JPH03502995A - Log-polar signal processing - Google Patents

Log-polar signal processing

Info

Publication number
JPH03502995A
JPH03502995A JP1508199A JP50819989A JPH03502995A JP H03502995 A JPH03502995 A JP H03502995A JP 1508199 A JP1508199 A JP 1508199A JP 50819989 A JP50819989 A JP 50819989A JP H03502995 A JPH03502995 A JP H03502995A
Authority
JP
Japan
Prior art keywords
signal
stage
digital
information
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1508199A
Other languages
Japanese (ja)
Inventor
ウィルキンソン デント ポール
Original Assignee
テレフオンアクチーボラゲツト エル エム エリクソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲツト エル エム エリクソン filed Critical テレフオンアクチーボラゲツト エル エム エリクソン
Publication of JPH03502995A publication Critical patent/JPH03502995A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G7/00Volume compression or expansion in amplifiers
    • H03G7/001Volume compression or expansion in amplifiers without controlling loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G7/00Volume compression or expansion in amplifiers
    • H03G7/007Volume compression or expansion in amplifiers of digital or coded signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3809Amplitude regulation arrangements

Landscapes

  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Amplifiers (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Holo Graphy (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Debugging And Monitoring (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Optical Communication System (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Analogue/Digital Conversion (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Noise Elimination (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The invention relates to a method and an arrangement intended for radio communication systems and effective in digitalizing and subsequently processing numerically arbitrary radio signals. The signals are represented by composite (complex) vectors which have been subjected to disturbances in the system, such that information in the signals has been lost. This information is restored in its entirety when practising the present invention. For the purpose of solving this problem, the inventive digitalizing arrangement includes a multistage logarithmic amplifier chain (A) in which each stage is connected to a separate detector (D), the output signals of which are added in an adder. The adder output signals are then transmitted to a first A/D-converter (AD1) for digitalizing and converting the amplitude components of the signal. At the same time, the undetected signal from the saturated output stage in the amplifier chain is transmitted to a second A/D-converter for digitalizing and converting the phase components of the signal. The digital values obtained on the outputs of the AD-converters (AD1, AD2) are applied to different inputs of a digital signal processor (MP) for numerical processing of the pairwise received digital values in a manner such as to restore the complete vector characteristic of the signal.

Description

【発明の詳細な説明】 対数極信号処理 技術分野 本発明は無線信号のレベルが広いダイナミック・レンジにわたって変化するがレ ベル値は抜取法の助けを借りて前もって容易に定めることができないような場合 に、前記無線信号をディジタル化して引き続き数値処理する改良された方法およ び@誼に関する。[Detailed description of the invention] Log-polar signal processing Technical field Although the level of the wireless signal varies over a wide dynamic range, the present invention In such cases, the bell value cannot be easily determined in advance with the aid of a sampling method. An improved method and method for digitizing and subsequently numerically processing said radio signals is proposed. Regarding bi@yi.

背媛技術 任意の無線信号を一連の複合(複素)ベクトルとして表わすことは常に可能であ る。ベクトル達の実数および虚数部分はそれぞれ余弦ならびに正弦搬送波(M色 搬送波)の2極振幅変調(両側波帯抑圧搬送波AM)に相当する。コンピュータ 、マイクロプロセッサまたはある他のプログラマブル装置の特定ハードウェア論 理あるいはソフトウェアのいずれかによって実行されるディジタル演算を用いて 無線信号を数値処理したいと思うとき、まず最初に必要なことはA/D変換Δ( アナログ・ディジタル変換墓)の助けを借りて信号を数値の形に変換することで ある。back maiden technology It is always possible to represent any radio signal as a series of complex vectors. Ru. The real and imaginary parts of the vectors are the cosine and sine carriers (M color This corresponds to two-pole amplitude modulation (both sideband suppressed carrier wave AM) of the carrier wave). Computer , the specific hardware theory of a microprocessor or some other programmable device using digital operations performed either by a computer or by software. When you want to numerically process a wireless signal, the first thing you need is A/D conversion Δ( By converting the signal into numerical form with the help of analog-to-digital conversion be.

これを達成する1つの共通な方法は、まず2@Aの平衡ミクサ内に局部発生され た余弦および正弦波との相関によって無線信号をその実数ならびに虚数複素部分 に分解することであり、次にA/D変換により2つの結果をディジタル化するこ とである。時には、無wAへ号がその中心周波数の1/4周期ずつ分離されて対 方式で扱き取られる。このいわゆるi角抜取法は、抜取りおよびA/D変換の機 能を実数ならびに虚数部分の解と組み合わせる。One common way to accomplish this is to first generate locally in a balanced mixer at 2@A. A radio signal can be divided into its real and imaginary complex parts by correlation with cosine and sine waves. Then, the two results are digitized by A/D conversion. That is. Sometimes the signal to no wA is separated by 1/4 period of its center frequency and paired. It is handled according to the method. This so-called i-angle sampling method is used for sampling and A/D conversion. Combine the functions with the real and imaginary parts of the solution.

発明の開示 前述の既知の解決は信号のダイナミック・レンジを取扱う可能性に関して実行上 all限がある。入力信号の欠如にかかわらず、平衡ミクサを相関器として用い る第1法により使用されるi!置は必ずしもぜ口(0)ボトルの出力信号を作ら ない。出力信号は普通、約数ミリボルトまたは約10ミリボルトのDCオフセッ トを有する。同時に、利用できる供給電圧の許容最大信号レベルは例えば+2. 5ボルトに、またはダイオード・リング・ミクサの場合にはおそらく例えば+2 50ミリボルトのさらに低いレベルに制限される。一方では、信号がDCオフセ ット(ミクサ不平衡)であり、他方では、飽和レベルより低く、実に20dB  (デシベル)であるかもしれない。Disclosure of invention The above-mentioned known solutions have practical implications regarding the possibility of handling the dynamic range of the signal. There are all limits. Using a balanced mixer as a correlator regardless of the lack of input signal i! used by the first method The position does not necessarily create an output signal for the mouth (0) bottle. do not have. The output signal typically has a DC offset of about a few millivolts or about 10 millivolts. It has At the same time, the maximum permissible signal level of the available supply voltage is, for example, +2. 5 volts, or perhaps e.g. +2 in the case of a diode ring mixer. It is limited to an even lower level of 50 millivolts. On the one hand, if the signal is (mixer unbalanced), and on the other hand, it is lower than the saturation level, which is actually 20 dB. (decibels).

これは次に、ミクサの信号レベルを最適のレンジに保つように、自動増幅til ltllのある形の導入を要求する。しかし、異なる送信機からバーストの形を したデータのランダム送信を必ず受信しなければならない受信機の場合には、こ の方法を適用するときに、所要の増幅レベルを予測することはできない。This in turn automatically amplifies the mixer signal level to keep it in the optimal range. Requires the introduction of some form of ltll. However, the shape of the burst from different transmitters For receivers that must always receive random transmissions of data, use this option. When applying the method, it is not possible to predict the level of amplification required.

1viI述の両方法に適用できるもう1つの欠点は、A/D変換工程中の制限さ れた解決にある。A/D変換器が信号レベル・レンジの全体を表わし得るものと 想定する。Another disadvantage applicable to both methods described in Section 1viI is the limitation during the A/D conversion process. The solution lies in the following. The A/D converter is capable of representing the entire signal level range. Suppose.

さらに、jIN信号レベルが例えば5ボルトの供給電圧に等しいものと想定する 。そのときLSBビット(最下位ビット>  5/256ボルトすなわち約20 ミリボルトに相当する。したがって、20ミリボルト以下の信号は全く発見され ずに残るが、320ミリボルトの信号はわずか4ビツトの解像度までしかディジ タル化されず、これは以後の信号処理にとっておそらく不十分であると思われる 。それにもかかわらず4ピット解像度が許容されるならば、信号を処理し得る範 囲は16:1または24dBとなり、これは無線応用の場合に極めて狭いダイナ ミック・レンジである。Further assume that the jIN signal level is equal to the supply voltage of e.g. 5 volts. . Then the LSB bit (least significant bit > 5/256 volts or approximately 20 Equivalent to millivolts. Therefore, any signal below 20 millivolts will not be detected at all. However, a 320 millivolt signal can only be digitized to a resolution of 4 bits. This is probably insufficient for further signal processing. . Nevertheless, if a 4-bit resolution is allowed, the signal can be processed within a range 16:1 or 24 dB, which is a very narrow dynamic range for wireless applications. Mick Range.

レーダ受信機は、狭いill限内に受信機出力を維持する目的で自動増幅制御を 使用することが実際的でない装置の代表的な例であるが、これが実用に不向きで あるのは例えば反射物体までの距離、前記物体の大きさならびにパルスの持続時 間などのような多数の未知のパラメータによる。このため、レーダ受信機は「対 数増幅機」として知られる1群の中間周波増幅器を有して正常に作!lJする。Radar receivers use automatic amplification control to maintain receiver output within narrow ill limits. This is a typical example of a device that is impractical to use; These include, for example, the distance to the reflecting object, the size of said object and the duration of the pulse. Due to a large number of unknown parameters such as between. For this reason, radar receivers are Successfully made with a group of intermediate frequency amplifiers known as ``multiple amplifiers''! I do lJ.

そのような装置には複数個の順次飽和する縦続接続式増幅器があり、各増幅器は 共に加算し合うようにされる出力信号を持つ振幅検波器(整流器)を具備してい る。Such devices include a number of sequentially saturating cascaded amplifiers, each with a It is equipped with an amplitude detector (rectifier) whose output signals are made to add together. Ru.

本装買は下記のように機能する。、Rも弱い信号レベルの、場合には、それは全 く検波器自らが出力信号を作るに足るだけの増幅のレベルを有する信号を受信す る増幅群の終りに置かれる検波器である。この能力は、関連増幅段が飽和される まで、入力信号レベルの増加と共に増す。This installation functions as follows. , R is also a weak signal level, in case it The detector itself receives a signal with a sufficient level of amplification to produce an output signal. This is a detector placed at the end of the amplifier group. This capability is limited to saturating the associated amplification stage. increases with increasing input signal level.

この段で、かつ各増幅段用の増幅の正しい選択によって、群の中の先行増幅段は 検波目的に足るだけの強い信号を受信し始め、それによって出力信号への貢献を 引き継ぐ。At this stage, and by correct selection of amplification for each stage, the preceding stage in the group is Begins to receive a signal strong enough for detection purposes, thereby contributing to the output signal. take over.

各段の電圧増幅の201oa10がXである場合、入力信号レベルの各XdBの 増加について、飽和点は増幅群の1段後方に移動され、それによって検波された 出力信号は1単位だけ増加する。検波された正味出力信号はこうして入力信号レ ベルの対数とほぼ直線関係でたどられる。If 201oa10 of the voltage amplification in each stage is X, then each XdB of the input signal level For increase, the saturation point is moved one step behind the amplification group, thereby detecting The output signal increases by one unit. The detected net output signal is thus transferred to the input signal level. It follows an almost linear relationship with Bell's logarithm.

これが一致するダイナミック・レンジは増幅段の数および熱雑音によってのみ制 限される。前述による装置での信号の順次数値処理について検波された出力信号 をディジタル化する方法が任意の無線信号を処理するときに不十分であるのは、 任意の無線信号の複素ベクトル性がこのような順次検波工程では失われるからで ある。The dynamic range over which this is matched is limited only by the number of amplifier stages and thermal noise. limited. Detected output signal for sequential numerical processing of the signal in the device according to the aforementioned The method of digitizing is insufficient when processing arbitrary radio signals. This is because the complex vector nature of any radio signal is lost in such a sequential detection process. be.

前記の諸問題を解決する方法および′IAIfは、特許請求の範囲によって特徴 づけられ、またさもなければ失われるベクトル情報を抽出しながら、前述にした がって増幅器群の内の最終増幅段の飽和出力により作動するもう1つのディジタ ル化工程の導入を伴う。この手順は信号の完全なベクトル特性を回復するように 、2つのディジタル壜の多重数値操作を伴う。これはハードウェア論理の助けを 借りたり、プログラマブル・ディジタル信号プロセッサ(マイクロプロセッサ) によって行われる。こうして、大きなダイナミック・レンジを有する複合信号を 処理するようにされた本発明のディジタル化¥装置は、レーダ受信機に使用され る種類に似た、かつ増幅器からの検波演出力信号が第1 A/D変換器でディジ タル化され、その後第2A/D変換器が信号の角または位相情報をディジタル化 する、対数増幅群を含んでいる。位相情報は慎重に作られた飽和増幅器群を利用 することによって保持され、かつ最終増幅器段の飽和出力で利用することができ 、その点で信号は一定レベルとなり、振幅のすべての変化はそれによって除去さ れる。位相情報を数量の形で抽出する正確な方法は、本発明の目的ではなく、し たがって本明細占には記載されない。The method and 'IAIf for solving the above problems are characterized by the claims. described above, while extracting vector information that would otherwise be lost. Therefore, another digital circuit is activated by the saturated output of the final amplifier stage in the amplifier group. This involves the introduction of a silica process. This procedure recovers the full vector properties of the signal. , involving multiple numerical manipulations of two digital bottles. This is done with the help of hardware logic. Borrowed or programmable digital signal processor (microprocessor) carried out by. In this way, composite signals with large dynamic range can be generated. The digitizing device of the present invention adapted to process The detection output signal from the amplifier is digitized by the first A/D converter. A second A/D converter then digitizes the angle or phase information of the signal. contains a logarithmic amplification group. Phase information is generated using a carefully constructed set of saturating amplifiers and can be utilized at the saturated output of the final amplifier stage. , at which point the signal is at a constant level and all changes in amplitude are thereby removed. It will be done. The exact method of extracting the topological information in quantitative form is not the purpose of this invention; Therefore, it is not described in this specification.

本発明の方法および装置によって与えられる利点は、無線通イdの分野における 面倒な問題を解決し、それによって低コストで高い精度を達成することにある。The advantages provided by the method and apparatus of the invention are in the field of wireless communication. The goal is to solve difficult problems and thereby achieve high accuracy at low cost.

図面の簡単な説明 本発明による装置を、添付図面に示されるその代表的な実施例に関して以下に一 段と詳しく説明する。Brief description of the drawing The apparatus according to the invention will be briefly described below with respect to a representative embodiment thereof shown in the accompanying drawings. Let me explain in detail.

第1図は本発明の装置のブロック概略図であり、第2図は第1図による増幅器群 の1つの変形のlli潔化された概略図である。FIG. 1 is a block diagram of the device according to the invention, and FIG. 2 shows an amplifier group according to FIG. FIG. 2 is a simplified schematic diagram of one variant of FIG.

発明を実施する最良の態様 複合信号をディジタル化する新しい方法およびその方法を実施するVi置が以下 に説明されている。複素数はデカルト座標(x、y)または櫓座標(R,THE TA)の形で表わすことができる。これら2つの形の間の変換は式X=Rcos   (THETA>、Y−Rsin(THETA)の助けを借りて容易に行うこ とができる。BEST MODE FOR CARRYING OUT THE INVENTION A new method of digitizing composite signals and a Vi system for implementing the method are as follows: is explained in. Complex numbers are Cartesian coordinates (x, y) or turret coordinates (R, THE TA). The conversion between these two forms is by the formula X=R cos (THETA>, which can be easily done with the help of Y-Rsin (THETA) I can do it.

r−10+1(R)である対数極の形(r、THETA)は、上述の2つの形の 別法として具合よく使用することができる。したがって下記の変換が適用される 。The log-pole shape (r, THETA), which is r-10+1(R), is a combination of the two shapes mentioned above. Alternatively, it can be conveniently used. Therefore, the following conversion is applied .

(x、y)−exp  (r+jTHETA):r (、T)−IETA)−l oo  (x、y)これらの式は、複素ベクトル(r)の振幅の対数による値お よび複素ベクトルの角(THETA)による値を有するとき、所望の場合に複素 ベクトルのデカルト成分を回復することができる。(x,y)-exp (r+jTHETA):r (,T)-IETA)-l oo   (x,y)These expressions are expressed as and the angle (THETA) of the complex vector, if desired The Cartesian component of a vector can be recovered.

広いダイナミック・レンジを有する複合信号用の木兄i 明のディジタル化装置 は、第1図に示される原理を利用する。処理すべき信号は適当な中間周波数に変 換され、次に増幅器群への内の第1増幅器の入力INに加えられる。前記群は漸 次検波する多数の増幅器を含んでいる。Kiei's digitization equipment for composite signals with a wide dynamic range utilizes the principle shown in FIG. The signal to be processed is changed to an appropriate intermediate frequency. is converted and then applied to the input IN of the first amplifier in the group of amplifiers. The group is gradually It contains a number of amplifiers for subsequent detection.

集積回路の形をした適当な多数の増幅器を市販で入手することができる。前記増 幅器群の各段は1つのそのような回路であるタイプ5L521A(プレツシー・ セミコンダクターズ社製)によって構成される。単一の回路、例えばシクネティ クス(Signetics ) S A 604回路、にすべての増幅段を合体 することも可能である。A large number of suitable amplifiers in the form of integrated circuits are commercially available. said increase Each stage of the spanner group is one such circuit, type 5L521A (Plessy). (manufactured by Semiconductors Corporation). A single circuit, e.g. All amplification stages are combined into Signetics S A 604 circuit. It is also possible to do so.

それぞれの増幅段の各出力には、ダイオード回路の形をしてかつそれぞれの段に 独特な検波器(整流番)が接続されている。検波器の出力はすべてタイプLF1 57A(ナショナル・セミコンダクターズ社製)の加算回路Sに接続されており 、その回路において各検波器回路からの値は加算されかつ加算回路の出力の加算 演出力の形に作られる。この出力は第1^速アナログ/デイジタル変換器At) 1、例えばタイプMP7683 (マイクロパワー・システムズ社製)、の入力 に接続されている。Nビットまで量化されたLOG振幅はA/D変換器の出力に 作られて、ディジタル信号プロセッサMPの第1人力に引き渡される。Nは関連 の適用にとって十分小さい増分または段階で所望のダイナミック・レンをカバー するだけ大きくなければならない。例えば、もし128dBの信号変化レンジを カバーしかつN=8ビットであるならば、S化段階のサイズは128/28=0 .5dBとなる。前記段階のサイズは、関連応用に適合するレベルまでi化雑音 を減少するだけ小さくなければならない。Each output of each amplifier stage has a diode circuit in the form of a A unique detector (rectifier) is connected. All detector outputs are type LF1 It is connected to the adder circuit S of 57A (manufactured by National Semiconductors). , in which the values from each detector circuit are summed and the outputs of the adder circuits are summed. Created in the form of performance. This output is the first speed analog/digital converter At) 1. For example, type MP7683 (manufactured by Micropower Systems), input It is connected to the. The LOG amplitude quantified to N bits is sent to the output of the A/D converter. is produced and handed over to the first manpower of the digital signal processor MP. N is related Covers the desired dynamic range in increments or steps small enough for applications It must be as large as possible. For example, if you want a signal change range of 128dB, cover and N=8 bits, the size of the Sization stage is 128/28=0 .. It becomes 5dB. The size of the stages reduces the integration noise to a level that is compatible with the relevant application. must be as small as .

量化は、本発明の考えの外側にありかつしたがって本明細1に詳しく説明されな い既知の技法である。Quantification is outside the scope of the invention and is therefore not explained in detail in this specification. This is a well known technique.

増幅群の出力Cに作られる信号は極めて強く増幅されるので、それは厳しく t ill限され(クリップされ)で現われ、すなわち増幅器は極めて簡漂化される ので、信号は2レベル信号、すなわち交互するハイまたはロー・レベルの方形波 に変換される。この信号は2つの信号レベル間の遷移のタイミングを調整すると き原信号の位相角情報を保持する。位相角情報を数値の形で抽出する正確な方法 はこの発明の部分を構成しないが、例えば制限された方形波を基準方形波と比較 して次に位相差に比例するアナログ電圧を作る働きをし、それに続いてアナログ /ディジタル変換器において信号をディジタル化する必要があるアナログ電圧を 作る働きをする適当な位相検波器の助けを借りて行うことができる。、最終増幅 段の出フJCに作られる信号は第2 A / I)変換器AD2の入力に加えら れ、そこで信号の位相情報はMビットまで層化されて、A/D変換器の出力から 1イジタル信号プロセッサMPの第2多重入力に送信される。このプロセッサは タイプTM3320C25(テキサス・インスツルメンツ社製)またはおよそそ れに相当するプロセッサであることができる。関連応用に十分なだけ高速の対数 極/1カルト変換が追加処理に要求される形であるときに、これを実行し得るど んなマイクロプロセッサでも使用することができる。デカルト信号成分は第1図 から見られるようにマイクロプロセッサの出力に作られる。第1図に示された装 置の場合には、過度の雑音の発生を防止するように、増幅器群の帯域幅を制限す る必要がある。したがって、増幅器群を通る信号の伝搬は遅延され、その結果各 検波段階からの貢献に連続遅延を生じる。信号振幅に高速変化がある場合に変動 の導入を防止するため、前配値の加算に先立つこの相対遅延を補正する必要があ るかもしれない。Since the signal produced at the output C of the amplification group is amplified extremely strongly, it is severely It appears ill-limited (clipped), i.e. the amplifier is extremely simplified. Therefore, the signal is a two-level signal, i.e. a square wave with alternating high or low levels. is converted to This signal adjusts the timing of the transition between two signal levels. Holds the phase angle information of the source signal. Exact method to extract phase angle information in numerical form does not form part of this invention, but for example comparing a restricted square wave with a reference square wave which in turn serves to create an analog voltage proportional to the phase difference; / Analog voltage needed to digitize the signal in a digital converter This can be done with the help of a suitable phase detector which serves to create , final amplification The signal produced at the output JC of the stage is applied to the input of the second A/I) converter AD2. Then, the phase information of the signal is layered up to M bits and transmitted from the output of the A/D converter. 1 digital signal processor MP to the second multiple input. This processor is Type TM3320C25 (manufactured by Texas Instruments) or approximately It can be a processor equivalent to this. Logarithms fast enough for related applications How can this be done when a polar/one cult transformation is the form that requires additional processing? It can be used with any microprocessor. The Cartesian signal components are shown in Figure 1. is produced on the output of the microprocessor as seen in . The equipment shown in Figure 1 In the case of It is necessary to Therefore, the propagation of the signal through the amplifiers is delayed, resulting in each This introduces a continuous delay in the contribution from the detection stage. Fluctuations when there are fast changes in signal amplitude To prevent the introduction of It might happen.

本発明のtiWtの1つの重要な特徴は信号の瞬時エンベ0−ブ変化のディジタ ル化にあるので、前記の相対遅延は与えられた時間距離でタップを持つ遅延ライ ンDLをH9if内に含めることによって補償することができる。第2図は増幅 器群の検波出力に接続されたそのような遅延ラインを示す。タップT1〜Toは 増幅器に生じる遅延を補償するように自動調節される。次にタップ出力信号は加 算されて第1A/D変換器AD1に引き渡される。One important feature of the tiWt of the present invention is the digitization of the instantaneous envelope change of the signal. Since the above relative delay is a delay line with taps at a given time distance, This can be compensated for by including the DL in H9if. Figure 2 is amplification Figure 3 shows such a delay line connected to the detection output of the detector group. Tap T1~To is Automatically adjusted to compensate for delays introduced in the amplifier. The tap output signal is then The signal is calculated and delivered to the first A/D converter AD1.

他の補償方法の例として、スイッチ式コンデンサまたはある他のCCD法<ta 荷結合素子)の使用が含まれる。Examples of other compensation methods include switched capacitors or some other CCD method This includes the use of load-coupling elements).

別法として、各増幅段または増幅段群からの出力信号は扱取りOツク信号の助け を借りて別々にディジタル化され、次に個々の値はディジタル加算し合う。14 期および抜取工程のタイミングは、図面に全く概略的に示されたシステム・クロ ックCLの助けを借りて既知の方法で行われる。Alternatively, the output signal from each amplifier stage or group of amplifier stages can be handled with the help of an output signal. are digitized separately, and the individual values are then digitally added together. 14 The timing of the period and sampling process is based on the system clock shown quite schematically in the drawing. This is done in a known manner with the help of a block CL.

既知の方法を適用するとき、振幅情報はほとんどまれにしか抽出されず、したが って信号の長い分布品質を作る目的でのみ抽出され、本発明の意図するような信 号のベクトル特性を同11する意図では抽出されない。When applying known methods, amplitude information is extracted almost infrequently, but are extracted only for the purpose of creating a long distribution quality of the signal and are not reliable as intended by the present invention. It is not extracted with the intention of equalizing the vector characteristics of the number.

上述から理解されると思うが、これを達成するには、信号の継続処理に用いる無 線信号の瞬間的な複素ベクトル順序を完全に回復する意図をもって、6号の振幅 および位相角を同じ抜取速度で同期ディジタル化し、かつ各サンプルについて値 を対に保つことが必要である。As you can see from the above, this can be achieved by With the intention of fully recovering the instantaneous complex vector order of the line signal, the amplitude of No. 6 and phase angle are digitized synchronously at the same sampling rate, and the values for each sample are It is necessary to keep them in pairs.

国際調査報告 国際調査報告   PCT/SE 89100426□ 1                ・iinternational search report International Search Report PCT/SE 89100426□ 1 ・i

Claims (3)

【特許請求の範囲】[Claims] 1.無線通信方式において合成信号の情報を失わせる変動を受けた合成(複素) ベクトルによって表わされる任意の無線信号を前記無線方式でディジタル化し、 前記ディジタル化は前記変動によって影響された信号を完全に回復するような仕 方で行われるディジタル化の方法において、瞬時信号振幅の対数にほぼ比例する 信号の第1部分の量と信号の瞬時移相に関する第2部分の量との同時ディジタル 化により前記情報を回復する目的で、信号は段階的な増幅および検波工程を受け 、その後検波された信号は加算されかつその信号はその振幅成分が抽出される第 1段階でディジタル化されることと、振幅されたが検波されない信号では信号の 位相成分が抽出される第2段階でディジタル化されることと、さらにこうしてデ ィジタル化された信号の成分は任意な無線信号の完全な合成ベクトル順序を回復 する目的で対の形で数値処理を受けることを特徴とするディジタル化の方法。1. Synthesis (complex) that is subject to fluctuations that cause information in the composite signal to be lost in wireless communication systems digitizing an arbitrary wireless signal represented by a vector using the wireless method; The digitization is performed in such a way as to fully recover the signal affected by the fluctuations. is approximately proportional to the logarithm of the instantaneous signal amplitude. Simultaneous digital measurement of the quantity of the first part of the signal and the quantity of the second part with respect to the instantaneous phase shift of the signal The signal is subjected to a stepwise amplification and detection process with the aim of recovering said information by , then the detected signals are summed and the signal is subjected to a first step whose amplitude component is extracted. The signal is digitized in one step and the signal is amplified but not detected. digitized in a second stage where the phase components are extracted; The components of the digitized signal can be used to recover the complete composite vector order of any wireless signal. A method of digitization characterized by undergoing numerical processing in the form of pairs for the purpose of digitization. 2.無線通信方式において合成信号の情報を失わせる変動を受けた合成(複素) ベクトルによって表わされる任意の無線信号を前記無線方式でディジタル化し、 前記ディジタル化は前記変動によって影響された信号を完全に回復するような仕 方で行われる請求項1記載による方法を実施する装置において、多段対数増幅器 (A)はその入力に前記無線信号を受信して前記信号を増幅することと、増幅器 の各段は別の検波回路(D)に接続されていることと、各検波回路から得られる 情報は加算回路(S)で加算され、その出力は振幅成分をNビット2進コードに 変換する第1アナロク/ディジタル変換器(AD1)の入力に接続されることと 、増幅されたが検波されない状態の無線信号は最終増幅段の飽和出力から位相成 分をMビット2進コードに変換する第2アナログ/ディジタル変換器(AD2) の入力まで送信され、その後それぞれのAD変換器(AD1,AD2)の出力に 得られるディジタル値は対の形で受信されるディジタル値を数値処理するディジ タル信号プロセッサ(MP)のいろいろな入力アレイに加えられ、したがって信 号の完全なベクトル特性が回復されることを特徴とする前記装置。2. Synthesis (complex) that is subject to fluctuations that cause information in the composite signal to be lost in wireless communication systems digitizing an arbitrary wireless signal represented by a vector using the wireless method; The digitization is performed in such a way as to fully recover the signal affected by the fluctuations. An apparatus for carrying out the method according to claim 1 carried out in a multi-stage logarithmic amplifier. (A) receiving the radio signal at its input and amplifying the signal; Each stage of is connected to another detection circuit (D), and the information obtained from each detection circuit is The information is added in an adder circuit (S), whose output converts the amplitude component into an N-bit binary code. connected to the input of the first analog/digital converter (AD1) to be converted; , the amplified but undetected radio signal is phase-converted from the saturated output of the final amplification stage. A second analog-to-digital converter (AD2) converts minutes into M-bit binary code. is sent to the input of the AD converter (AD1, AD2) The resulting digital value is a digital value that numerically processes the digital values received in the form of a pair. are applied to the various input arrays of the digital signal processor (MP) and therefore 3. Device according to claim 1, characterized in that the complete vector properties of the signal are recovered. 3.タップ(T1〜Tn)の助けを借りてタップ接続し得る遅延ライン(DL) は信号が対数、多段増幅/検波器群を通って進むときに生じる遅延を補償するよ うに、検波器(D)の出力と前記加算回路(S)との間に接続されることを特徴 とする請求項2記載による装置。3. Delay line (DL) that can be tapped with the help of taps (T1 to Tn) is designed to compensate for the delay that occurs when a signal passes through a logarithmic, multistage amplifier/detector group. and is connected between the output of the detector (D) and the adder circuit (S). 3. A device according to claim 2.
JP1508199A 1988-09-19 1989-08-02 Log-polar signal processing Pending JPH03502995A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8803313A SE463540B (en) 1988-09-19 1988-09-19 SEAT TO DIGITALIZE ANY RADIO SIGNALS IN A RADIO COMMUNICATION SYSTEM AND DEVICE TO EXERCISE THE SET
SE8803313-9 1988-09-19

Publications (1)

Publication Number Publication Date
JPH03502995A true JPH03502995A (en) 1991-07-04

Family

ID=20373383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1508199A Pending JPH03502995A (en) 1988-09-19 1989-08-02 Log-polar signal processing

Country Status (18)

Country Link
US (2) US5048059A (en)
EP (1) EP0360770B1 (en)
JP (1) JPH03502995A (en)
KR (1) KR960000611B1 (en)
AT (1) ATE96594T1 (en)
AU (1) AU613225B2 (en)
CA (1) CA1315344C (en)
DE (1) DE68910257T2 (en)
DK (1) DK120490A (en)
ES (1) ES2045556T3 (en)
FI (1) FI902302A0 (en)
HK (1) HK58294A (en)
IE (1) IE63430B1 (en)
NO (1) NO303309B1 (en)
NZ (1) NZ229868A (en)
PT (1) PT91752B (en)
SE (1) SE463540B (en)
WO (1) WO1990003699A1 (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE460449B (en) * 1988-02-29 1989-10-09 Ericsson Telefon Ab L M CELL DIVIDED DIGITAL MOBILE RADIO SYSTEM AND PROCEDURE TO TRANSFER INFORMATION IN A DIGITAL CELL DIVIDED MOBILE RADIO SYSTEM
SE8802229D0 (en) 1988-06-14 1988-06-14 Ericsson Telefon Ab L M MOBILE RADIO STATION PROCEDURE
JP2671595B2 (en) * 1990-10-25 1997-10-29 日本電気株式会社 Demodulator
US5237586A (en) * 1992-03-25 1993-08-17 Ericsson-Ge Mobile Communications Holding, Inc. Rake receiver with selective ray combining
MX9301888A (en) * 1992-04-10 1993-11-30 Ericsson Telefon Ab L M MULTIPLE ACCESS OF TIME DIVISION FOR ACCESS OF A MOBILE IN A MULTIPLE ACCESS SYSTEM OF DIVISION OF CODE.
US5550809A (en) * 1992-04-10 1996-08-27 Ericsson Ge Mobile Communications, Inc. Multiple access coding using bent sequences for mobile radio communications
US5353352A (en) * 1992-04-10 1994-10-04 Ericsson Ge Mobile Communications Inc. Multiple access coding for radio communications
US5295153A (en) * 1992-04-13 1994-03-15 Telefonaktiebolaget L M Ericsson CDMA frequency allocation
TW214620B (en) 1992-04-13 1993-10-11 Ericsson Ge Mobile Communicat Calling channel in CDMA communications system
EP0917308A1 (en) * 1992-04-17 1999-05-19 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Mobile assisted handover using CDMA
SE470371B (en) * 1992-06-23 1994-01-31 Ericsson Telefon Ab L M Methods and apparatus for digital signal transmission to estimate transmitted symbols at a receiver
US5396520A (en) * 1992-07-29 1995-03-07 Dial Page Lp Digital RF receiver
US5841816A (en) * 1992-10-22 1998-11-24 Ericsson Inc. Diversity Pi/4-DQPSK demodulation
US5745523A (en) * 1992-10-27 1998-04-28 Ericsson Inc. Multi-mode signal processing
US5727023A (en) * 1992-10-27 1998-03-10 Ericsson Inc. Apparatus for and method of speech digitizing
US5867537A (en) * 1992-10-27 1999-02-02 Ericsson Inc. Balanced tranversal I,Q filters for quadrature modulators
US5530722A (en) * 1992-10-27 1996-06-25 Ericsson Ge Mobile Communications Inc. Quadrature modulator with integrated distributed RC filters
US5475705A (en) * 1993-04-29 1995-12-12 Ericsson Ge Mobile Communications Inc. Demodulator for Manchester-coded FM signals
US5351016A (en) * 1993-05-28 1994-09-27 Ericsson Ge Mobile Communications Inc. Adaptively self-correcting modulation system and method
KR100304238B1 (en) * 1993-07-16 2001-11-22 맨스 에케로프 Method and apparatus for controlling transceiver operation in wireless communication system
KR950704861A (en) * 1993-10-14 1995-11-20 만스 에켈로프 Adaptive Bandwidth Reeceiver
US5668837A (en) * 1993-10-14 1997-09-16 Ericsson Inc. Dual-mode radio receiver for receiving narrowband and wideband signals
US5506861A (en) * 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5539730A (en) * 1994-01-11 1996-07-23 Ericsson Ge Mobile Communications Inc. TDMA/FDMA/CDMA hybrid radio access methods
US5673291A (en) * 1994-09-14 1997-09-30 Ericsson Inc. Simultaneous demodulation and decoding of a digitally modulated radio signal using known symbols
US5708971A (en) * 1994-01-11 1998-01-13 Ericsson Inc. Two-way paging system and apparatus
US5943324A (en) * 1994-01-11 1999-08-24 Ericsson, Inc. Methods and apparatus for mobile station to mobile station communications in a mobile satellite communication system
US5572552A (en) * 1994-01-27 1996-11-05 Ericsson Ge Mobile Communications Inc. Method and system for demodulation of downlink CDMA signals
US6195399B1 (en) * 1994-03-28 2001-02-27 Ericsson Inc. Method and apparatus for converting a wideband if signal to a complex (quadrature) baseband signal
US5499272A (en) * 1994-05-31 1996-03-12 Ericsson Ge Mobile Communications Inc. Diversity receiver for signals with multipath time dispersion
ES2118050B1 (en) * 1994-06-06 1999-04-16 Ericsson Ge Mobile Inc SELF-ADJUSTABLE MODULATOR AND SELF-ADJUSTABLE MODULATION METHOD
US6173014B1 (en) 1994-08-02 2001-01-09 Telefonaktiebolaget Lm Ericsson Method of and apparatus for interference rejection combining and downlink beamforming in a cellular radio communications system
US6081566A (en) * 1994-08-02 2000-06-27 Ericsson, Inc. Method and apparatus for interference rejection with different beams, polarizations, and phase references
US5680419A (en) * 1994-08-02 1997-10-21 Ericsson Inc. Method of and apparatus for interference rejection combining in multi-antenna digital cellular communications systems
US5481572A (en) * 1994-08-02 1996-01-02 Ericsson Inc. Method of and apparatus for reducing the complexitiy of a diversity combining and sequence estimation receiver
AU692600B2 (en) * 1994-09-12 1998-06-11 Scientific-Atlanta, Inc. Cable television apparatus employing two-way communication
DE69535573T2 (en) * 1994-09-14 2008-05-15 Ericsson Inc., Plano SATELLITE COMMUNICATION ADAPTER FOR CELLULAR TELEPHONE APPARATUS
US5568518A (en) * 1994-09-14 1996-10-22 Ericsson Ge Mobile Communications Inc. Fast automatic gain control
US5535432A (en) * 1994-09-14 1996-07-09 Ericsson Ge Mobile Communications Inc. Dual-mode satellite/cellular phone with a frequency synthesizer
CA2207399A1 (en) * 1994-12-12 1996-06-20 Ericsson, Inc. Diversity-oriented channel allocation in a mobile communications system
AU728639B2 (en) * 1995-03-13 2001-01-11 Ericsson Inc. A two-way paging system and apparatus
US5663957A (en) * 1995-07-12 1997-09-02 Ericsson Inc. Dual mode satellite/cellular terminal
US6975582B1 (en) 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
US5794137A (en) * 1995-07-17 1998-08-11 Ericsson Inc. Method for increasing stand-by time in portable radiotelephones
US5677930A (en) * 1995-07-19 1997-10-14 Ericsson Inc. Method and apparatus for spread spectrum channel estimation
US5839075A (en) * 1995-08-21 1998-11-17 Ericsson Inc. Methods and systems for allocating a cellular communications channel for communication between a cellular terminal and a telephone base station using received signal strength measurements
US5914990A (en) * 1995-11-22 1999-06-22 Telefonaktiebolaget Lm Ericsson Filtering in a receiver that uses log-polar signal processing
US5909460A (en) 1995-12-07 1999-06-01 Ericsson, Inc. Efficient apparatus for simultaneous modulation and digital beamforming for an antenna array
US5751762A (en) * 1996-02-15 1998-05-12 Ericsson Inc. Multichannel receiver using analysis by synthesis
US5894473A (en) * 1996-02-29 1999-04-13 Ericsson Inc. Multiple access communications system and method using code and time division
US5764646A (en) * 1996-04-02 1998-06-09 Ericsson Inc. Packet data transmission with clash subtraction
US5796788A (en) * 1996-04-19 1998-08-18 Ericsson Inc. Method and apparatus for interference decorrelation in time and space
US5831977A (en) * 1996-09-04 1998-11-03 Ericsson Inc. Subtractive CDMA system with simultaneous subtraction in code space and direction-of-arrival space
US6546044B1 (en) 1996-10-11 2003-04-08 Ericsson Inc. Dual-mode radiotelephone apparatus for digital or analog modulation
US5960364A (en) * 1996-11-08 1999-09-28 Ericsson Inc. Satellite/cellular phone using different channel spacings on forward and return links
US6005887A (en) * 1996-11-14 1999-12-21 Ericcsson, Inc. Despreading of direct sequence spread spectrum communications signals
US6023477A (en) * 1996-12-18 2000-02-08 Ericsson Inc. System and method of time and frequency synchronization in a radiocommunication system
US5859664A (en) * 1997-01-31 1999-01-12 Ericsson Inc. Method and apparatus for line or frame-synchronous frequency hopping of video transmissions
US6308048B1 (en) * 1997-11-19 2001-10-23 Ericsson Inc. Simplified reference frequency distribution in a mobile phone
US6243587B1 (en) * 1997-12-10 2001-06-05 Ericsson Inc. Method and system for determining position of a mobile transmitter
US6205183B1 (en) 1998-05-29 2001-03-20 Ericsson Inc. Methods of suppressing reference oscillator harmonic interference and related receivers
US7515896B1 (en) 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US6061551A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
KR100274089B1 (en) * 1998-09-02 2000-12-15 윤종용 Afc circuit and method for dual-mode mobile telephone with acqusition states
US6813485B2 (en) * 1998-10-21 2004-11-02 Parkervision, Inc. Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US7039372B1 (en) 1998-10-21 2006-05-02 Parkervision, Inc. Method and system for frequency up-conversion with modulation embodiments
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US7236754B2 (en) 1999-08-23 2007-06-26 Parkervision, Inc. Method and system for frequency up-conversion
US6563891B1 (en) 1998-11-24 2003-05-13 Telefonaktiebolaget L M Ericsson (Publ) Automatic gain control for slotted mode operation
US6278867B1 (en) 1998-11-25 2001-08-21 Ericsson Inc. Methods and systems for frequency generation for wireless devices
US6567475B1 (en) 1998-12-29 2003-05-20 Ericsson Inc. Method and system for the transmission, reception and processing of 4-level and 8-level signaling symbols
US6853690B1 (en) 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
US6879817B1 (en) * 1999-04-16 2005-04-12 Parkervision, Inc. DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US7065162B1 (en) * 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7110444B1 (en) 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US6526279B1 (en) 1999-08-11 2003-02-25 Ericsson Inc. Communication system with a mobile terminal supporting mobile assisted signal strength measurements for a plurality of networks and methods for operating the same
US6470192B1 (en) 1999-08-16 2002-10-22 Telefonaktiebolaget Lm Ericcson (Publ) Method of an apparatus for beam reduction and combining in a radio communications system
US6625236B1 (en) 2000-02-08 2003-09-23 Ericsson Inc. Methods and systems for decoding symbols by combining matched-filtered samples with hard symbol decisions
US7010286B2 (en) 2000-04-14 2006-03-07 Parkervision, Inc. Apparatus, system, and method for down-converting and up-converting electromagnetic signals
US6934317B1 (en) 2000-10-11 2005-08-23 Ericsson Inc. Systems and methods for communicating spread spectrum signals using variable signal constellations
US6992997B1 (en) 2000-10-17 2006-01-31 Telefonaktiebolaget L.M. Ericsson Methods, wireless terminals, and systems for acquiring service using stored TDMA digital control channel information
US7454453B2 (en) 2000-11-14 2008-11-18 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US7010559B2 (en) * 2000-11-14 2006-03-07 Parkervision, Inc. Method and apparatus for a parallel correlator and applications thereof
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US6961368B2 (en) * 2001-01-26 2005-11-01 Ericsson Inc. Adaptive antenna optimization network
EP1271869B1 (en) * 2001-06-23 2004-03-17 Micronas GmbH Method for decoding biphase signals
US7072427B2 (en) 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
US7155229B2 (en) 2002-01-08 2006-12-26 Ericsson Inc. Distributed wireless architecture using microcast
US7321640B2 (en) * 2002-06-07 2008-01-22 Parkervision, Inc. Active polyphase inverter filter for quadrature signal generation
US7292655B2 (en) 2002-06-24 2007-11-06 Micronas Gmbh Apparatus and method and decoding biphase signals
US7460584B2 (en) 2002-07-18 2008-12-02 Parkervision, Inc. Networking methods and systems
US7379883B2 (en) 2002-07-18 2008-05-27 Parkervision, Inc. Networking methods and systems
US7113229B2 (en) * 2002-12-17 2006-09-26 Georgia Tech Research Corporation Digital crystal video receiver
WO2005013492A1 (en) * 2003-07-25 2005-02-10 Sennheiser Electronic Gmbh & Co. Kg Method and device for digitization and data compression of analog signals
US7689639B2 (en) 2004-06-04 2010-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Complex logarithmic ALU
US8316068B2 (en) * 2004-06-04 2012-11-20 Telefonaktiebolaget Lm Ericsson (Publ) Memory compression
US7711764B2 (en) * 2004-06-04 2010-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Pipelined real or complex ALU
US7573851B2 (en) 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
JP4821639B2 (en) * 2007-02-09 2011-11-24 富士通株式会社 Amplitude detector
US20100226448A1 (en) 2009-03-05 2010-09-09 Paul Wilkinson Dent Channel extrapolation from one frequency and time to another
US8116710B2 (en) 2009-06-04 2012-02-14 Telefonaktiebolaget L M Ericsson (Publ) Continuous sequential scatterer estimation
JP2011109222A (en) * 2009-11-13 2011-06-02 Sinfonia Technology Co Ltd A/d conversion device, damping device, and vehicle with the same mounted thereon
US20110150049A1 (en) 2009-12-23 2011-06-23 Dent Paul W Mimo channel loopback
US8401487B2 (en) 2009-12-30 2013-03-19 Telefonaktiebolaget L M Ericsson (Publ) Radio channel analyzer to determine doppler shifts across multiple frequencies of a wideband signal
US9264282B2 (en) * 2013-03-15 2016-02-16 Innophase, Inc. Polar receiver signal processing apparatus and methods
US9083588B1 (en) 2013-03-15 2015-07-14 Innophase, Inc. Polar receiver with adjustable delay and signal processing metho
WO2019172811A1 (en) * 2018-03-08 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for handling antenna signals for transmission between a base unit and a remote unit of a base station system
US11949763B2 (en) * 2020-11-19 2024-04-02 Steradian Semiconductors Private Limited System, device and method for data compression in a radar system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496298A (en) * 1965-05-26 1970-02-17 Magnavox Co System for facsimile transmission over telephone lines
US3668535A (en) * 1970-01-15 1972-06-06 Varian Associates Logarithmic rf amplifier employing successive detection
JPS5756263B2 (en) * 1972-09-28 1982-11-29
US4492930A (en) * 1981-10-13 1985-01-08 Microdyne Corporation Automatic gain control system
GB2165409B (en) * 1984-10-09 1988-07-20 Plessey Co Plc Improvements relating to radio receivers
US5001776A (en) * 1988-10-27 1991-03-19 Motorola Inc. Communication system with adaptive transceivers to control intermodulation distortion

Also Published As

Publication number Publication date
CA1315344C (en) 1993-03-30
NO902174L (en) 1990-05-15
FI902302A0 (en) 1990-05-08
ES2045556T3 (en) 1994-01-16
USRE37138E1 (en) 2001-04-17
SE463540B (en) 1990-12-03
US5048059A (en) 1991-09-10
SE8803313D0 (en) 1988-09-19
IE892423L (en) 1990-03-19
IE63430B1 (en) 1995-04-19
HK58294A (en) 1994-06-17
WO1990003699A1 (en) 1990-04-05
DE68910257T2 (en) 1994-02-24
DK120490D0 (en) 1990-05-15
EP0360770B1 (en) 1993-10-27
KR960000611B1 (en) 1996-01-09
NO303309B1 (en) 1998-06-22
PT91752A (en) 1990-03-30
EP0360770A1 (en) 1990-03-28
NZ229868A (en) 1991-08-27
PT91752B (en) 1995-07-18
DE68910257D1 (en) 1993-12-02
NO902174D0 (en) 1990-05-15
ATE96594T1 (en) 1993-11-15
AU3986689A (en) 1990-04-18
SE8803313L (en) 1990-03-20
AU613225B2 (en) 1991-07-25
KR900702693A (en) 1990-12-08
DK120490A (en) 1990-05-15

Similar Documents

Publication Publication Date Title
JPH03502995A (en) Log-polar signal processing
US6774834B2 (en) Method and apparatus for preparing signals to be compared to establish predistortion at the input of an amplifier
JPH04507483A (en) Improved low power DSP squelch
JPH04212072A (en) Digital measuring circuit for analog electric signal
CN1318955C (en) Randon number generation for encrypting cellular communications
US6625286B1 (en) Precise amplitude correction circuit
JPH07154315A (en) Method for correcting amplitude and phase distortions in both bqualizer and transmission system
RU2033625C1 (en) Radar receiver of complex signals
US3242462A (en) Transmission systems
JPS591025B2 (en) Code word detection method
JP2732200B2 (en) Optimization method of distortion compensation amplifier circuit
US5881112A (en) Modulator with baseband to phase converter
JPH01188146A (en) Interference compensating circuit
JPH02196535A (en) Unique word detection circuit
JPH0618334B2 (en) Interference compensation circuit
JPS5822977A (en) Cycle synchronizing system of loran c receiving pulse
JPH10132915A (en) Generating method for correction data for passive sonar
JPH02194708A (en) Amplitude demodulation circuit
JPH08307467A (en) Frequency detection circuit
JPH06197094A (en) Digital matched filter
GB2243738A (en) Direction finding