JPH03502969A - Liquid crystal optical device with controlled surface order gradient - Google Patents

Liquid crystal optical device with controlled surface order gradient

Info

Publication number
JPH03502969A
JPH03502969A JP50076389A JP50076389A JPH03502969A JP H03502969 A JPH03502969 A JP H03502969A JP 50076389 A JP50076389 A JP 50076389A JP 50076389 A JP50076389 A JP 50076389A JP H03502969 A JPH03502969 A JP H03502969A
Authority
JP
Japan
Prior art keywords
liquid crystal
plates
orientation
thickness
rough surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50076389A
Other languages
Japanese (ja)
Inventor
デュラン、ジョルジュ・アントワーヌ
マルティノ‐ラガルドゥ、フィリップ・ルネ
ラブロ、ビムラ
ボワ、マルグリットゥ
モンカードゥ、モアムド
Original Assignee
サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) filed Critical サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス)
Publication of JPH03502969A publication Critical patent/JPH03502969A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133734Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by obliquely evaporated films, e.g. Si or SiO2 films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ム    (′−・′  ロ     −゛バ本発明は液晶を用いた光学デバイ スに関する。[Detailed description of the invention] M    (′−・′ RO   −゛Ba) Regarding

本発明は、第040002号のサンドル・ナシオナル・ドウ・う・ルシェルシュ ・シアンティフィーク (仏閣国立中央科学研究所)の付属研究機関である南パ リ大学固体物理学研究所において成された。The present invention is based on the Cendre Nacional de Recherche No. 040002. - Nanpa, a research institute affiliated with Siantifiq (National Institute of Science and Technology) It was completed at the Institute of Solid State Physics, University of Ri.

液晶に関しては少なくとも約15年間にわたって多くの研究が行われてきた。Much research has been conducted on liquid crystals for at least about 15 years.

南パリ大学固体物理学研究所で行なわれた各種の研究結果が、1982年4月2 8日出願の仏国特許出TH1阻8207039 (公開番号2526177)、 1984年10月23日出願の仏国特許出l!11階8416192 (公開番 号2572210)、1985年6月18日出願の仏画特許出願NCL8509 224 (公開番号2587916)、および1986年5月14日出願の仏画 特許出願Nt18606916 (公開番号2598827)に記載されている 。Various research results conducted at the Institute of Solid State Physics at the University of South Paris were published on April 2, 1982. French patent application TH1 8207039 (publication number 2526177) filed on the 8th, French patent filed on October 23, 1984! 11th floor 8416192 (publication number No. 2572210), French painting patent application NCL8509 filed on June 18, 1985 224 (Publication number 2587916), and a French painting filed on May 14, 1986. Described in patent application Nt18606916 (publication number 2598827) .

さらに、液晶に関する研究が多くの刊行物に発表されてきた。Furthermore, research on liquid crystals has been published in many publications.

例えば、下記の文献が挙げられよう。For example, the following documents may be mentioned.

1) Applied Physics Letters+ vol、 25+  No、 !L 1974年11月、 479−481頁、 Urbachら、 「蒸着皮膜上のネマティックおよびスメクティック液晶の配向」、 2)  Letters  in Applied and Engineer ing 5ciences+  vol。1) Applied Physics Letters+vol, 25+ No,! L November 1974, pp. 479-481, Urbach et al. "Orientation of nematic and smectic liquid crystals on vapor deposited films", 2) Letters in Applied and Engineer ing 5 sciences + vol.

1、1973年、 19−24頁、 Guyonら、「斜方蒸着プレート上に設 けたネマティック皮膜の種々の境界状態について」、および 3) Physical Review Letters、 vol、 56+  No−19+ 1986年5月、 2056−2059頁、 Durandら 、「ネマティック液晶の秩序電気および表面配向」。1, 1973, pp. 19-24, Guyon et al. ``On various boundary states of high-order nematic films'', and 3) Physical Review Letters, vol, 56+ No-19+ May 1986, pp. 2056-2059, Durand et al. , “Ordered electricity and surface alignment in nematic liquid crystals”.

文献工)のApplied Physjcs Letters、 、vol、  25+ No、 9+1974年11月には、表面に厚みが50〜1000人程 度の金またはSiOの蒸着皮膜を斜方蒸着により予め形成したプレート(基板) から構成した液晶デバイスについて行った実験結果が報告されている。この文献 に発表された結果によると、液晶の平面配向(即ち、液晶分子がデバイスのプレ ートに平行に配向)、および斜方配向(即ち、液晶分子がプレートに対して傾い て配向)のいずれかを得ることができる。Applied Physjcs Letters, vol. 25+ No, 9+ In November 1974, the thickness of the surface was about 50 to 1000 people. Plate (substrate) on which a vapor-deposited film of gold or SiO is pre-formed by oblique vapor deposition. Experimental results have been reported on a liquid crystal device constructed from. This document According to results published in (i.e., the liquid crystal molecules are oriented parallel to the plate), and oblique (i.e., the liquid crystal molecules are tilted with respect to the plate). Orientation) can be obtained.

この文献1)の480頁、43〜46行目の記載によると、プレートに対する液 晶分子の斜めの傾きは、1着皮膜の厚みには実際上無関係である。According to the description on page 480, lines 43-46 of this document 1), the liquid on the plate is The oblique inclination of the crystal molecules is practically unrelated to the thickness of the first coating.

文献2)のLatters in Applted and Engineer ing 5c4ences、 vol、 1’+ 1973年、 19−24頁 には、文献1)に報告された実験結果のモデル解説が提案されている。このモデ ル解説は、蒸着皮膜の厚みが100〜6000人という理論的ケースを扱ってい る。Reference 2) Letters in Applied and Engineer ing 5c4ences, vol, 1'+ 1973, pp. 19-24 proposed a model explanation of the experimental results reported in Reference 1). This model This explanation deals with the theoretical case where the thickness of the vapor-deposited film is 100 to 6,000 layers. Ru.

文献3)のPhysjcal Review Letters、vol、 56 + No、19+1986年5月には、ネマティック相/等方相液体界面でのネ マティック秩序の動揺(ゆらぎ)の影響を論じた理論的解析が記載されている。Reference 3) Physjcal Review Letters, vol, 56 + No. 19 + In May 1986, the nematic phase/isotropic phase liquid interface A theoretical analysis discussing the effects of fluctuations in the matic order is described.

