機械的処理装置できわめて長
時間摩砕する方法、アシツドペーステイング法で得られ
た粒子を前記溶媒等で処理した後摩砕する方法等がある
。Other methods include a method in which crystalline particles are directly milled using a mechanical processing device for a very long time, and a method in which particles obtained by an acid pasting method are treated with the above-mentioned solvent or the like and then milled.
非結晶性粒子は、昇華によっても得られる。例えば、真
空下において各種方法で得られた原材料を各々500〜
600℃に加熱して昇華させ、基板上にすみやかに共蒸
着析出させることにより得ることができる。Amorphous particles can also be obtained by sublimation. For example, each raw material obtained by various methods under vacuum is
It can be obtained by heating to 600° C. to sublimate it and immediately co-evaporating it onto a substrate.
上記のようにして得られた非結晶性チタニルフタロシア
ニン組成物をテトラヒド口フラン中にて処理を行い、新
たな安定した結晶を得る。テトラヒド口フランの処理方
法としては、各種攪拌槽に非結晶性チタニルフタロシア
ニン組成物1重量部に対し、5〜300重量部のテトラ
ヒド口フランを入れ、攪拌を行う。温度は加熱、冷却い
ずれも可能であるが、加温すれば結晶成長が早くなり、
また低温では遅くなる。攪拌槽としては、通常のスター
ラーの他、分故に使用ざれる、超音波ボールミル、サン
ドミル、ホモミキサー、ディスパーザ、アジター、マイ
クロナイザー等や、コンカルブレンダー■型混合機等の
混合機等が適宜用いられるが、これらに限られるもので
はない。The amorphous titanyl phthalocyanine composition obtained as described above is treated in tetrahydrofuran to obtain new stable crystals. As a method for treating tetrahydrofuran, 5 to 300 parts by weight of tetrahydrofuran are placed in various stirring tanks per 1 part by weight of the amorphous titanyl phthalocyanine composition, and the mixture is stirred. Both heating and cooling are possible, but heating speeds up crystal growth.
It also slows down at low temperatures. As the stirring tank, in addition to a normal stirrer, an ultrasonic ball mill, a sand mill, a homomixer, a disperser, an agitator, a micronizer, etc., which are used for classification, or a mixer such as a concal blender type mixer, etc., can be used as appropriate. However, it is not limited to these.
これらの攪拌工程の後、通常は、濾過、洗浄、乾燥を行
い、安定化したチタニルフタロシアニン組或物の結晶を
得る。この時、濾過、乾燥を行わず、分敗液に必要に応
じ樹脂等を添加し、塗料化することもでき、電子写真感
光体等の塗布膜として用いる場合、省工程となりきわめ
て有効である。After these stirring steps, filtration, washing, and drying are usually performed to obtain stabilized crystals of titanyl phthalocyanine complex. At this time, without filtration or drying, it is possible to add a resin or the like to the separated liquid as necessary to make it into a paint, which is extremely effective as it saves a number of steps when used as a coating film for electrophotographic photoreceptors and the like.
このようにして得られた本発明のチタニルフタロシアニ
ン粗或物の赤外吸収スペクトルを第1図に示す。このチ
タニルフタロシアニン組或物は、吸収波数(c『1、但
し±2の誤差を含むものとする)が1490, 141
5、1332、1119、1072、1060,961
、893、780, 751、730の点に特徴的な
強いピークを示すものである。The infrared absorption spectrum of the crude titanyl phthalocyanine of the present invention thus obtained is shown in FIG. This titanyl phthalocyanine composition has an absorption wave number (c'1, including an error of ±2) of 1490 and 141.
5, 1332, 1119, 1072, 1060,961
, 893, 780, 751, and 730 show characteristic strong peaks.
参考のため、N−メチルピロリドン処理をしたチタニル
フタロシアニンの赤外吸収スペクトルを第2図に、アシ
ッドペースト法[モザー・アンド・トーマス著「フタロ
シアニン化合物J (1963年発行〉に記載ざれて
いるα形フタロシアニンを得るための処理方法コにより
処理したチタニルフタロシアニンの赤外吸収スペクトル
を第3図に示す。For reference, Figure 2 shows the infrared absorption spectrum of titanyl phthalocyanine treated with N-methylpyrrolidone. FIG. 3 shows an infrared absorption spectrum of titanyl phthalocyanine treated by the treatment method for obtaining phthalocyanine.
これらの赤外吸収スペクトルから、前記の方法で得られ
るチタニルフタロシアニン組成物が新規なものであるこ
とがわかる。These infrared absorption spectra show that the titanyl phthalocyanine composition obtained by the above method is novel.
またCuKδ線を用いたX線回折図を第4〜6図に示す
。このチタニルフタロシアニン組戒物は、X線回折図に
おいて、ブラッグ角2θ(但し±0.2度の誤差範囲を
含むものとする〉が27,3度に最大の回折ピークを示
し、θ±0.24.1度に強いピークを示すものと、2
7.3度に最大のピークを示し、7.4度、22.3度
、24.1度、25,3度、28.5度に強いピークを
示すものとがある。Further, X-ray diffraction patterns using CuKδ rays are shown in FIGS. 4 to 6. This titanyl phthalocyanine compound exhibits a maximum diffraction peak at a Bragg angle 2θ (with an error range of ±0.2 degrees) of 27.3 degrees in the X-ray diffraction diagram, and a maximum diffraction peak of θ±0.24 degrees. Those showing a strong peak at once, and those showing a strong peak at two times.
Some of them show a maximum peak at 7.3 degrees, and others show strong peaks at 7.4 degrees, 22.3 degrees, 24.1 degrees, 25.3 degrees, and 28.5 degrees.
これらの違いは一般に回折線の強度は、各結晶面の大き
ざにほぼ比例することから、同一構造結晶の各結晶面の
成長度合が異なるためと考えられる。These differences are thought to be due to the difference in the growth rate of each crystal plane of a crystal with the same structure, since the intensity of a diffraction line is generally approximately proportional to the size of each crystal plane.
本発明のチタニルフタロシアニン組戒物は、テトラヒド
ロフラン中で更に加熱攪拌を加え、結晶或長の促進を行
っても赤外吸収スペクトルにおいて大きな変化を示さず
、きわめて安定した良好な結晶である。The titanyl phthalocyanine compound of the present invention shows no major change in the infrared absorption spectrum even when heated and stirred in tetrahydrofuran to promote crystal growth, and is an extremely stable and good crystal.
本発明に用いられる電荷移動剤の1つは、一般式[I]
で表されるものであり、
(式中、RS ,R2 ,R3およびR4は前記と同一
の意味を有する〉
特に、式[III]で表される化合物が有効である。One of the charge transfer agents used in the present invention has the general formula [I]
(wherein RS , R2 , R3 and R4 have the same meanings as above) Particularly effective are compounds represented by formula [III].
前記一般式[I]に示した化合物は常法によって容易に
合或できる。例えばJ. pacanskyら,(ラデ
ィエーション・フィジックス・アンド・ケ互ストリー(
Radiat. Phys. CheIll. )
,第29巻,第3号,第219− 225頁, 198
7)の方法によって容易に得ることができる。The compounds represented by the general formula [I] can be easily synthesized by conventional methods. For example, J. Pacansky et al.
Radiat. Phys. CheIll. )
, Volume 29, No. 3, Pages 219-225, 198
It can be easily obtained by method 7).
具体的には、
〈式中、R1 ,R2 ,R3およびR4は前記と同一
の意味を有する〉
をモル比で1:1から2:1の割合で加え、鉱酸、例え
ば塩酸を触媒として用い、エタノール中にて容易に合戒
することができる。Specifically, <In the formula, R1, R2, R3 and R4 have the same meanings as above> is added in a molar ratio of 1:1 to 2:1, and a mineral acid such as hydrochloric acid is used as a catalyst. , can be easily mixed in ethanol.
前記一般式[IIlに示した化合物は、具体的には、表
−1に示すようなものが例示できるが、類似化合物は有
効であり、必ずしもこれに限らない。Specific examples of the compound represented by the general formula [IIl] include those shown in Table 1, but similar compounds are effective, and the invention is not necessarily limited thereto.
(以下余白)
表
1
表−1
(続き)
これらは常法によって合成できる。例えば、古野( Y
oshino)ら、東京工業試験所報告( Rep.G
ov. Chem. Ind. Res. Inst.
Tokyo) , 37, 95,111(1942
) 、および米国特許第3739000@等の方法によ
って容易に得ることができる。(Left below) Table 1 Table-1 (Continued) These can be synthesized by conventional methods. For example, Furuno (Y
oshino) et al., Tokyo Industrial Research Institute Report (Rep.G
ov. Chem. Ind. Res. Inst.
Tokyo), 37, 95, 111 (1942
), and US Pat. No. 3,739,000@.
具体的には、一般式[■]で示される化合物は、一般式
[IV]:
(式中、AおよびR5は前記と同じ意味を有する〉
で示ざ托るフエニル化合物と、一般式[V]:R6 R
7 C−0 −[V](式中、R6お
よびR7は前記と同じ意味を有する〉
で示される化合物をモル比で各々4:1から2=1の割
合で加え、鉱酸、例えば塩酸もしくは無水塩化亜鉛等を
触媒として用いることにより、容易に合戒することがで
きる。また、必要に応じてメタノール、エタノール、ジ
オキサン、クロロホルム、ベンゼン等の溶剤を用いても
よい。Specifically, the compound represented by the general formula [■] is a phenyl compound represented by the general formula [IV]: (wherein A and R5 have the same meanings as above), and the compound represented by the general formula [V ]:R6 R
7 C-0 - [V] (wherein R6 and R7 have the same meanings as above) are added in a molar ratio of 4:1 to 2=1, and a mineral acid such as hydrochloric acid or By using anhydrous zinc chloride or the like as a catalyst, the reaction can be easily carried out. Also, if necessary, a solvent such as methanol, ethanol, dioxane, chloroform, benzene or the like may be used.
本発明の電子写真感光体は、導電性基板上に、アンダー
コート層、電荷発生層、電荷移動層の順に積層されたも
のが望ましいが、アンダーコート層、電荷移動層、電荷
発生層の順で積層ざれたものや、アンダーコート層上に
電荷発生剤と電荷移動剤を適当な樹脂で分散塗工された
ものでも良い。The electrophotographic photoreceptor of the present invention preferably has an undercoat layer, a charge generation layer, and a charge transfer layer laminated in this order on a conductive substrate. It may be a layered structure or a structure in which a charge generating agent and a charge transfer agent are dispersed and coated on an undercoat layer with a suitable resin.
また、これらのアンダーコート層は必要に応じて省略す
ることもできる。Furthermore, these undercoat layers can be omitted if necessary.
本発明で用いられる導電性基板としては、アルミニウム
、ニッケル、クロムなどからなる金属板、金属ドラムま
たは金属箔およびアルミニウム、酸化スズ、酸化インジ
ウム、クロムなどの薄層を設けたプラスチックフィルム
および導電性物質を塗布または含浸させた紙またはプラ
スチックフィルムなどが用いられる。Conductive substrates used in the present invention include metal plates, metal drums, or metal foils made of aluminum, nickel, chromium, etc., plastic films with thin layers of aluminum, tin oxide, indium oxide, chromium, etc., and conductive materials. Paper or plastic film coated or impregnated with is used.
本発明によるチタニルフタロシアニン組成物を電荷発生
剤として適当なバインダーを基板上に塗工することで、
きわめて分敗性が良く、光電変換効率がきわめて大きな
電荷発生層を1qることができる。By coating the titanyl phthalocyanine composition according to the present invention as a charge generating agent on a substrate with a suitable binder,
It is possible to produce 1 q of charge generation layer with extremely good decomposition property and extremely high photoelectric conversion efficiency.
塗工は、スピンコーター、アプリケーター、スプレーコ
ーター、バーコーター、浸漬コーター、ドクターブレー
ド、ローラーコーター、カーテンコータ′一、ビードコ
ーター装置を用いて行い、乾燥は、望ましくは加熱乾燥
で40〜200℃、10分〜6時間の範囲で、静止また
は送風条件下で行う。Coating is performed using a spin coater, applicator, spray coater, bar coater, dip coater, doctor blade, roller coater, curtain coater, or bead coater, and drying is preferably performed by heating at 40 to 200°C. The test is carried out for a period of 10 minutes to 6 hours under static or ventilated conditions.
乾燥後膜厚はo.oi〜5脚、望ましくは0.1〜1即
になるように塗工される。The film thickness after drying is o. It is coated in such a way that it has an oi~5 base, preferably a 0.1~1 instant.
電荷発生層を塗工によって形或する際に用いうるバイン
ダーとしては、広範な絶縁性樹脂から選択でき、またポ
リーN−ビニル力ルバゾール、ポリビニルアントラセン
やボリビニルピレンなどの有機光導電性ポリマーから選
択できる。好ましくは、ポリビニルブチラール、ポリア
リレート(ビスフェノールAとフタル酸の縮重合体など
)、ポリカーボネート、ポリエステル、フエノキシ樹脂
、ポリ酢酸ビニル、アクリル樹脂、ポリアクリルアミド
樹脂、ボリアミド、ポリビニルピリジン、セルロース系
樹脂、ウレタン樹脂、エポキシ樹脂、シリコン樹脂、ポ
リスチレン、ポリケトン、ポリ塩化ビニル、塩ビー酢ビ
共重合体、ポリビニルアセタール、ポリアクリロニトリ
ル、フェノール樹脂、メラミン樹脂、カゼイン、ポリビ
ニルアルコール、ポリビニルピロリドン等の絶縁性樹脂
を挙げることができる。電荷発生層中に含有する樹脂は
、100重量%以下、好ましくは40重量%以下が適し
ている。またこれらの樹脂は、1種または2種以上組み
合わせて用いても良い。Binders that can be used to form the charge generating layer by coating can be selected from a wide variety of insulating resins and organic photoconductive polymers such as poly-N-vinyl rubber, polyvinyl anthracene, and polyvinyl pyrene. can. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane resin , epoxy resin, silicone resin, polystyrene, polyketone, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetal, polyacrylonitrile, phenol resin, melamine resin, casein, polyvinyl alcohol, polyvinylpyrrolidone, and other insulating resins. I can do it. The resin contained in the charge generation layer is suitably 100% by weight or less, preferably 40% by weight or less. Further, these resins may be used alone or in combination of two or more.
これらの樹脂を溶解する溶剤は樹脂の種類によって異な
り、後述する電荷移動層やアンダーコート層に対して塗
工時に影響を与えないものから選択することが好ましい
。具体的にはベンゼン,キシレン,リグロイン,モノク
ロルベンゼン,ジクロルベンゼンなどの芳香族炭化水素
、アセトン,メチルエチルケトン,シクロヘキサノンな
どのケトン類、メタノール,エタノール,イソプロパノ
ールなどのアルコール類、酢酸エチル,メチルセロソル
ブなどのエステル類、四塩化炭素,クロロホルム,ジク
ロルメタン,ジクロルエタン,トリクロルエチレンなど
の脂肪族ハロゲン化炭化水素類、テトラヒド口フラン,
ジオキサン,エチレングリコールモノメチルエーテルな
どのエーテル類、N,N−ジメチルホルムアミド, N
,N−ジメチルアセトアミドなどのアミド類、およびジ
メチルスルホキシドなどのスルホキシド類が用いられる
。The solvent for dissolving these resins varies depending on the type of resin, and is preferably selected from those that do not affect the charge transfer layer and undercoat layer, which will be described later, during coating. Specifically, aromatic hydrocarbons such as benzene, xylene, ligroin, monochlorobenzene, dichlorobenzene, ketones such as acetone, methyl ethyl ketone, cyclohexanone, alcohols such as methanol, ethanol, isopropanol, ethyl acetate, methyl cellosolve, etc. Esters, carbon tetrachloride, aliphatic halogenated hydrocarbons such as chloroform, dichloromethane, dichloroethane, trichloroethylene, tetrahydrofuran,
Ethers such as dioxane, ethylene glycol monomethyl ether, N,N-dimethylformamide, N
, N-dimethylacetamide, and sulfoxides such as dimethyl sulfoxide.
また、電荷移動層は前記一般式[I]および[■]で示
される化合物を適当なバインダーに溶解し、これを塗布
することにより形或することができる。混合の割合は、
前記一般式[I]に対して一般式[II]で示される化
合物が0. 05〜90wt%、特に20〜50 wt
%が好ましい。電荷移動層を塗布することにより形或す
る際に用いるバインダーおよび有機溶剤については、前
述した如き電荷発生層の形或の際に用いられるものを同
様に用いることができる。電荷移動層中に含有する前記
一般式[I]および[II]で示した化合物の合計量は
10〜90重量%、好ましくは30〜65重量%が適し
ている。また必要に応じてバインダーと共に可塑剤等を
用いることもできる。Further, the charge transfer layer can be formed by dissolving the compounds represented by the general formulas [I] and [■] in a suitable binder and coating the solution. The mixing ratio is
The compound represented by general formula [II] is 0. 05-90wt%, especially 20-50wt
% is preferred. Regarding the binder and organic solvent used when forming the charge transfer layer by coating, those used when forming the charge generation layer as described above can be used in the same manner. The total amount of the compounds represented by formulas [I] and [II] contained in the charge transfer layer is suitably 10 to 90% by weight, preferably 30 to 65% by weight. Furthermore, a plasticizer or the like can be used together with the binder as necessary.
電荷移動層は前述の電荷発生層と電気的に接続ざれてお
り、電界の存在下で電荷発生層から注入ざれた電荷キャ
リアを受け取ると共に、これらの電荷キャリアを感光体
表面または支持体表面まで移動する機能を有しており、
電荷移動層は電荷発生層の上に積層ざれていてもよく、
またその下に積層されていてもよい。しかし、電荷移動
層は電荷発生層の上に積層ざれているほうが望ましい。The charge transfer layer is electrically connected to the charge generation layer described above, receives charge carriers injected from the charge generation layer in the presence of an electric field, and transfers these charge carriers to the photoreceptor surface or support surface. It has the function of
The charge transport layer may be laminated on the charge generation layer,
Moreover, it may be laminated thereunder. However, it is preferable that the charge transport layer is laminated on the charge generation layer.
この際、電荷移動層の膜厚は3〜5O脚、好ましくは5
〜20脚である。At this time, the thickness of the charge transfer layer is 3 to 50, preferably 5
~20 legs.
また、通常電荷移動層に用いるバインダー樹脂に対し、
本発明のチタニルフタロシアニン組或物を5〜40重量
%、電荷移動剤を10〜70重量%混線し、5〜50l
!IR1好ましくは15〜30IjIriの単一層の感
光体を作製することもできる。これにより、帯電性、感
度等の安定した正帯電の感光体が得られる。In addition, for the binder resin normally used for the charge transfer layer,
5-40% by weight of the titanyl phthalocyanine composition of the present invention and 10-70% by weight of the charge transfer agent, 5-50 liters
! It is also possible to produce a single layer photoreceptor with IR1 preferably 15 to 30 IjIri. As a result, a positively charged photoreceptor with stable charging properties, sensitivity, etc. can be obtained.
また導電性支持体と感光体の間にバリアー機能と接@機
能を持つアンダーコート層を設けることもできる。アン
ダーコート層は、カゼイン、ポリビニルアルコール、ニ
トロセルロース、エチレンーアクリル酸共重合体、ボリ
アミド、ポリウレタン、ゼラチン、酸化アルミニウム、
酸化亜鉛等によって形或できる。アンダーコート層の膜
厚は、0.1〜5脚、好ましくは0.5〜3tII!1
程度が適当である。Further, an undercoat layer having a barrier function and a contact function can be provided between the conductive support and the photoreceptor. The undercoat layer contains casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide, polyurethane, gelatin, aluminum oxide,
It can be formed using zinc oxide or the like. The thickness of the undercoat layer is 0.1 to 5 mm, preferably 0.5 to 3 tII! 1
The degree is appropriate.
本発明の電子写真感光体は、第7図の分光感度特性図に
示すように、800 nn+近傍の波長に吸収ピクがあ
り、電子写真感光体として複写機、プリンタに用いられ
るだけでなく、その他の各種光記憶デバイスにも応用す
ることができる。The electrophotographic photoreceptor of the present invention has an absorption peak at a wavelength around 800 nn+, as shown in the spectral sensitivity characteristic diagram in FIG. It can also be applied to various optical storage devices.
[実施例コ
以下、本発明を具体的に説明するが、本発明はその要旨
を越えない限り、以下の実施例に限定ざれるものではな
い。[Examples] The present invention will be specifically described below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
なお、例中、部とは重量部を示す。In addition, in the examples, parts indicate parts by weight.
フタロシアニン類の製造
合成例1
0−フタロジニトリル20.4部、四塩化チタン7.6
部をキノリン50部中で200’Cにて2時間加熱反応
後、水蒸気蒸溜で溶媒を除き、2%塩酸水溶液、続いて
2%水酸化ナトリウム水溶液で精製し、メタノール、N
,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニ
ルフタロシアニン( TiOPc)21.3部を得た。Production synthesis example of phthalocyanines 1 20.4 parts of 0-phthalodinitrile, 7.6 parts of titanium tetrachloride
After heating reaction for 2 hours at 200'C in 50 parts of quinoline, the solvent was removed by steam distillation, purified with 2% aqueous hydrochloric acid solution, then 2% aqueous sodium hydroxide solution, methanol, N
, N-dimethylformamide and dried to obtain 21.3 parts of titanyl phthalocyanine (TiOPc).
合成例2
アミノイミノイソインドレニン14.5部をキノリン5
0部中で200℃にて2時間加熱し、反応後、水蒸気蒸
溜で溶媒を除き、2%塩酸水溶液、続いて2%水酸化ナ
トリウム水溶液で精製した後、メタノール、N,N−ジ
メチルホルムアミドで十分洗浄後、乾燥することによっ
て、無金属フタロシアニン8.8部(収率70%)を得
た。Synthesis Example 2 14.5 parts of aminoiminoisoindolenine and 5 parts of quinoline
After the reaction, the solvent was removed by steam distillation, purified with a 2% aqueous hydrochloric acid solution, then a 2% aqueous sodium hydroxide solution, and then purified with methanol and N,N-dimethylformamide. After sufficient washing and drying, 8.8 parts of metal-free phthalocyanine (yield 70%) was obtained.
合成例3
0−ナフタロジニトリル20部をキノリン50部中で2
00℃にて4時間加熱反応後、2%塩酸水溶液で精製し
、メタノール、N,N−ジメチルホルムアミドで洗浄後
、乾燥し、無金属ナフタロシアニン15部を得た。Synthesis Example 3 20 parts of 0-naphthalodinitrile in 50 parts of quinoline
After a heating reaction at 00° C. for 4 hours, the product was purified with a 2% aqueous hydrochloric acid solution, washed with methanol and N,N-dimethylformamide, and dried to obtain 15 parts of metal-free naphthalocyanine.
合戒例4
無金属または金属フタロシアニン15部、ジクロルトル
エン500部、塩化アセチルクロライト25部および塩
化アルミニウム70部の混合物を60〜80℃で8時間
攪拌し、その後水中に投入し、固形分を濾過、水洗、乾
燥し、次式で示される化合物を得た。Example 4 A mixture of 15 parts of metal-free or metal phthalocyanine, 500 parts of dichlorotoluene, 25 parts of acetyl chloride and 70 parts of aluminum chloride was stirred at 60 to 80°C for 8 hours, then poured into water to determine the solid content. was filtered, washed with water, and dried to obtain a compound represented by the following formula.
MPc (COC口2 C! > 1.3(式中、Mは
口2 、Cu,Tie,Zn等を、MPCはフタロシア
ニン残基を示し、カツコ外の数字は分析による平均置換
数を示す二以下同様〉
これに、アミン類を公知の方法で反応させることにより
、種々のフタロシアニン誘導体を得た。MPc (COC 2 C! > 1.3 (in the formula, M is 2, Cu, Tie, Zn, etc., MPC is a phthalocyanine residue, and the number outside the box indicates the average number of substitutions by analysis. Similarly> Various phthalocyanine derivatives were obtained by reacting this with amines by a known method.
これらの各種フタロシアニン誘導体を公知の方法で還元
することにより、一般式;
R6
(式中、R8 R9は水素原子、アルキル基、アリー
ル基、ヘテロ基または窒素原子とReR9とでヘテロ環
を形或してもよい〉
で表されるフタロシアニン誘導体を得る。By reducing these various phthalocyanine derivatives by a known method, the general formula; A phthalocyanine derivative represented by the following formula is obtained.
例えば、次式で表されるフタロシアニン誘導体;を還元
するには、ジエチレングリコール80部に水酸化カリウ
ム6部を溶解し、これに上記フタロシアニン誘導体6部
を十分細かく粉砕して加え、ざらに抱水ヒドラジン10
部を徐々に加え、約10時間遠流する。得られた深青色
スラリーを水に注ぎ、濾過、水洗、乾燥する。For example, to reduce a phthalocyanine derivative represented by the following formula, dissolve 6 parts of potassium hydroxide in 80 parts of diethylene glycol, add 6 parts of the above phthalocyanine derivative after sufficiently finely grinding it, and roughly add hydrazine hydrate. 10
gradually add the solution and reflux for about 10 hours. The resulting deep blue slurry is poured into water, filtered, washed with water, and dried.
得られたフタロシアニン誘導体を表−2に示す。The obtained phthalocyanine derivatives are shown in Table 2.
(以下余白)
表
2
合或例5
常法によりクロルスルホン化した無金属フタロシアニン
、銅フタロシアニン、ニッケルフタロシアニン、コバル
トフタロシアニン、チタニルフタロシアニンを各種アミ
ンと反応させ、表−3に示されるフタロシアニン誘導体
を得た。(Leaving space below) Table 2 Synthesis Example 5 Metal-free phthalocyanine, copper phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, and titanyl phthalocyanine, which had been chlorosulfonated by a conventional method, were reacted with various amines to obtain the phthalocyanine derivatives shown in Table 3. .
(以下余白)
表
3
表
3(続き〉
一般式[I]で示したヒドラ・ン 4物の製造合或例6
ジフエニルヒドラジン2.02 9とp−ジエチルアミ
ノベンズアルデヒド1,77 9に、触媒として1Nの
塩1ft1滴を加え、5ccのエタノール中で常温で約
1時間攪拌を行い、濾過,エタノールによる洗浄を行い
、乾燥後2.2gの結晶を得た。収率76%。(Leaving space below) Table 3 Table 3 (Continued) Example 6 Preparation of 4 hydrans represented by general formula [I] Diphenylhydrazine 2.02 9 and p-diethylaminobenzaldehyde 1,77 9 were added as a catalyst. 1 drop of 1 ft of 1N salt was added, stirred in 5 cc of ethanol at room temperature for about 1 hour, filtered and washed with ethanol, and after drying, 2.2 g of crystals were obtained. Yield: 76%.
合戒例7
ジフエニルヒドラジン2.13 (jとp−ジフエニル
アミノベンズアルデヒド2.80 9に、触媒として1
Nの塩酸1滴を加え、5ccのエタノール中で常温で約
1時間攪拌を行った後、濾過,エタノールによる洗浄を
行い、乾燥後1.9gの結晶を得た。Example 7 Diphenylhydrazine 2.13 (j and p-diphenylaminobenzaldehyde 2.80 9, 1 as a catalyst
One drop of N-hydrochloric acid was added, and the mixture was stirred in 5 cc of ethanol at room temperature for about 1 hour, filtered, washed with ethanol, and dried to obtain 1.9 g of crystals.
収率53%。Yield 53%.
一般式 ■]で示した 4物の ゛1
合或例8{例示化合物No.2(表−1参照}〉N,N
−ジエチルアミノーm一トルイジン16。4Ijとベン
ズアルデヒド4.89を内瀉80℃で加熱攪拌し、均一
な溶液となり次第、濃塩酸10.0 ’Jを滴下する。Example 8 {Illustrated Compound No. 2 (See Table-1}〉N, N
16.4 Ij of -diethylamino-toluidine and 4.89 Ij of benzaldehyde are heated and stirred at an internal temperature of 80 DEG C., and as soon as a homogeneous solution is obtained, 10.0'J of concentrated hydrochloric acid is added dropwise.
後に、内温120℃まで上昇させ、同温で約10時間加
熱攪拌を行った。反応液を室温まで冷却し、次いで10
%重炭酸ソーダ水溶液を中性になるまで加える。更に酢
酸エチル150 ccにより目的物を抽出する。硫酸ソ
ーダで脱水後、酢酸エチルをエバボレーターにより溜去
する。残留アメ状物をエタノールioo ccより再結
晶し、白色粉末9.2gを得る。このものの融点は、1
10.0〜111.5℃であった。Afterwards, the internal temperature was raised to 120°C, and the mixture was heated and stirred at the same temperature for about 10 hours. The reaction solution was cooled to room temperature, then 10
% aqueous sodium bicarbonate solution until neutral. Furthermore, the target product was extracted with 150 cc of ethyl acetate. After dehydration with sodium sulfate, ethyl acetate is distilled off using an evaporator. The residual candy-like substance was recrystallized from ethanol ioo cc to obtain 9.2 g of white powder. The melting point of this substance is 1
The temperature was 10.0 to 111.5°C.
合或例9(例示化合物No.10)
N,N−ジエチルアミノー山一トルイジン16.4 9
と4−ジメチルアミンー2−メチルベンズアルデヒド6
.4gを合或例8と同様に反応させ、融点124〜12
7℃の白色粉末9.2gを得た。Synthesis Example 9 (Exemplary Compound No. 10) N,N-diethylamino-Yamaichi Toluidine 16.4 9
and 4-dimethylamine-2-methylbenzaldehyde 6
.. 4g was reacted in the same manner as in Example 8, and the melting point was 124-12.
9.2 g of white powder at 7°C was obtained.
合或例10(例示化合物No.20>
N,N−ジメチルアミノー訃トルイジン10.3 9と
p−メチルベンズアルデヒド4,8タを合或例8と同様
に反応させ、融点130〜140’Cの白色粉末7.7
9を得た。Synthesis Example 10 (Exemplary Compound No. 20> N,N-dimethylamino-toluidine 10.39 and p-methylbenzaldehyde 4,8T were reacted in the same manner as in Synthesis Example 8, and the melting point was 130-140'C. white powder of 7.7
I got a 9.
呈L互東盟X旌旦丑盗
実施例1
合或例1で得たチタニルフ夕口シアニン100部と合成
例4−aで得られた表−2に示す誘導体10部を、氷冷
した98%硫酸に溶解し、水に沈澱させて濾過、水洗、
乾燥することによって両者の均一な組或物を得る。この
組成物10部をテトラヒド口フラン(THE>200部
中で約5時間攪拌を行い、濾過・洗浄を行い、乾燥後、
9.5部のチタニルフタロシアニン組或物を得た。EXAMPLE 1 100 parts of the titanyl cyanine obtained in Example 1 and 10 parts of the derivative shown in Table 2 obtained in Synthesis Example 4-a were mixed with ice-cooled 98% Dissolve in sulfuric acid, precipitate in water, filter, wash with water,
By drying, a uniform composition of both is obtained. 10 parts of this composition was stirred in tetrahydrofuran (THE>200 parts) for about 5 hours, filtered and washed, and after drying,
9.5 parts of titanyl phthalocyanine complex was obtained.
このようにして得た組或物の赤外吸収スペクトルは第1
図のような新しいものであった。またX線回折図は第4
図のようであった。The infrared absorption spectrum of the composition thus obtained is the first
It was new as shown in the figure. Also, the X-ray diffraction diagram is the 4th one.
It looked like the picture.
このようにして得たチタニルフタロシアニン組或物0.
49を、ポリビニルブチラール0.39、丁目F 30
gと共にボールミルで分敗した。この分敗液をアルミ
ニウム蒸@層を有するポリエステルフィルム上にフィル
ムアプリケーターで乾燥膜厚が0.2μsとなるように
塗布し、100℃で1時間乾燥し、電荷発生層を得た。The titanyl phthalocyanine complex thus obtained was 0.
49, polyvinyl butyral 0.39, Chome F 30
I was defeated in a ball mill with g. This separation solution was applied onto a polyester film having an aluminum vapor layer using a film applicator so that the dry film thickness was 0.2 μs, and dried at 100° C. for 1 hour to obtain a charge generation layer.
このようにして得られた電荷発生層の上に、電荷移動剤
として前記合成例6で示したヒドラゾン化合物70部と
例示化合物(NO.2>のトリフエニルメタン誘導体3
0部およびポリカーボネート樹脂(三菱ガス化学Z−2
00) 100部をトルエン/テトラヒド口フラン(
1/1) 500部に溶解した溶液を乾燥膜厚が1
5珈となるように塗布して電荷移動層を形戒し、積層型
の感光層を有する電子写真感光体を得た。On the charge generation layer thus obtained, 70 parts of the hydrazone compound shown in Synthesis Example 6 as a charge transfer agent and 3 parts of the triphenylmethane derivative of the exemplified compound (No. 2) were added.
0 parts and polycarbonate resin (Mitsubishi Gas Chemical Z-2
00) 100 parts toluene/tetrahydrofuran (
1/1) A solution dissolved in 500 parts has a dry film thickness of 1
The charge transfer layer was formed by applying the coating to a thickness of 5 layers to obtain an electrophotographic photoreceptor having a laminated photosensitive layer.
この感光体を静電複写紙試験装置(川口電機製作所EP
A−8100)を用いて、まず感光体に0.8秒間の前
露光をし、暗所で−5.OkVのコロナ放電により帯電
させて0.9秒間放置し、次いで照度5luxの白色光
で0.2秒間露光し、O、8秒間休止するという測定を
2000回繰り返し、1回目から2000回目の初期帯
電位の変化量(dVo>、0.9秒間の電位保持率(V
o.9/VQ )と表面電位が半分に減衰するのに必要
な露光量E1/2( lux− sec )を求め、
その結果を表−4に示した(voは初期帯電位、■0.
9は0.9秒後の帯電位〉。This photoreceptor was tested using an electrostatic copying paper tester (Kawaguchi Electric Seisakusho EP).
A-8100), the photoreceptor was first exposed to light for 0.8 seconds, and then exposed to -5. The measurement was repeated 2,000 times by charging by OkV corona discharge and leaving for 0.9 seconds, then exposed to white light with an illuminance of 5 lux for 0.2 seconds, and then resting for 8 seconds. amount of change in potential (dVo>, potential holding rate for 0.9 seconds (V
o. 9/VQ) and the exposure amount E1/2 (lux-sec) required to attenuate the surface potential by half,
The results are shown in Table 4 (vo is the initial charging potential, ■0.
9 is the charged potential after 0.9 seconds.
実施例2〜6
前記の古野( Yoshino)らの合成法を用い、合
或例8〜10と同様にして例示化合物No.2.4,1
0, 20, 30 (,表−1参照〉のトリフエニル
メタンを合或し、これらの化合物を電荷移動剤として前
記合或例6で示したヒドラゾン化合物と共に用いて実施
例1と同様にして感光体を作製し、その電位特性を調べ
た。その結果を表−4に示す。Examples 2 to 6 Exemplary compounds No. 1 were synthesized in the same manner as in Examples 8 to 10 using the above-mentioned synthesis method of Yoshino et al. 2.4,1
Photosensitization was carried out in the same manner as in Example 1 by combining triphenylmethane of 0, 20, 30 (see Table 1) and using these compounds together with the hydrazone compound shown in Example 6 as a charge transfer agent. A body was prepared and its potential characteristics were investigated.The results are shown in Table 4.
実施例7
合或例1で得たチタニルフタロシアニン1部と合或例2
で得た無金属フタロシアニン0. 05部とを5℃の9
8%硫酸30部の中に少しずつ溶解し、その混合物を約
1時間、5℃以下の温度を保ちながら攪拌する。続いて
硫酸溶液を高速攪拌した500部の氷水中にゆっくりと
注入し、析出した均一組戒物を濾過する。これを酸が残
留しなくなるまで蒸溜水で洗浄し、ウエットケーキを得
る。そのケーキ(含有フタロシアニン量1部と仮定して
をテトラヒド口フラン100部中で約1時間攪拌を行い
、濾過、テトラヒド口フランによる洗浄を行い、顔料含
有分が0.95部であるチタニルフ夕口シアニン組成物
結晶のテトラヒド口フラン分散液を得た。一部乾燥させ
、赤外吸収スペクトルとX線回折像を調べた。その結果
、赤外吸収スペクトルは第1図と同様であり、X線回折
図は第5回のようであった。Example 7 Combination of 1 part of titanyl phthalocyanine obtained in Example 1 and Example 2
Metal-free phthalocyanine obtained in 0. 05 parts and 9 at 5℃
It is dissolved little by little in 30 parts of 8% sulfuric acid and the mixture is stirred for about 1 hour while maintaining the temperature below 5°C. Subsequently, the sulfuric acid solution was slowly poured into 500 parts of ice water that was stirred at high speed, and the precipitated homogeneous precipitate was filtered. This is washed with distilled water until no acid remains, to obtain a wet cake. The cake (assuming the amount of phthalocyanine contained is 1 part) was stirred in 100 parts of tetrahydrofuran for about 1 hour, filtered, and washed with tetrahydrofuran, and the titanium hydroxide containing 0.95 parts of pigment was stirred in 100 parts of tetrahydrofuran. A tetrahydrofuran dispersion of cyanine composition crystals was obtained.It was partially dried and examined for its infrared absorption spectrum and X-ray diffraction image.As a result, the infrared absorption spectrum was similar to that shown in Figure 1, and the X-ray The diffraction pattern looked like the 5th one.
次に、本組成物を乾燥重量で1。5部、ブチラール樹脂
(積水化学製BX−5>1部、テトラじドロフラン80
部となるように塗料を超音波分敗機を用いて調製した。Next, 1.5 parts by dry weight of this composition, butyral resin (Sekisui Chemical BX-5>1 part, tetradidrofuran 80
The paint was prepared using an ultrasonic dissociator.
この分敗液をボリアミド樹脂(東レ製C M−8000
)を0. 5NIコーティングしたアルミ板上に乾燥膜
厚が0.2sMになるように塗布し、電荷発生層を得た
。This separated liquid was treated with polyamide resin (Toray CM-8000).
) to 0. A charge generation layer was obtained by applying the mixture to a dry film thickness of 0.2 sM on an aluminum plate coated with 5NI.
その後の工程は実施例1と同様にして感光体を作製し、
その特性を評価した。その結果を表−4に示す。The subsequent steps were similar to those in Example 1 to produce a photoreceptor,
Its characteristics were evaluated. The results are shown in Table 4.
実施例8
実施例7の無金属フタロシアニンの代わりに合戒例3で
得た無金属ナフタロシアニンを0.05部用いた他は、
実施例7と同様に試料を作製し、赤外吸収スペクトルが
第1図と同様であり、X線回折像が第6図に示すようで
あることを確認し、次いで感光体を実施例1と同様に作
製し、その特性を測定・評価した。その結果を表−4に
示す。Example 8 0.05 part of the metal-free naphthalocyanine obtained in Comprehensive Example 3 was used instead of the metal-free phthalocyanine in Example 7.
A sample was prepared in the same manner as in Example 7, and it was confirmed that the infrared absorption spectrum was the same as that shown in FIG. 1, and the X-ray diffraction image was as shown in FIG. It was produced in the same manner, and its characteristics were measured and evaluated. The results are shown in Table 4.
実施例9
銅テトラピリジノポルフイラジンを公知の方法によって
合或した。Example 9 Copper tetrapyridinoporphyrazine was synthesized by a known method.
ブタニルフタロシアニン100部と上記銅テトラピリジ
ノポルフィラジン10部とを濃硫酸に溶解し、水中に投
入、濾過、水洗、乾燥して均一で微細な結晶を得た。さ
らに実施例7と同様にテトラヒド口フランで洗浄した結
果、赤外吸収スペクトルは第1図のようであった。以下
、感光体を実施例1と同様に作製し、その特性を測定・
評価した。100 parts of butanylphthalocyanine and 10 parts of the above copper tetrapyridinoporphyrazine were dissolved in concentrated sulfuric acid, poured into water, filtered, washed with water, and dried to obtain uniform, fine crystals. Furthermore, as in Example 7, the product was washed with tetrahydrofuran, and as a result, the infrared absorption spectrum was as shown in FIG. Hereinafter, a photoreceptor was prepared in the same manner as in Example 1, and its characteristics were measured and
evaluated.
その結果を表−4に示す。The results are shown in Table 4.
比較例1
電荷移動剤として、前記合或例6に示したヒドラゾン化
合物のみを用い、その他は前記実施例1と同様にして感
光体を作製し、その電位特性を測定・評価した。その結
果を表−4に示す。Comparative Example 1 A photoreceptor was prepared in the same manner as in Example 1 except that only the hydrazone compound shown in Comparative Example 6 was used as a charge transfer agent, and its potential characteristics were measured and evaluated. The results are shown in Table 4.
比較例2
電荷移動剤として、前記合戒例7に示したヒドラゾン化
合物のみを用い、その他は前記実施例1と同様にして感
光体を作製し、その電位特性を測定・評価した。その結
果を表−4に示す。Comparative Example 2 A photoreceptor was prepared in the same manner as in Example 1 except that only the hydrazone compound shown in Comparative Example 7 was used as a charge transfer agent, and its potential characteristics were measured and evaluated. The results are shown in Table 4.
(以下余白〉
表
4
?期表面電位の1回目から
2000回目の変化量
V,, : 0.9秒後表面電位Vg.g /V
■ : (}.9秒後暗減衰率dvO
E1/2 : 半減露光量
■R : 光照射1.1秒後表面電位[発明の効果
]
以上のように本発明の電子写真感光体は、新規で安定な
組成物結晶体を電荷発生剤として用いることにより、該
組成物結晶体が溶剤に対し安定なため、塗料とする場合
、溶剤選択が容易になり、分敗の良好な、寿命の長い塗
料が得られるので、感光体製造上重要な均質な製膜が容
易となる。(Leaving space below) Table 4 Amount of change in surface potential during the ? period from the 1st to the 2000th time V,,: Surface potential after 0.9 seconds Vg.g /V
■: (}.Dark decay rate after 9 seconds dvO E1/2: Half-decreased exposure amount ■R: Surface potential after 1.1 seconds of light irradiation [Effects of the Invention] As described above, the electrophotographic photoreceptor of the present invention has a novel By using a stable composition crystal as a charge generating agent, the composition crystal is stable against solvents, so when used as a paint, it becomes easy to select a solvent, and it has a long life with good separation. Since a coating material can be obtained, it becomes easy to form a homogeneous film, which is important in the production of photoreceptors.
特に、前記一般式[I]および[II]の化合物を電荷
移動剤として組み合わせることにより得られる電子写真
感光体は、特に半導体レーザ波長域に対して高い光感度
を有し、帯電性に優れ、繰り返し使用しても光疲労が少
ないため耐久性に優れ、特に高速・高品位のプリンタ用
感光体として有用である。In particular, an electrophotographic photoreceptor obtained by combining the compounds of the general formulas [I] and [II] as a charge transfer agent has high photosensitivity, especially in the semiconductor laser wavelength range, and has excellent charging properties. It has excellent durability because it has little optical fatigue even after repeated use, and is particularly useful as a photoreceptor for high-speed, high-quality printers.
【図面の簡単な説明】
第1図は本発明の一実施例に用いられるチタニルフ夕口
シアニン組戊物の赤外吸収スペクトル図、第2図および
第3図は従来例により得られる公知のチタニルフ夕口シ
アニンの赤外吸収スペクトル図、第4〜6図はそれぞれ
本発明の一実施例に用いられるチタニルフタロシアニン
組戊物のX線回折図、第7図は本発明の一実施例の分光
感度特性図である。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an infrared absorption spectrum diagram of a titanium fluoride cyanine composite used in an embodiment of the present invention, and FIGS. Infrared absorption spectrum diagram of Yuguchi cyanine, Figures 4 to 6 are X-ray diffraction diagrams of titanyl phthalocyanine composition used in one embodiment of the present invention, and Figure 7 is spectral sensitivity of one embodiment of the present invention. It is a characteristic diagram.
Claims (4)
おいて、 (a)電荷発生剤が、無金属フタロシアニン窒素同構体
、金属フタロシアニン窒素同構体、無金属フタロシアニ
ン、金属フタロシアニン、無金属ナフタロシアニンまた
は金属ナフタロシアニン(ただし、無金属フタロシアニ
ン窒素同構体、金属フタロシアニン窒素同構体、無金属
フタロシアニンおよび金属フタロシアニンはベンゼン核
に置換基を有してもよく、また、無金属ナフタロシアニ
ンおよび金属ナフタロシアニンはナフチル核に置換基を
有してもよい)のうちの1種もしくは2種以上を全体で
50重量部以下と、チタニルフタロシアニンを100重
量部含むチタニルフタロシアニン組成物結晶を有効成分
とし、該組成物結晶は、赤外吸収スペクトルにおいて、
1490±2cm^−^1、1415±2cm^−^1
、1332±2cm^−^1、1119±2cm^−^
1、1072±2cm^−^1、1060±2cm^−
^1、961±2cm^−^1、893±2cm^−^
1、780±2cm^−^1、751±2cm^−^1
および730±2cm^−^1に特徴的な強い吸収を有
し、かつCuK@α@を線源とするX線回折スペクトル
において、ブラッグ角(2θ±0.2度)が27.3度
に最大の回折ピークを示し、9.7度、24.1度に強
い回折ピークを示すか、あるいはCuK@α@を線源と
するX線回折スペクトルにおいて、ブラッグ角(2θ±
0.2度)が27.3度に最大の回折ピークを示し、7
.4度、22.3度、24.1度、25.3度、28.
5度に強い回折ピークを示し、 (b)電荷移動剤が、一般式[ I ]; ▲数式、化学式、表等があります▼…[ I ] (式中、R^1は水素原子、置換もしくは未置換のアル
キル基、置換もしくは未置換のアルコキシル基、ハロゲ
ン、置換もしくは未置換のアミノ基、モルフォルノ基、
ピペリジノ基またはフェニル基とともにカルバゾノ基を
形成してもよく、R^2は水素原子、置換もしくは未置
換のアルキル基を示し、R^3、R^4は水素原子、置
換もしくは未置換のアルキル基、置換もしくは未置換の
アリール基、またはピリジル基、ピロロジノ基、カルバ
ゾノ基等の環を形成しても良い) で表されるヒドラゾン化合物と、 一般式[II]; ▲数式、化学式、表等があります▼…[II] (式中、Aは電子供与基、R^5は水素原子、置換もし
くは未置換のアルキル基、置換もしくは未置換のアルコ
キシル基、R^6およびR^7は、同一もしくは異なり
、それぞれ水素原子、置換もしくは未置換のアルキル基
、置換もしくは未置換のアラルキル基、置換もしくは未
置換のアリール基を示す) で示される化合物を有効成分とすることを特徴とする電
子写真感光体。(1) In an electrophotographic photoreceptor containing a charge generating agent and a charge transfer agent, (a) the charge generating agent is a metal-free phthalocyanine nitrogen isoconstruct, a metal phthalocyanine nitrogen isoassembly, a metal-free phthalocyanine, a metal phthalocyanine, a metal-free naphthalocyanine; or metal naphthalocyanine (however, metal-free phthalocyanine nitrogen isoform, metal phthalocyanine nitrogen isoform, metal-free phthalocyanine and metal phthalocyanine may have a substituent on the benzene nucleus, and metal-free naphthalocyanine and metal naphthalocyanine The active ingredient is a titanyl phthalocyanine composition crystal containing 100 parts by weight of titanyl phthalocyanine and a total of 50 parts by weight or less of one or more of the above (which may have a substituent on the naphthyl nucleus); In the infrared absorption spectrum of the crystal,
1490±2cm^-^1, 1415±2cm^-^1
, 1332±2cm^-^1, 1119±2cm^-^
1, 1072±2cm^-^1, 1060±2cm^-
^1, 961±2cm^-^1, 893±2cm^-^
1,780±2cm^-^1,751±2cm^-^1
In the X-ray diffraction spectrum with characteristic strong absorption at 730±2cm^-^1 and CuK@α@ as the radiation source, the Bragg angle (2θ±0.2 degrees) is 27.3 degrees. The Bragg angle (2θ±
0.2 degrees) shows the maximum diffraction peak at 27.3 degrees, and 7
.. 4 degrees, 22.3 degrees, 24.1 degrees, 25.3 degrees, 28.
(b) The charge transfer agent has a general formula [I]; ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] (In the formula, R^1 is a hydrogen atom, a substituted or Unsubstituted alkyl group, substituted or unsubstituted alkoxyl group, halogen, substituted or unsubstituted amino group, morphono group,
A carbazono group may be formed together with a piperidino group or a phenyl group, R^2 represents a hydrogen atom or a substituted or unsubstituted alkyl group, and R^3 and R^4 represent a hydrogen atom or a substituted or unsubstituted alkyl group. , a substituted or unsubstituted aryl group, or a ring such as a pyridyl group, pyrrolodino group, carbazono group, etc.) and a hydrazone compound represented by the general formula [II]; Yes▼...[II] (In the formula, A is an electron donating group, R^5 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group, R^6 and R^7 are the same or An electrophotographic photoreceptor characterized by containing as an active ingredient a compound represented by the following formulas, each representing a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aryl group. .
]で表される請求項(1)に記載の電子写真感光体。 ▲数式、化学式、表等があります▼…[III](2) As a charge transfer agent, a hydrazone compound of the formula [III
] The electrophotographic photoreceptor according to claim (1). ▲There are mathematical formulas, chemical formulas, tables, etc.▼…[III]
またはR^7が置換もしくは未置換のアリール基である
化合物を含有する請求項(1)または(2)に記載の電
子写真感光体。(3) As a charge transfer agent, R^6 in general formula [II]
The electrophotographic photoreceptor according to claim 1 or 2, further comprising a compound in which R^7 is a substituted or unsubstituted aryl group.
がメチル基、Aがジアルキルアミノ基である化合物を含
有する請求項(1)、(2)または(3)に記載の電子
写真感光体。(4) As a charge transfer agent, R^5 in general formula [II]
The electrophotographic photoreceptor according to claim 1, containing a compound in which A is a methyl group and A is a dialkylamino group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18450689A JP2805866B2 (en) | 1989-07-19 | 1989-07-19 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18450689A JP2805866B2 (en) | 1989-07-19 | 1989-07-19 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0350554A true JPH0350554A (en) | 1991-03-05 |
JP2805866B2 JP2805866B2 (en) | 1998-09-30 |
Family
ID=16154386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18450689A Expired - Fee Related JP2805866B2 (en) | 1989-07-19 | 1989-07-19 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2805866B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010265511A (en) * | 2009-04-17 | 2010-11-25 | Hitachi Cable Ltd | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
US7964327B2 (en) * | 2006-06-13 | 2011-06-21 | Ricoh Company Ltd. | Electrophotographic photoreceptor and method of preparing the photoreceptor, and image forming apparatus, image forming method and process cartridge using the photoreceptor |
-
1989
- 1989-07-19 JP JP18450689A patent/JP2805866B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964327B2 (en) * | 2006-06-13 | 2011-06-21 | Ricoh Company Ltd. | Electrophotographic photoreceptor and method of preparing the photoreceptor, and image forming apparatus, image forming method and process cartridge using the photoreceptor |
JP2010265511A (en) * | 2009-04-17 | 2010-11-25 | Hitachi Cable Ltd | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
JP4709296B2 (en) * | 2009-04-17 | 2011-06-22 | 日立電線株式会社 | Method for manufacturing diluted copper alloy material |
Also Published As
Publication number | Publication date |
---|---|
JP2805866B2 (en) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5213929A (en) | Titanyl phthaloycyanine crystal, method of manufacture thereof and its use for electrophotographic photosensitive material | |
JPH0228265A (en) | Phthalocyanine crystal, its production and photosensitive material for electrophotography reduced by using the same crystal | |
JPH0629975B2 (en) | Multilayer type photoconductor for electrophotography | |
JP2001181531A (en) | Titanylphthalocyanine crystal and its production method, and electrophotographic photoreceptor and its production method | |
JP2805867B2 (en) | Electrophotographic photoreceptor | |
JPH0560863B2 (en) | ||
JP2870985B2 (en) | Electrophotographic photoreceptor | |
JP2847827B2 (en) | Electrophotographic photoreceptor | |
JP2861116B2 (en) | Electrophotographic photoreceptor | |
JP2805866B2 (en) | Electrophotographic photoreceptor | |
JPH02272067A (en) | X-type metal phthalocyanine composition, its production and electrophotographic photoreceptor using the same | |
JP2861083B2 (en) | Electrophotographic photoreceptor | |
JP2626096B2 (en) | Electrophotographic photoreceptor | |
JP2985254B2 (en) | Electrophotographic photoreceptor | |
JP3052354B2 (en) | Electrophotographic photoreceptor | |
JP2805915B2 (en) | Electrophotographic photoreceptor | |
JP2811831B2 (en) | Electrophotographic photoreceptor | |
JP2805896B2 (en) | Electrophotographic photoreceptor | |
JPH03273258A (en) | Electrophotographic sensitive body | |
JP4233783B2 (en) | Titanyl phthalocyanine, process for producing the same, and electrophotographic photosensitive member containing the same | |
JPH01247464A (en) | Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom | |
JP3476021B2 (en) | Titanyl phthalocyanine crystal and electrophotographic photoreceptor | |
JP3464937B2 (en) | Electrophotographic photoreceptor | |
JPH02146053A (en) | Electrophotographic sensitive body | |
JPH0541986B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |