JPH0350191B2 - - Google Patents
Info
- Publication number
- JPH0350191B2 JPH0350191B2 JP18657981A JP18657981A JPH0350191B2 JP H0350191 B2 JPH0350191 B2 JP H0350191B2 JP 18657981 A JP18657981 A JP 18657981A JP 18657981 A JP18657981 A JP 18657981A JP H0350191 B2 JPH0350191 B2 JP H0350191B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- refrigerator
- liquid refrigerant
- cold air
- stopped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 238000010257 thawing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000007791 dehumidification Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 1
Landscapes
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Description
【発明の詳細な説明】
本発明は冷蔵庫の庫内を除湿冷却する冷却装置
に関し、その目的とする処は蒸発器への液冷媒供
給停止時に庫内冷気を蒸発器を殆ど通過させるこ
となく除湿して庫内を適度な湿度に維持すること
にある。更に詳しくは述べれば蒸発器への液冷媒
供給時吹出口として使用した二つの通気口のうち
一方を液冷媒供給停止時に庫内冷気の吸込口とし
て使用し、蒸発器を殆ど通過させることなく庫内
冷気を除湿用ヒータで除湿することにある。Detailed Description of the Invention The present invention relates to a cooling device that dehumidifies and cools the inside of a refrigerator, and its purpose is to dehumidify the cold air inside the refrigerator without passing it through the evaporator when the supply of liquid refrigerant to the evaporator is stopped. The purpose is to maintain the humidity inside the refrigerator at an appropriate level. More specifically, one of the two vents used as the outlet when supplying liquid refrigerant to the evaporator is used as an inlet for the cold air inside the refrigerator when the supply of liquid refrigerant is stopped, allowing the cold air to flow through the refrigerator without passing through the evaporator. The purpose is to dehumidify the cold air inside using a dehumidifying heater.
以下図面に基づいて本発明冷却装置の実施例を
説明すると、第1図乃至第3図に示す1は比較的
大型例えばプレハブ冷蔵庫Aの側壁に取付けられ
庫内Bを予じめ設定した湿度及び温度に維持する
冷却ユニツトで、金属板よりなるケース2にて本
体を構成され、このケース内部にプレートフイン
型蒸発器3と、この蒸発器の風下側に並設された
軸流型の第1及び第2両送風機4,5とを収納し
ている。6,7は前記蒸発器の風下側に位置する
ようケース2の前壁上部に並設形成された円形の
第1及び第2両通気口で、前記両送風機のプロペ
ラ4a,5aを臨設している。8は前記蒸発器の
風上側に位置するようケース2の前壁下部に形成
された長方形の第3通気口である。9は螺旋状フ
イン9aを有するシーズヒータからなる除湿用ヒ
ータで、蒸発器3と第1及び第2両通気口6,7
との間に配置され、蒸発器3への液冷媒供給停止
時に通電される。10は予じめ設定された上限温
度に達すると閉、下限温度に達すると開となる庫
内温度調節器で、蒸発器3にて熱交換された冷気
温度に基づいて後述する圧縮機を運転又は停止さ
せる。前記蒸発器は等間隔に並設された多数枚の
板状フイン3a,3aと、このフインの両側端に
配置された左右両管板3b,3bと、前記フイン
及び両管板を貫通直交する多数本の冷媒導管3
c,3cとにより構成され、空気入口面となる下
面には除霜時通電される霜取ヒータ11が配置さ
れている。12は前記冷却ユニツトと共に冷凍サ
イクルを構成する凝縮ユニツトで、庫内温度調節
器10によつて運転を制御される冷媒圧縮機1
3、凝縮器14、キヤピラリーチユーブ等の減圧
機構15を備え、圧縮機13で圧縮した高温高圧
のガス冷媒を凝縮器14でもつて高圧液冷媒と
し、更に減圧機構15で減圧して低圧液冷媒とし
て蒸発器3に送り、冷却ユニツト1を通過する冷
気流と熱交換された低圧ガス冷媒を圧縮機13に
導き、再び圧縮する周知の冷凍サイクルをなす。 Embodiments of the cooling device of the present invention will be described below based on the drawings. 1 shown in FIGS. 1 to 3 is attached to the side wall of a relatively large-sized, for example, prefabricated refrigerator A, and the interior B is controlled to a preset humidity and temperature. This is a cooling unit that maintains a constant temperature, and its main body is composed of a case 2 made of a metal plate. Inside this case, there is a plate fin type evaporator 3 and an axial flow type first evaporator installed in parallel on the lee side of this evaporator. and second blowers 4 and 5. Reference numerals 6 and 7 denote first and second circular vent holes that are formed in parallel on the upper part of the front wall of the case 2 so as to be located on the leeward side of the evaporator, and the propellers 4a and 5a of the two blowers are installed therein. There is. Reference numeral 8 denotes a third rectangular vent hole formed in the lower part of the front wall of the case 2 so as to be located on the windward side of the evaporator. A dehumidifying heater 9 is a sheathed heater having spiral fins 9a, and is connected to the evaporator 3 and both the first and second vents 6, 7.
It is arranged between the evaporator 3 and the evaporator 3, and is energized when the supply of liquid refrigerant to the evaporator 3 is stopped. Reference numeral 10 denotes an internal temperature regulator that closes when a preset upper limit temperature is reached and opens when a lower limit temperature is reached, and operates a compressor, which will be described later, based on the temperature of the cold air heat exchanged in the evaporator 3. or stop it. The evaporator has a large number of plate-like fins 3a arranged in parallel at equal intervals, left and right tube plates 3b disposed on both sides of the fins, and a fin extending through the fins and both tube plates at right angles to each other. Multiple refrigerant pipes 3
A defrost heater 11, which is energized during defrosting, is disposed on the lower surface that serves as the air inlet surface. Reference numeral 12 denotes a condensing unit that constitutes a refrigeration cycle together with the cooling unit, and includes a refrigerant compressor 1 whose operation is controlled by the internal temperature controller 10.
3. Equipped with a condenser 14 and a pressure reducing mechanism 15 such as a capillary reach tube, the high temperature and high pressure gas refrigerant compressed by the compressor 13 is converted into high pressure liquid refrigerant in the condenser 14, and further depressurized by the pressure reducing mechanism 15 to become low pressure liquid refrigerant. The low-pressure gas refrigerant is sent to the evaporator 3 as heat exchanger with the cold air flow passing through the cooling unit 1, and is then led to the compressor 13 to be compressed again, forming a well-known refrigeration cycle.
第4図は冷却装置の制御装置Cの電気回路図を
示し、16は交流電源、17はタイマーモータ1
7T、第1及び第2両正接点17a1,17a2、逆
接点17bからなる霜取用タイマ装置で、このタ
イマ装置の第1正接点17a1には第1送風機4が
直列接続され、又第2正接点17a2には庫内温度
調節器10を介して相互に並列な第2送風機5、
圧縮機13及びリレーXの並列回路が接続され、
更に逆接点17bには霜取用ヒータ11が直列接
続されている。前記リレーの逆接点Xbは除湿用
ヒータ9、第2正接点17a2を介して電源16に
直列接続されている。 FIG. 4 shows an electric circuit diagram of the control device C of the cooling device, in which 16 is an AC power supply, 17 is a timer motor 1
7T, a defrosting timer device consisting of both first and second tangent contacts 17a 1 , 17a 2 and a reverse contact 17b, the first blower 4 is connected in series to the first tangent contact 17a 1 of this timer device, and The second tangent point 17a2 is connected to a second blower 5, which is connected in parallel to each other, via an internal temperature controller 10.
A parallel circuit of compressor 13 and relay X is connected,
Further, a defrosting heater 11 is connected in series to the reverse contact 17b. The reverse contact Xb of the relay is connected in series to the power source 16 via the dehumidifying heater 9 and the second positive contact 17a2 .
いま霜取用タイマ装置17に除霜出力がなく第
1及び第2両接点17a1,17a2を閉じ、庫内B
の温度が高く上限温度に達し庫内温度調節器10
は閉じているとき、圧縮機13及び第1、第2両
送風機4,5は運転され、蒸発器3には液冷媒が
供給されている。従つて、蒸発器3を通過する液
冷媒と熱交換された冷気は、第1、第2両送風機
4,5でもつて第1、第2両通気口6,7から庫
内Bに吹き出され、庫内Bを経て第3通気口8よ
り蒸発器3に帰還する第2図矢印のように強制循
環され庫内Bを冷却する。この冷却運転時リレー
Xは励磁され、その逆接点Xbは開いており、除
湿用ヒータ9は非通電である。 There is currently no defrosting output in the defrost timer device 17, so both the first and second contacts 17a 1 and 17a 2 are closed, and the inside of the refrigerator B
temperature is high and reaches the upper limit temperature, the internal temperature controller 10
When closed, the compressor 13 and both the first and second blowers 4 and 5 are operated, and the evaporator 3 is supplied with liquid refrigerant. Therefore, the cold air that has undergone heat exchange with the liquid refrigerant passing through the evaporator 3 is blown out into the refrigerator interior B from the first and second vents 6 and 7 by both the first and second blowers 4 and 5. The air is forced to circulate through the refrigerator interior B and return to the evaporator 3 through the third vent 8 as shown by the arrow in FIG. 2, thereby cooling the refrigerator interior B. During this cooling operation, the relay X is energized, its reverse contact Xb is open, and the dehumidifying heater 9 is de-energized.
冷却運転が進行して庫内Bの温度が低くなり、
下限温度に達すると、庫内温度調節器10が開
き、圧縮機13及び第2送風機5が運転を停止す
る。また、リレーXは非励磁となり、その逆接点
Xbが閉じて除湿用ヒター9が通電される。これ
によつて蒸発器3への冷媒供給は停止されるが、
第1送風機4は運転されているので、庫内Bの冷
気は、第2通気口7からケース2上部に吸い込ま
れ、除湿用ヒータ9にて熱交換除湿されて第1通
気口6より庫内Bに吹き出される。即ち、庫内B
の冷気を第3図矢印のように強制循環することに
より、庫内Bを除湿する。 As the cooling operation progresses, the temperature inside the refrigerator B becomes lower.
When the lower limit temperature is reached, the internal temperature regulator 10 opens, and the compressor 13 and second blower 5 stop operating. Also, relay X becomes de-energized and its reverse contact
Xb is closed and the dehumidifying heater 9 is energized. This stops the refrigerant supply to the evaporator 3, but
Since the first blower 4 is in operation, the cold air inside the refrigerator B is sucked into the upper part of the case 2 from the second vent 7, is heat exchanged and dehumidified by the dehumidifying heater 9, and then enters the refrigerator from the first vent 6. B is blown out. In other words, inside B
The inside of the refrigerator B is dehumidified by forcedly circulating the cold air as shown by the arrow in Fig. 3.
圧縮機13の断続運転の進行に伴ない蒸発器3
の着霜量が増し、霜取用タイマ装置17が除霜出
力を発すると、その第1、第2両正接点17a1,
17a2は開き、逆接点17bは閉じ霜取用ヒータ
11による除霜運転が開始される。この除霜運転
時、圧縮機13、第1、第2両送風機4,5、リ
レーX及び除湿用ヒータ9は非通電となる。 As the compressor 13 continues to operate intermittently, the evaporator 3
When the amount of frost increases and the defrosting timer device 17 issues a defrosting output, both the first and second tangent points 17a 1 ,
17a2 is opened, and the reverse contact 17b is closed, and the defrosting operation by the defrosting heater 11 is started. During this defrosting operation, the compressor 13, the first and second blowers 4 and 5, the relay X, and the dehumidifying heater 9 are de-energized.
第5図は第1、第2両送風機4,5、圧縮機1
3の運転、庫内温度調節器10の閉、除湿用ヒー
タ9の通電状態を夫々斜線で示す特性図である。 Figure 5 shows both the first and second blowers 4 and 5, and the compressor 1.
3 is a characteristic diagram in which the operation of No. 3, the closing of the internal temperature regulator 10, and the energization state of the dehumidifying heater 9 are indicated by diagonal lines, respectively.
斯る構成によれば、蒸発器3への液冷媒供給時
第1及び第2両送風機4,5により循環される冷
気は庫内Bの商品から湿気を奪い蒸発器3に霜と
して付着させるため、庫内Bの除湿と冷却とを同
時に行ない庫内Bを適切な湿温度に維持すること
ができる。又蒸発器3への液冷媒供給停止時、第
1送風機4の運転を継続、第2送風機5の運転を
停止(逆転でも可)すると共に除湿用ヒータ9に
通電して庫内Bの冷気を第2通気口7からケース
2内に吸い込み除湿用ヒータ9と熱交換除湿して
第1通気口6から庫内Bに吹き出すため、商品か
ら出る湿気及び冷蔵庫Aの扉開閉に伴ない庫内B
に侵入した湿気を除湿することができ、しかも冷
気の循環に際し蒸発器3及びこの蒸発器に付着し
た霜が抵抗として作用するため、第3通気口8か
らケース2内への庫内冷気の侵入を僅かにして蒸
発器3に付着した霜による加湿を防止することが
でき、極めて効率の良い除湿を行なえる。 According to such a configuration, when the liquid refrigerant is supplied to the evaporator 3, the cold air circulated by the first and second blowers 4 and 5 removes moisture from the products in the warehouse B and deposits it on the evaporator 3 as frost. By simultaneously dehumidifying and cooling the interior B of the refrigerator, the interior B can be maintained at an appropriate humidity and temperature. In addition, when the supply of liquid refrigerant to the evaporator 3 is stopped, the operation of the first blower 4 is continued, the operation of the second blower 5 is stopped (reverse operation is also possible), and the dehumidifying heater 9 is energized to blow the cold air inside the refrigerator B. The moisture is sucked into the case 2 through the second vent 7, dehumidified by heat exchange with the dehumidifying heater 9, and then blown out from the first vent 6 into the refrigerator interior B. Therefore, the moisture coming out from the products and the interior B of the refrigerator A as the door opens and closes.
In addition, since the evaporator 3 and the frost attached to the evaporator act as resistance during the circulation of cold air, the cold air inside the refrigerator does not enter the case 2 from the third vent 8. This makes it possible to prevent humidification due to frost adhering to the evaporator 3 and to perform extremely efficient dehumidification.
以上の如く本発明は、蒸発器に液冷媒を供給し
ているときには双方の通気口を吹出口としてそこ
から冷気を吹き出し、液冷媒の供給を停止してい
るときには一方の通気口から冷気を吸入し、蒸発
器をほとんど通過させることなく、除湿用ヒータ
によつて除湿した後、他方の通気口から庫内に吹
き出すことができ、極めて効率的の良い除湿を行
うことができる。 As described above, in the present invention, when liquid refrigerant is being supplied to the evaporator, cold air is blown out from both vents as blow-off ports, and when the supply of liquid refrigerant is stopped, cold air is sucked in from one of the vents. However, after being dehumidified by the dehumidifying heater without passing through the evaporator, it can be blown out into the refrigerator from the other vent, making it possible to perform extremely efficient dehumidification.
図面は本発明冷却装置の実施例を示し、第1図
は冷却装置を備えた冷蔵庫の縦断面図、第2図、
第3図は蒸発器への液冷媒供給時、停止時におけ
る冷気の循環を示す冷却ユニツトの斜視図、第4
図は電気回路図、第5図は各部品の制御状態を示
す特性図である。
1……冷却ユニツト、2……ケース、3……蒸
発器、4,5……送風機、4a,5a……プロペ
ラ、6,7,8……通気口、9……除湿用ヒー
タ。
The drawings show an embodiment of the cooling device of the present invention, and FIG. 1 is a longitudinal sectional view of a refrigerator equipped with the cooling device, FIG.
Figure 3 is a perspective view of the cooling unit showing the circulation of cold air when liquid refrigerant is supplied to the evaporator and when it is stopped.
The figure is an electric circuit diagram, and FIG. 5 is a characteristic diagram showing the control state of each component. 1...Cooling unit, 2...Case, 3...Evaporator, 4, 5...Blower, 4a, 5a...Propeller, 6, 7, 8...Vent, 9...Dehumidifying heater.
Claims (1)
成するケース内にプレートフイン型蒸発器及び少
なくとも二個の軸流型送風機を収納し、このケー
スに蒸発器への液冷媒供給時蒸発器の風下側に位
置して冷気吹出口となり且つ送風機のプロペラを
各々臨設してなる相隣接する少なくとも二つの通
気口と、風上側に位置して冷気吸込口となる通気
口とを形成し、蒸発器と吹出口となる両通気口と
の間に液冷媒供給停止時に通電される除湿用ヒー
タを設けると共に、蒸発器への液冷媒供給停止時
一方の送風機を運転し、他方の送風機を逆転又は
停止する制御装置を設けたことを特徴とする冷却
装置。1. A plate fin type evaporator and at least two axial flow type blowers are housed in a case constituting a cooling unit installed inside the refrigerator, and the evaporator is heated in the case when liquid refrigerant is supplied to the evaporator. At least two adjacent vents are located on the leeward side and serve as cold air outlets and each has a propeller of a blower, and a vent located on the windward side serves as a cold air inlet. In addition to installing a dehumidifying heater that is energized when the supply of liquid refrigerant to the evaporator is stopped between the air outlet and both vents that serve as air outlets, one fan is operated when the supply of liquid refrigerant to the evaporator is stopped, and the other fan is reversed or stopped. A cooling device characterized by being provided with a control device that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18657981A JPS5888579A (en) | 1981-11-19 | 1981-11-19 | Cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18657981A JPS5888579A (en) | 1981-11-19 | 1981-11-19 | Cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5888579A JPS5888579A (en) | 1983-05-26 |
JPH0350191B2 true JPH0350191B2 (en) | 1991-07-31 |
Family
ID=16191003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18657981A Granted JPS5888579A (en) | 1981-11-19 | 1981-11-19 | Cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5888579A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0438220Y2 (en) * | 1984-10-01 | 1992-09-08 | ||
JPS62196579A (en) * | 1986-02-25 | 1987-08-29 | 三洋電機株式会社 | Cooling unit |
AU2004250035B2 (en) | 2003-06-23 | 2009-05-28 | Air Operation Technologies Inc. | Cooling device |
WO2005124249A1 (en) * | 2004-06-22 | 2005-12-29 | Asterism Incorporated | Cooling device |
-
1981
- 1981-11-19 JP JP18657981A patent/JPS5888579A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5888579A (en) | 1983-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900000269B1 (en) | Drying process and its apparatus utilizing a refrigeration cycle | |
KR970002175A (en) | Air conditioner | |
JPH11287502A (en) | Air conditioner | |
JPH0596940A (en) | Air-conditioning device for electrically driven automobile | |
KR102147578B1 (en) | Humidifier with cooling and heating function | |
JPH0136010B2 (en) | ||
JPH0350191B2 (en) | ||
JP2006162173A (en) | Air conditioner | |
JP2603407B2 (en) | Constant temperature and humidity | |
KR100569548B1 (en) | Air conditioner | |
JPH01142357A (en) | Air-conditioner | |
KR200453902Y1 (en) | The Dryer Of Changing Cold And Warm Wind. | |
JPH051839A (en) | Controller of air-conditioner | |
JP3170556B2 (en) | Air conditioner | |
JPH10274448A (en) | Air-conditioning device | |
JPH0972599A (en) | Air conditioner | |
JPH10176841A (en) | Air conductor for elevator | |
JP2001082759A (en) | Indoor unit for air conditioner | |
JP3540162B2 (en) | Dehumidifier | |
JPS5922421Y2 (en) | air conditioner | |
JPH0674630A (en) | Cooling and storing device | |
JPH0638589U (en) | High humidity thawing cold storage | |
CN114777465A (en) | Heat pump drying system | |
KR200212118Y1 (en) | Outside air supply duct | |
JP2598892B2 (en) | Air conditioner |