この解析から、上記界面での秩序のゆらぎは、cos”θ=173で定義される 「マジック角」と呼ばれる角度で分子をねじるエネルギーを伴うとの結論が得ら れる。From this analysis, the order fluctuation at the above interface is defined as cos”θ=173 The conclusion was that it involves energy twisting the molecules at an angle called the "magic angle". It will be done.

ここに、本発明の目的は、デバイスのプレート(基板)に対して液晶分子の斜方 傾斜を容易、確実かつ経済的に画定することが可能な新規手段を提供することで ある。Here, the object of the present invention is to make the liquid crystal molecules oblique to the plate (substrate) of the device. By providing a new means of easily, reliably and economically defining slopes, be.

この目的のために、多くの理論的研究および実験的知見に基づく本発明は、その 液晶デバイスのプレート上に、使用した液晶の分子寸法の程度(オーダー)の粗 面(roughness)を形成することを提案するものである。To this end, the present invention, based on many theoretical studies and experimental findings, On the plate of the liquid crystal device, there is a roughness (order) of the molecular dimensions of the liquid crystal used. It is proposed to form a roughness.

デバイスのプレート上にこうして形成された粗面の厚みは20〜40人の大きさ の程度が好ましい。The thickness of the rough surface thus formed on the device plate is 20 to 40 mm thick. It is preferable that the degree of

本発明者らは、このような粗面が、プレートに対して斜めの配向に沿って液晶分 子をねじる傾向がある、脱分極基(depolarizing field)に 関連する秩序電気(ordoelectrtc)分極を誘起する秩序パラメータ 勾配を生ずることを知見した。The inventors have discovered that such a rough surface allows liquid crystals to be distributed along an oblique orientation with respect to the plate. to depolarizing fields that tend to twist the Order parameters that induce associated ordered electric (ordoelectrtc) polarization It was found that a gradient was generated.

さらにより正確には、研究を続けた結果、本発明者らは、例えば、特定の方向に 沿ってプレート上に粗面の皮膜を蒸着するという手段で粗面の優先方向を画定す ることにより、プレートに対する液晶の斜方配向(oblique orien tation)と方位配向(azimuthal orientation)の 両方を、制御された状態で同時に得ることが可能なことを知見した。さらにより 正確には、液晶の斜方配向と方位配向とは、粗面の厚みおよびその優先方向に応 じて、即ち、蒸着の場合には入射方向に応じて、プレートに対して斜めの平面内 で連続的に変化する。Even more precisely, as a result of continued research, the inventors, for example, Defining the preferred direction of the rough surface by depositing a rough coating on the plate along the By this, the liquid crystal is obliquely aligned with respect to the plate. tation) and azimuthal orientation. We have found that it is possible to obtain both simultaneously in a controlled manner. even more Precisely, the orthographic alignment and azimuthal alignment of liquid crystals depend on the thickness of the rough surface and its preferred direction. i.e. in the case of vapor deposition, depending on the direction of incidence, in a plane oblique to the plate. It changes continuously.

この配列は多くの用途をもたらすことができる。実際、液晶の斜方配向と方位配 向を同時に生じさせるのに、粗面の厚みとその優先方向を制御するだけで十分で ある。This arrangement can provide many uses. In fact, the orthogonal alignment and azimuthal alignment of liquid crystals It is sufficient to control the thickness of the rough surface and its preferred direction to produce both directions simultaneously. be.

例えば、本発明により、2枚の平行な透明プレート間に液晶分子からなる物質を 挟んでなるデバイスによる、エネルギー消費量の非常に少ない双安定表示(ディ スプレイ)を得ることができる。この2枚のプレートの少なくとも片方は、液晶 に隣接する側のその表面上に、液晶の分子寸法のオーダーの厚みの粗面を備え、 この粗面の厚みおよび配向は、粗面の優先方向に対して対称かつこの方向に対し て45°付近の液晶分子の二つの可能な方位配向を形成するようなものである。For example, according to the present invention, a substance consisting of liquid crystal molecules is placed between two parallel transparent plates. Bistable display with very low energy consumption using a sandwich device spray). At least one of these two plates has a liquid crystal display. on its surface on the side adjacent to it, with a roughened surface of a thickness on the order of the molecular dimensions of the liquid crystal; The thickness and orientation of this rough surface are symmetrical to and relative to the preferred direction of the rough surface. such that two possible azimuthal orientations of liquid crystal molecules around 45° are formed.

また、このデバイスに印加される外部電界が、一方の方位配向から他方の方位配 向に液晶分子の制御された切替え(スイッチング)を生ずるようにする手段も備 えている。Also, the external electric field applied to this device can change from one azimuth orientation to the other. Means are also provided for causing controlled switching of the liquid crystal molecules in the direction. It is growing.

米国特許第4.601,544号には、体積双安定効果を示す液晶デバイスに関 する。U.S. Pat. No. 4,601,544 relates to liquid crystal devices exhibiting volumetric bistability effects. do.

1978年10月24〜26日に米国ニューシャーシー州チェリー・ヒルで開催 されたr 1978年度隔年ディスプレー研究会議の会議報告書」の56〜58 頁;応用物理学雑誌(Japanese Journal of Applte d Physics)、 Vol、 19+ No、 3 (1980年3月) ;およびJ、 Appl、 Phys、、 Vow、 50. No、 6.  (1979年6月)、 3975−3977頁は、蒸着皮膜の影響下でのプレー トに対する液晶分子のティルト(傾斜)の観察に関する。上記文献は、とりわけ 皮膜厚みの影響については簡潔に解析しているが、粗面の厚みの影響については 解析していない。Held October 24-26, 1978 in Cherry Hill, New Chassis, USA Report of the 1978 Biennial Display Research Conference, 56-58 Page; Japanese Journal of Applte d Physics), Vol. 19+ No. 3 (March 1980) ; and J. Appl, Phys, Vow, 50. No, 6.  (June 1979), pp. 3975-3977. This study relates to observation of the tilt of liquid crystal molecules with respect to light. The above documents inter alia Although the effect of film thickness is briefly analyzed, the effect of rough surface thickness is Not analyzed.

また、上述した双安定効果についても明らかにしていない。Furthermore, the above-mentioned bistable effect has not been clarified.

仏画特許出願公開第2,308.675号は、液晶セルの基板上に付着させた皮 膜のイオンビームによる微細切削加工(謹icromachining)に関す る。French painting patent application publication no. Regarding micro-cutting of membranes using ion beams (icromachining) Ru.

本発明の他の特徴、目的および利点は、添付図面(これらは例示のために示した のであって、制限を意図したものではない)に関する以下の詳細な説明を読むこ とにより明らかとなろう、添付図面において、 第1図ないし第4図は、それぞれ4種類の実験について、プレート上に設けた蒸 着層の蒸着角(蒸発角)および厚みによる液晶の方位配向φと斜方配向φの変化 を示し、第5図は、蒸着(蒸発)方向に対する液晶分子の斜方および方位配向を 幾何学的に示し、 第6図は、特定の蒸着角について、蒸着層厚みによる方位配向φおよび斜方配向 ψの変化を示す2本の曲線を示し、第7図、第8図、ならびに第9A図および第 9B図は、ネマティック液晶デバイスに対する本発明の3種類の応用を図式的に 示し、ならびに 第10図は、SiO蒸着層の厚みによる、デバイスの2枚のプレートの各面上の スメクテイック液晶の斜方配向の変化を表す曲線を示す。Other features, objects and advantages of the invention will be apparent from the accompanying drawings, which are shown by way of illustration only. Please read the detailed explanation below (which is not intended to be limiting). In the accompanying drawings, it will become clear that: Figures 1 to 4 show the evaporator set up on the plate for four types of experiments, respectively. Changes in the azimuthal orientation φ and oblique orientation φ of liquid crystals depending on the deposition angle (evaporation angle) and thickness of the deposited layer Figure 5 shows the oblique and azimuthal orientations of liquid crystal molecules with respect to the deposition (evaporation) direction. Shown geometrically, Figure 6 shows the azimuthal orientation φ and oblique orientation depending on the thickness of the deposited layer for a specific deposition angle. Two curves showing changes in ψ are shown in Figures 7, 8, and 9A and 9. Figure 9B schematically illustrates three types of applications of the present invention for nematic liquid crystal devices. indicate, and Figure 10 shows the thickness of the SiO deposited layer on each side of the two plates of the device. A curve representing a change in the orthogonal alignment of a smectic liquid crystal is shown.

二股血五捉 ネマティック液晶は、次のように表すことのできる配向電気四極子この液体であ ると考えることができる。Two fork blood five traps A nematic liquid crystal is an oriented electric quadrupole in this liquid that can be expressed as It can be thought that.

5 = −e3/25(Fu’r −Y/3)上記式中、 一−eは、四極子の電荷密度(−e〜10−’ cgs)を意味し、−5は液晶 の秩序パラメータ (Sは0〜1の間)を意味し、−)は、分子の配向を示す単 位ベクトルである。5=-e3/25(Fu'r-Y/3) In the above formula, 1-e means the quadrupole charge density (-e~10-' cgs), -5 means the liquid crystal charge density The order parameter (S means between 0 and 1), and -) is a unit that indicates the orientation of the molecules. is a position vector.

空間変化の存在下では次式で示される電気分極Pが得ら76・  2.−7.5 12−3/2e。、5(FIFL −Y/3)Sが一定の条件下でがiに作用す ると、フレキソ (変動)電気効果が得られ、分極pは曲率h(う・五)に比例 するようになる二とが゛炒りれζ11う。In the presence of spatial changes, the electric polarization P expressed by the following equation is obtained76.2. -7.5 12-3/2e. , 5(FIFL-Y/3)S acts on i under certain conditions. Then, a flexographic (fluctuation) electric effect is obtained, and the polarization p is proportional to the curvature h (U・5) The second thing that comes to mind is ζ11.

一方、才が一定でSが変動する条件下では、次式で示されるオルト(秩序>を気 分極が得られる。On the other hand, under conditions where the talent is constant and S is variable, the ortho (order> Polarization is obtained.

P −3/2 e V S、[nn−1/3]D、 冨 0 翠 4宵Pz   +  t  E。P -3/2 e V S, [nn-1/3] D, Tomi 0 Midori 4 night Pz + t E.

(式中、2はSの方向である。〕 付随するエネルギーは次式で示される電荷密度を有する。(In the formula, 2 is the direction of S.) The associated energy has a charge density given by:

1/2 (d4+r) E、” m l/2 (4r/l) P、”このエネル ギーは、P、40で、即ち、cos ”θ−1/3で定義される2に対する斜方 配向θについて最小値をとる。1/2 (d4+r) E,” m l/2 (4r/l) P, “This energy The gee is the oblique to 2 defined by P, 40, i.e. cos "θ-1/3" Take the minimum value for orientation θ.

の  お び  の゛ 上記の一般的解析の結果によれば、秩序パラメータの勾配は、プレートに対して 斜めの配向に沿って液晶の応力付与を生ずると考えられたため、本発明者らは、 用いる液晶の分子寸法の大きさ程度、即ち20〜40人程度の粒度の小結晶粒を デバイスのプレート上に設けることにより、液晶デバイスの表面で秩序パラメー タSを制御するという着想を提起した。of According to the results of the above general analysis, the gradient of the order parameter is The present inventors thought that stress would be applied to the liquid crystal along the oblique alignment, so the present inventors Small crystal grains with a particle size of about the size of the molecular size of the liquid crystal used, that is, about 20 to 40 By providing on the plate of the device, order parameters can be controlled on the surface of the liquid crystal device. The idea of controlling data S was proposed.

プレート面に平行な配向を示すが、研磨プレートの存在下では縮退する、換言す れば、プレート面に平行な平面内で方向が変動するネマティック液晶を使用して 、実験を行った・ より正確には、本発明者らは、蒸着させた結晶粒の厚みと1着角の各種の組合わ せによって液晶の配向を制御した。exhibits an orientation parallel to the plate plane but degenerates in the presence of the polishing plate, in other words If so, a nematic liquid crystal whose orientation varies in a plane parallel to the plate plane is used. , conducted an experiment. More precisely, the inventors investigated various combinations of deposited grain thickness and 1st angle. The alignment of the liquid crystal was controlled by

本発明者らは、特定方向に沿った蒸着による粗面状態の形成により、プレートに 対する液晶分子の斜方配向のみならず、蒸着方向に対して変動可能な制御された 方位配向をも得ることができることを見出した。The present inventors have developed a method for forming a plate by forming a rough surface state by vapor deposition along a specific direction. Not only the orthogonal alignment of liquid crystal molecules, but also the controlled alignment that can be varied with respect to the deposition direction. It has been found that azimuthal orientation can also be obtained.

得られた最初の結果を、添付の第1図〜第4図および第6図に報告する。The initial results obtained are reported in the accompanying Figures 1-4 and 6.

これらの結果は、第5図に示した幾何学モデルに関して示されている。These results are shown for the geometric model shown in FIG.

この幾何学モデルは、互いに直角のX、yおよび2の三つの軸を持つ座標系から なる。This geometric model consists of a coordinate system with three mutually perpendicular axes, X, Y, and 2. Become.

y軸およびy軸は、該プレートPに対して平行である。The y-axis and the y-axis are parallel to the plate P.

z軸はこのプレー)Pに対して垂直であって、液晶の体積(嵩)の方向である。The z-axis is perpendicular to this plane P and is in the direction of the volume of the liquid crystal.

蒸着方向は、y軸と2軸とで規定される平面(xz面)に任意に一致させる。蒸 着方向と2軸との間の傾きに相当する蒸着方向の入射角は、角度αで定義される 。The deposition direction is arbitrarily made to coincide with a plane (xz plane) defined by the y-axis and two axes. steaming The angle of incidence in the deposition direction, which corresponds to the inclination between the deposition direction and the two axes, is defined by the angle α .

Z軸と液晶分子の長軸との間の傾きに相当する液晶の斜方配向は、第5図に角度 θで示されている。この角度θの余角は、記号ψで示される。The oblique alignment of liquid crystals, which corresponds to the tilt between the Z axis and the long axis of liquid crystal molecules, is shown in Figure 5. It is indicated by θ. The complementary angle of this angle θ is indicated by the symbol ψ.

最後に、y軸と液晶分子の長軸のxy面上への投影との間の傾きに相当する液晶 の方位配向は、第5図にφとして示した角度で表される。Finally, the liquid crystal corresponding to the tilt between the y-axis and the projection of the long axis of the liquid crystal molecules onto the xy plane The azimuthal orientation of is represented by the angle shown as φ in FIG.

添付の第1図は、?IBBA液晶の場合について、普通ガラス上のSiOの蒸着 層の厚みと蒸着角αの変化による方位配向φの変化を示す。What is the attached Figure 1? For the case of IBBA liquid crystal, deposition of SiO on ordinary glass The change in azimuthal orientation φ due to the change in layer thickness and deposition angle α is shown.

5人未満の蒸着層厚みでは、液晶分子はプレートに平行ではあるが、ランダムな 方向に配向している。For deposited layer thicknesses of less than 5 layers, the liquid crystal molecules are parallel to the plates but randomly oriented in the direction.

蒸着層の厚みが5人に達すると縮退が解消される。即ち、分子は互いに平行で、 蒸着方向を含むxz面に垂直な方向に配向する。この段階では、分子の方位配向 φ゛は90’に等しく、斜方配向θ” も90°に等しい。When the thickness of the deposited layer reaches 5 layers, degeneracy is eliminated. That is, the molecules are parallel to each other, It is oriented in a direction perpendicular to the xz plane including the deposition direction. At this stage, the azimuthal orientation of the molecules φ'' is equal to 90' and the oblique orientation θ'' is also equal to 90°.

この分子の初期配置は、第5図に参照番号M° として1点鎖線で図式的に示さ れている。The initial configuration of this molecule is shown schematically in FIG. It is.

蒸着層の厚みがさらに増すと、プレートPに対して斜めの平面内での分子の漸進 的な方位回転が、蒸着角αの関数として得られる。こうなると、液晶分子は、方 位配向φ。As the thickness of the deposited layer increases further, the molecules move in a plane oblique to the plate P. azimuthal rotation is obtained as a function of the deposition angle α. In this case, the liquid crystal molecules position orientation φ.

が90°に等しいドメインからφが0°となりうる方位ドメイン(即ち、分子が 蒸着方向を含むxz面に実質的に平行に配向したドメイン)までの範囲内で変化 する。この方位回転は分子の持ち上がりも伴い、φが90°から0°に漸進的に 変化すると、ψがO“から20〜30°に変化する。is equal to 90° to an azimuthal domain in which φ can be 0° (i.e., if the molecule (domains oriented substantially parallel to the xz plane including the deposition direction) do. This azimuthal rotation is accompanied by the lifting of the molecule, and φ gradually changes from 90° to 0°. When changing, ψ changes from O" to 20 to 30 degrees.

第1図の斜線部分は、方位配向ψが90°と0°との間で漸進的に変動し、斜方 配向ψが0°と約20〜30@との間で漸進的に変動する部分の蒸着角αと蒸着 層厚みの値の範囲に対応する。粗面の状態によって制御することのできる方位配 向φおよび斜方配向ψのかかる漸進的な変動は、φ=90@または0°およびψ =0または20〜30°の境界のみが知られていた従来技術に対して新規であり 、本発明の本質的な特徴部分をなすものである。The shaded area in Figure 1 shows that the azimuth orientation ψ gradually varies between 90° and 0°, and Deposition angle α and deposition where the orientation ψ gradually changes between 0° and about 20~30@ Corresponds to a range of layer thickness values. Orientation that can be controlled by the condition of the rough surface Such gradual variations in orientation φ and oblique orientation ψ result in φ=90@ or 0° and ψ = 0 or 20 to 30 degrees, which is new compared to conventional technology where only boundaries were known. , which forms an essential characteristic part of the present invention.

匹敵する結果が添付の第2図に示されている。この第2図は、同じ試験条件で行 った試験、即ち、蒸着角および蒸着層厚みの値を変えて普通ガラス上にSiOを 蒸着させた試験であるが、第1図とは異なり、液晶としてMBBAに代えて5C Bを使用した試験に関する。Comparable results are shown in the attached FIG. 2. This figure 2 was performed under the same test conditions. In other words, SiO was deposited on ordinary glass by varying the deposition angle and deposition layer thickness. In this test, 5C was used instead of MBBA as the liquid crystal, unlike in Figure 1. Regarding the test using B.

第3図および第4図は、同様に液晶としてそれぞれ一方はMBBAを、もう一方 は5CBを使用した場合について、ITOスライドガラス上のSiO蒸着層の厚 みおよび蒸着角αによる方位配向φの値の変化を示す。Similarly, in Figures 3 and 4, one uses MBBA as the liquid crystal, and the other uses MBBA. is the thickness of the SiO deposited layer on the ITO slide glass when using 5CB. Fig. 3 shows changes in the value of azimuthal orientation φ depending on the angle and the deposition angle α.

上述した第1図と同様に、第2図、第3図および第4図も、方位配向φが90° からOoまで漸進的に変化する場合の蒸着角α/蒸着層厚みの値の組合わせの領 域(図の斜線部)を示している。Similar to FIG. 1 described above, FIGS. 2, 3, and 4 also show that the azimuth orientation φ is 90°. The range of combinations of deposition angle α/deposition layer thickness when gradually changing from to Oo area (shaded area in the figure).

第6図は、5CHの液晶を使用した場合について、74°の入射角で、1丁0ス ライドガラス上に蒸着させたSi0層の厚みの関数として方位配向φおよび斜方 配向ψの同時変化を示す。Figure 6 shows the case where a 5-channel liquid crystal is used, and the angle of incidence is 74°, and one screen is zero. Azimuthal orientation φ and orthorhombic as a function of the thickness of the Si0 layer deposited on the ride glass Simultaneous changes in orientation ψ are shown.

第4図に示した結果と一致して、実質的に30〜40人の範囲内の蒸着層厚みの 場合には、方位配向φが90゛から0゜まで漸進的に変化することがやはり認め られる。Consistent with the results shown in FIG. In this case, it is also recognized that the azimuthal orientation φ changes gradually from 90° to 0°. It will be done.

同時に、斜方配向ψも、蒸着厚みが30〜40人の範囲内の場合には、01から 20”まで漸増することが認められる。At the same time, the oblique orientation ψ also varies from 01 to 01 when the deposition thickness is within the range of 30 to 40 Gradual increase up to 20" is allowed.

結論として、本発明者らが行った試験によると、蒸着前の裸の基板は平面配向( 即ち、プレート面に平行な配向)を指向するが、縮退することも認めることがで きた。 (SiOの)平均蒸着厚みが5人に達すると、方位縮退が解消されれる が、固定(アンカーリング)はなお平面状にとどまる。In conclusion, according to the tests conducted by the inventors, the bare substrate before deposition has a planar orientation ( (i.e., parallel to the plate plane), but degeneracy can also be recognized. came. When the average deposition thickness (of SiO) reaches 5, the orientation degeneracy is resolved. However, the anchoring still remains flat.

平均蒸着厚みが10人を超えると、ネマティック液晶の持ち上がりが認められ、 これが、蒸着方向に垂直なその最初の平面位置から蒸着方向に向かって斜めの位 置まで、斜面内で回転する。When the average deposition thickness exceeds 10, lifting of the nematic liquid crystal is observed, from its initial planar position perpendicular to the deposition direction to a diagonal position toward the deposition direction. Rotate within the slope until the

本発明によりプレート上に粗面状態を設けることにより、秩序勾配を生ずること ができ、従って誘起された秩序電気分極により、プレートに対して斜めの斜方配 向ψに従って液晶の持ち上がりを生ずることができる。かかる粗面状態の形成は 、当然ながら、蒸着以外の他の手段、例えば、化学的侵食、噴霧あるいはイオン 衝撃などの手段で行うこともできる。By providing a rough surface condition on the plate according to the present invention, an order gradient can be generated. Therefore, the induced ordered electric polarization creates an orthorhombic configuration diagonal to the plate. Lifting of the liquid crystal can be caused according to the direction ψ. The formation of such a rough surface condition is , of course, other means than vapor deposition, such as chemical attack, atomization or ionic This can also be done by means such as impact.

以下に本発明の応用の各種の例を説明するが、これは制限を意図したものではな い。The following describes various examples of applications of the invention, which are not intended to be limiting. stomach.

。 じ  マー ・  スー゛バイスの 6へのデバイスの多重使用を可能にし 、良好なコントラストを得る目的で、添付の第7図に図式的に示すように、プレ ートの少なくとも一方に対する斜方配向ψを示す、90“より大きな角度βで相 対的に傾斜して、2枚のプレート上への固定方向を有するネマティック表示(デ ィスプレイ)デバイスの開発が今日試みられている0本発明による粗面状態を利 用すれば、プレートに対して10〜20°の斜方配向ψと制御された方位配向と を得ることが容易に可能となる。. Enables multiple use of up to 6 devices on the same smartphone , for the purpose of obtaining good contrast, a pre-preparation method is used, as shown diagrammatically in the accompanying Figure 7. at an angle β greater than 90", indicating an oblique orientation ψ with respect to at least one of the A nematic display (device) with oppositely inclined and fixed orientation on two plates. The development of display devices is being attempted today. If used, an oblique orientation ψ of 10-20° with respect to the plate and a controlled azimuthal orientation can be achieved. can be easily obtained.

h  マー 、   のノ への1 さらに、本発明者らは、液晶分子が蒸着方向を含むxz面に対して対称な二つの 方位配向を取ることができることを見出した。h Mar, 1 to No. Furthermore, the present inventors discovered that liquid crystal molecules have two symmetrical structures with respect to the xz plane that includes the deposition direction. It was discovered that the azimuth orientation can be taken.

即ち、第8図は、蒸着方向で定義されるXZ面に対して対称な二つの方位配向を 図式的に示す、プレートへの蒸着時のMtr角αおよびM着厚みを、XZ面に対 する方位配向φが±45°程度となるように選択すると、外部電界を印加するこ とにより、このプレート上で一方の方位配向から他方の方位配向に液晶分子の制 御されたスイッチングを行うことが容易に可能となる。一方の方位配向から他方 の方位配向に、あるいはその逆に液晶分子の制御されたスイッチングを行うには 、セルに交互に、例えば、液晶が正の誘電異方性を有している場合にはこれらの 方位配向の一方と一致した、或いは液晶が負の誘電異方性を有している場合には これらの方位配向の一方と直角な、少なくともl成分をそれぞれ有している、プ レートに平行な電界を印加することで十分である。液晶分子の方位配向の90゛ の大きさの変化がこうして得られ、このデバイスを偏光子の間に置いた場合に最 大のコントラストを得ることが可能となる。That is, FIG. 8 shows two azimuthal orientations that are symmetrical with respect to the XZ plane defined by the deposition direction. The Mtr angle α and the M deposition thickness shown schematically during vapor deposition on the plate are shown relative to the XZ plane. If the orientation φ is selected to be about ±45°, it is not possible to apply an external electric field. As a result, the liquid crystal molecules are controlled from one azimuth orientation to the other on this plate. This makes it easy to perform controlled switching. from one azimuth orientation to the other To perform controlled switching of liquid crystal molecules to azimuth orientation and vice versa , alternately in the cell, for example, if the liquid crystal has positive dielectric anisotropy, these If one of the orientations coincides with the other, or if the liquid crystal has negative dielectric anisotropy, each having at least an l component perpendicular to one of these azimuthal orientations. It is sufficient to apply an electric field parallel to the rate. 90゛ orientation of liquid crystal molecules The change in magnitude is thus obtained, and the maximum when the device is placed between polarizers It becomes possible to obtain a large contrast.

電界が存在しないと、得られた液晶の配置は安定なままである。In the absence of an electric field, the resulting liquid crystal configuration remains stable.

1個の電極またはプレートに粗面状態を付与すると、2種類のドメイン〔±φ) が得られる。When a rough surface condition is imparted to one electrode or plate, two types of domains [±φ] are created. is obtained.

2個の電極またはプレートに粗面状態を付与した場合には、4種類のドメイン( +φ1.+φb;+φ□−φb;−φ1.十φb;−φ、−φ1)が可能である 。記号、および、は、それぞれ上および下のプレートを意味する。When two electrodes or plates have a rough surface, four types of domains ( +φ1. +φb;+φ□−φb;−φ1. 10φb; -φ, -φ1) is possible . The symbols and mean upper and lower plates, respectively.

−マー ・ ゛4−バイスの・ ネマティック液晶デバイスの設計に対する本発明の第三の考えられる応用の範囲 内で、第9A図に示すように、デバイスの両方のプレートに平行な平面固定(ア ンカーリング)が形成される。しかし、このプレートの片方では、蒸着層の蒸着 角αおよび蒸着厚みを制御して、液晶を第1図〜第4図に斜線部で示した遷移領 域の近傍に位置させる。-Mar ・゛4-Vice・ Third possible scope of application of the invention to the design of nematic liquid crystal devices 9A, a plane fixation parallel to both plates of the device (a Anchor rings) are formed. However, on one side of this plate, the evaporated layer By controlling the angle α and the deposition thickness, the liquid crystal can be formed into the transition region shown by the shaded areas in Figures 1 to 4. be located near the area.

液晶はこうして不安定闇値の近傍、即ち、方位スイッチング闇値の近傍に位置す る。この配置により、外部電界が印加された場合に、第9B図に図式的に示すよ うに、液晶がらせん形成の方向にスイッチする(このスイッチ自体は公知である )のが容易となる。The liquid crystal is thus located near the unstable dark value, i.e. near the orientation switching dark value. Ru. This arrangement ensures that when an external electric field is applied, the uni, the liquid crystal switches to the direction of spiral formation (this switch itself is known) ) becomes easier.

或いは、不安定闇値に近接した液晶のらせん配置をまず最初に形成しておき、外 部電界が印加される時に、このらせん配置を分子の平行配向に変換させることも 可能である。Alternatively, it is possible to first form a spiral arrangement of liquid crystals close to the unstable dark value, and then This helical arrangement can also be converted to a parallel orientation of the molecules when an electric field is applied. It is possible.

悸  −C″−ス  − ・ − の  の ′への  日の 強誘電性C*スメクティック表示デバイスは、縮退表面固定を持つ時、スメクテ ィック層に対して対称的な液晶分子の二つの位置をとることが理論的には可能で ある。外部電界を印加すると、分子の電気双極子は、その一方の位置では電極の 方を間き、他方の位置では体積(嵩)の方を向く、理論的には、この2種類の位 置は等価であるべきであり、双安定表示デバイスの形成が可能なはずである。Palpitation -C''-Su -・- of the day of Ferroelectric C* smectic display devices have a degenerate surface fixation when the smectic It is theoretically possible to have two positions of liquid crystal molecules that are symmetrical with respect to the liquid crystal layer. be. When an external electric field is applied, the electric dipole of the molecule changes to the position of the electrode at one of its positions. Theoretically, these two positions The positions should be equivalent and the formation of bistable display devices should be possible.

しかし、実際には、コントラストが低く、多重使用が不可能なねじれ組織では、 2種類の対称状態の間での双安定表示ではなく、単安定表示しか得られないこと が認められている0本発明者らは、この現象が電極/液晶界面が極性であること に起因することを見出した。この分極は化学的なものである(表面と分子の部分 との親和力の差による)ように思われる。However, in reality, in twisted tissues where contrast is low and multiplexing is not possible, Only a monostable representation can be obtained instead of a bistable representation between two types of symmetrical states. The present inventors believe that this phenomenon is due to the polarity of the electrode/liquid crystal interface. It was found that this was caused by This polarization is chemical (surface and molecular parts This seems to be due to the difference in affinity between the two.

本発明によれば、スメクティンク層において適当な符号および大きさのネマティ ック秩序勾配を生じさせることにより誘起された秩序電気分極によって、上記の 化学的分極を相殺することが可能となる。According to the present invention, a nematic layer of appropriate sign and magnitude is formed in the smectink layer. Due to the ordered electric polarization induced by creating a magnetic order gradient, the above It becomes possible to cancel chemical polarization.

化学的極性の良好な相殺を行うためには、ネマティック秩序がバルク (全体) 値より高い高度に研磨された界面、あるいは表面秩序がこれより低い粗面の界面 のいずれかを取ることができる。In order to achieve good cancellation of chemical polarity, nematic order must be present in the bulk (total) Highly polished interfaces with higher values or rougher interfaces with lower surface order You can take either.

第10図は、それぞれ55°Cおよび48.0°Cの温度の場合における、0. 3pm間した2枚のITOプレート上の81@の入射角θでの蒸着により形成し たSiO75着層の異なる厚み値に対するデバイスの上下の各プレート上にこう して得られた液晶の配向θ、を示す。FIG. 10 shows the 0.0. Formed by evaporation at an incident angle θ of 81@ on two ITO plates separated by 3 pm. This was done on each plate on the top and bottom of the device for different thickness values of the SiO75 deposit. The orientation θ of the liquid crystal obtained in this manner is shown below.

言うまでもないが、本発明は上述した!!樺および用途に限定されるものではな い0本発明の技術思想に従って任意の変更形態を包含するものである。Needless to say, the present invention has been described above! ! Not limited to birch and use The present invention includes any modifications according to the technical idea of the present invention.

ξ署締晶米1□ nG−7 蜆ねし−Nネ7テ*・775夜晶へへ央円/V安定閾橋rミヱな二椿1 rミ固 カミ外をFむ)!9ch6p々p・;よる万(品のTイ正スイ7ナン2°。ξ Sign tightening rice 1□ nG-7 Nezhi-Nne7te*・775 night crystal to central circle/V stable threshold bridge r mie na two camellias 1 r mi solid (Fum outside)! 9ch6ppp・; Yoruman (goods T i positive sui 7 nan 2°.

国際調査報告 1l1111′′6′″”    ”= PCT/F’R88100623国際 調査報告   FR8800623international search report 1l1111′′6′″” = PCT/F’R88100623 International Investigation report FR8800623

Claims (12)

【特許請求の範囲】[Claims] 1.液晶デバイスを構成するプレートの少なくとも一方に、使用した液晶の分子 寸法のオーダーの粗面を形成することからなる段階を含むことを特徴とする、液 晶デバイスの製造方法。1. Molecules of the liquid crystal used on at least one of the plates that make up the liquid crystal device. a liquid, characterized in that it comprises a step consisting of forming a rough surface of the order of dimensions. A method for manufacturing a crystal device. 2.デバイスのプレートの少なくとも一方に形成された粗面が20〜40Åの範 囲内の厚みであることを特徴とする、請求の範囲第1項記載の方法。2. The rough surface formed on at least one of the plates of the device is in the range of 20 to 40 Å. 2. A method according to claim 1, characterized in that the thickness is within the range of . 3.デバイスのプレートの少なくとも一方に、下記方法:皮膜の蒸着、皮膜の噴 霧形成、化学的侵食、またはイオン衝撃のいずれかにより粗面が形成されること を特徴とする、請求の範囲第1項および第2項のいずれかに記載の方法。3. At least one of the plates of the device is coated with the following methods: coating vapor deposition, coating spraying. Rough surface formation due to either fog formation, chemical attack, or ion bombardment A method according to any one of claims 1 and 2, characterized in that: 4.デバイスのプレートの少なくとも一方に、例えば蒸着方向の制御により粗面 の優先方向が制御された粗面が形成され、少なくとも一方のプレートに対して斜 めの液晶分子の配向を得ると同時に、粗面の優先方向に対する液晶分子の方位配 向をも得ることを特徴とする、請求の範囲第1項ないし第3項のいずれかに記載 の方法。4. At least one of the plates of the device has a roughened surface, e.g. by controlling the deposition direction. A rough surface with a controlled preferred direction is formed and is inclined to at least one plate. At the same time, the orientation of the liquid crystal molecules with respect to the preferred direction of the rough surface is obtained. According to any one of claims 1 to 3, characterized in that the method also obtains a direction. the method of. 5.平行な2枚のプレートと、この2枚のプレート間に配置された液晶分子から なる物質とから構成される種類の液晶デバイスであって、該プレートの少なくと も一方が、液晶に隣接したその表面上に、使用した液晶の分子寸法のオーダーの 粗面を有していることを特徴とする、請求の範囲第1項ないし第4項のいずれか に記載の方法を利用することにより得られた液晶デバイス。5. From two parallel plates and liquid crystal molecules arranged between these two plates A type of liquid crystal device consisting of a substance consisting of at least one of said plates. On the other hand, on its surface adjacent to the liquid crystal, there is a layer on the order of the molecular dimensions of the liquid crystal used. Any one of claims 1 to 4, characterized by having a rough surface. A liquid crystal device obtained by using the method described in . 6.該プレートの少なくとも一方に設けた粗面が20〜40Åの範囲内の厚みの ものであることを特徴とする、請求の範囲第5項記載のデバイス。6. The rough surface provided on at least one of the plates has a thickness within the range of 20 to 40 Å. Device according to claim 5, characterized in that it is a device. 7.粗面がデバイスの2枚のプレートのそれぞれに設けられていることを特徴と する、請求の範囲第5項および第6項のいずれかに記載のデバイス。7. characterized in that a roughened surface is provided on each of the two plates of the device. A device according to any one of claims 5 and 6. 8.液晶がネマティック液晶であることを特徴とする、請求の範囲第5項ないし 第7項のいずれかに記載のデバイス。8. Claims 5 to 5, wherein the liquid crystal is a nematic liquid crystal. The device according to any of clause 7. 9.プレートの少なくとも一方に設けた粗面の厚みおよび配向が、超ねじれネマ ティック表示デバイスを形成するように、プレートの少なくとも一方に対する液 晶の斜方配向φ、および90°より大きな角度βで相対的に傾斜(ティルト)し ている2枚のプレート上の固定方向を画定するようなものであることを特徴とす る、請求の範囲第5項ないし第7項のいずれかに記載のデバイス。9. The thickness and orientation of the roughened surface on at least one of the plates is such that the liquid against at least one of the plates to form a tick display device. Orthogonal crystal orientation φ and relative tilting at an angle β greater than 90° is characterized in that it defines the direction of fixation on the two plates that are A device according to any one of claims 5 to 7. 10.該粗面が、例えば蒸着方向により決定される優先方向を有しており、該プ レートの少なくとも一方に設けた粗面の厚みおよび配向が、粗面の優先方向に対 して対称で、この方向に対して45°の程度の液晶分子の2つの可能な方位配向 φを形成するようなものであり、双安定ネマティック固定を行わせるために、デ バイスに印加される外部電界により一方の方位配向から他方の方位配向への液晶 分子の制御されたスイッチングを生じさせることを可能にする手段を備えている ことを特徴とする、請求の範囲第5項ないし第8項のいずれかに記載のデバイス 。10. The rough surface has a preferred direction determined, for example, by the deposition direction, and The thickness and orientation of the roughened surface on at least one side of the plate are relative to the preferred direction of the roughened surface. two possible azimuthal orientations of liquid crystal molecules symmetrical to this direction and at an angle of 45° to this direction. It is like forming φ, and in order to achieve bistable nematic fixation, the device is The liquid crystal changes from one azimuth orientation to the other by an external electric field applied to the vice. equipped with means that allow controlled switching of molecules to occur The device according to any one of claims 5 to 8, characterized in that: . 11.該プレートの少なくとも一方に設けた粗面の厚みおよび配向が、外部電界 が印加された時の液晶の方位スイッチングをより容易にするために、液晶を方位 スイッチング閾値に近接して配置するようなものであることを特徴とする、請求 の範囲第5項ないし第8項のいずれかに記載のデバイス。11. The thickness and orientation of the roughened surface on at least one of the plates is such that it To make the orientation switching of the liquid crystal easier when Claim characterized in that the switching threshold is such as to be placed close to the switching threshold. The device according to any one of items 5 to 8. 12.液晶が強誘電性C*スメクティック液晶であり、該プレートの少なくとも 一方に設けた粗面の厚みおよび配向が、表面の全分極を相殺する秩序電気分極を 生ずるようなものであることを特徴とする、請求の範囲第5項ないし第7項のい ずれかに記載のデバイス。12. The liquid crystal is a ferroelectric C* smectic liquid crystal, and at least The thickness and orientation of the rough surface on one side creates an ordered electrical polarization that cancels out the total polarization on the surface. The features of claims 5 to 7, characterized in that Any device listed in any of the above.
JP50076389A 1987-12-17 1988-12-16 Liquid crystal optical device with controlled surface order gradient Pending JPH03502969A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR87/17660 1987-12-17
FR8717660A FR2624985B1 (en) 1987-12-17 1987-12-17 LIQUID CRYSTAL OPTICAL DEVICES HAVING A SURFACE ORDER CONTROLLED GRADIENT

Publications (1)

Publication Number Publication Date
JPH03502969A true JPH03502969A (en) 1991-07-04

Family

ID=9357996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50076389A Pending JPH03502969A (en) 1987-12-17 1988-12-16 Liquid crystal optical device with controlled surface order gradient

Country Status (4)

Country Link
EP (1) EP0393128A1 (en)
JP (1) JPH03502969A (en)
FR (1) FR2624985B1 (en)
WO (1) WO1989005993A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666908B2 (en) * 1990-01-30 1992-12-18 Centre Nat Rech Scient IMPROVEMENTS ON BISTABLE OPTICAL DEVICES WITH LIQUID CRYSTALS AND ELECTROCHIRAL CONTROL.
FR2657699B1 (en) * 1990-01-30 1992-05-15 Centre Nat Rech Scient BISTABLE OPTICAL DEVICE WITH LIQUID CRYSTALS AND ELECTROCHIRAL CONTROL.
FR2666923A2 (en) * 1990-06-22 1992-03-20 Centre Nat Rech Scient Improvements to nematic liquid-crystal displays, with surface bistability, controlled by flexoelectric effect
FR2663770A1 (en) * 1990-06-22 1991-12-27 Centre Nat Rech Scient Nematic liquid-crystal display, with surface bistability, controlled by flexoelectric effect
GB9402513D0 (en) * 1994-02-09 1994-03-30 Secr Defence Bistable nematic liquid crystal device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153529A (en) * 1975-04-21 1979-05-08 Hughes Aircraft Company Means and method for inducing uniform parallel alignment of liquid crystal material in a liquid crystal cell
US4601544A (en) * 1982-10-15 1986-07-22 At&T Bell Laboratories Nematic liquid crystal storage display device

Also Published As

Publication number Publication date
FR2624985B1 (en) 1992-08-21
WO1989005993A1 (en) 1989-06-29
FR2624985A1 (en) 1989-06-23
EP0393128A1 (en) 1990-10-24

Similar Documents

Publication Publication Date Title
TWI345667B (en) Liquid crystal display devices and fabrication methods for the liquid crystal display device
Blinov et al. Surface physics of thermotropic liquid crystals
US6411354B1 (en) Bulk alignment of lyotropic chromonic liquid crystals
JPS6322287B2 (en)
Barberi et al. Electrochirally controlled bistable surface switching in nematic liquid crystals
TWI468812B (en) Method to obtain a controlled pretilt and azimuthal angles in a liquid crystal cell
US6519018B1 (en) Vertically aligned liquid crystal displays and methods for their production
KR20060133588A (en) Liquid crystal composite
JPH03502969A (en) Liquid crystal optical device with controlled surface order gradient
JPS60223891A (en) Manufacture of ferroelectric chiral c smectic liquid crystal, liquid crystal produced thereby and display device
Dozov et al. Planar degenerated anchoring of liquid crystals obtained by surface memory passivation
JPH02232625A (en) Ferroelectric liquid crystal element unit and method for supporting ferroelectric liquid crystal panel
JPH0135325B2 (en)
JPS62502636A (en) Ferroelectric liquid crystal device
Lim et al. Vertical alignment of liquid crystals with zinc oxide nanorods
Ozaki et al. Wavelength and bandwidth control of stop band of ferroelectric liquid crystals by varying incident angle and electric field
JPH0267519A (en) Liquid crystal optical modulating element and liquid crystal optical modulator
US4144585A (en) Bubble domain structures and method of making
CN113311522A (en) Optical asymmetric transmission structure and optical device
KR0177975B1 (en) Antiferroelectric liquid crystal display device of twist structure
Parshin Structural stability of nematic liquid crystal droplets in the light of the catastrophe theory
US20080043190A1 (en) Liquid Crystal Device and a Method for Manufacturing Thereof
TW200846794A (en) Optically compensated bend mode liquid crystal display devices and fabrication methods thereof
US6697144B2 (en) Switchable mirrors and retarders based on imbibed nano-column films
Kadivar et al. The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles