JPH0350126B2 - - Google Patents

Info

Publication number
JPH0350126B2
JPH0350126B2 JP23932083A JP23932083A JPH0350126B2 JP H0350126 B2 JPH0350126 B2 JP H0350126B2 JP 23932083 A JP23932083 A JP 23932083A JP 23932083 A JP23932083 A JP 23932083A JP H0350126 B2 JPH0350126 B2 JP H0350126B2
Authority
JP
Japan
Prior art keywords
pressure
secondary pressure
spool
operating
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23932083A
Other languages
Japanese (ja)
Other versions
JPS60132180A (en
Inventor
Hiroshi Nosaka
Akio Tanaka
Kazuhiko Yamashita
Kazunori Yoshino
Atsushi Masuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23932083A priority Critical patent/JPS60132180A/en
Publication of JPS60132180A publication Critical patent/JPS60132180A/en
Publication of JPH0350126B2 publication Critical patent/JPH0350126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Servomotors (AREA)
  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力制御弁、減圧弁、操縦弁等に応用
できるリモコン弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a remote control valve that can be applied to pressure control valves, pressure reducing valves, control valves, and the like.

(従来の技術) 第2図は従来のリモコン弁の縦断面図を示す。
リモコン弁は一種の減圧弁で、供給口P、2次圧
口A、B、排油口Tを有しており、供給口Pは油
圧ポンプ等の液圧源から元圧が導入されている。
2次圧口A及びBは、制御対象に接続されるもの
で、2次圧口Aから供給ポート11を経て流れた
油が、制御対象の負荷圧に見合つて生ずる圧力に
調整される。また排油口Tは、負荷圧が不要とな
つたとき、2次圧口A及びBからタンクへ戻され
る流路である。
(Prior Art) FIG. 2 shows a longitudinal sectional view of a conventional remote control valve.
The remote control valve is a type of pressure reducing valve, and has a supply port P, secondary pressure ports A and B, and an oil drain port T, and the supply port P receives main pressure from a hydraulic pressure source such as a hydraulic pump. .
The secondary pressure ports A and B are connected to the controlled object, and the oil flowing from the secondary pressure port A through the supply port 11 is adjusted to a pressure corresponding to the load pressure of the controlled object. Further, the oil drain port T is a flow path through which the oil is returned from the secondary pressure ports A and B to the tank when the load pressure is no longer required.

ここで2次圧口AあるいはBの調整は次のよう
に行なわれる。先ず操作ノブ1をX方向に倒す
と、その回転偏位がレバー2、ヘツドカバー4、
プツシユロツド7を介してバネ10を圧縮し、さ
らにバネ9を押しながらスプール8を下方へ変位
せしめる。スプール8が変位し、供給ポート11
の重合部を通過すると、供給口Pが2次圧口Aへ
通じ、2次圧力がスプール8を上方へ変位する力
を生ずるので、バネ9の圧縮荷重に等しくなるま
で油が流れ、等しくなると供給ポート11が閉じ
られる。即ち、操作ノブ1の回転偏位に対応した
2次圧力(流れがないときは、負荷圧力に等し
い)を発生することができる。操作ノブ1を中位
方向に戻すと、バネ9の力が弱くなり、2次圧力
がスプール8を上方へ変位させるので、2次圧は
排油ポート12を通じると同時に、排油口Tへ流
れて、2次圧力は低下する。
Here, the adjustment of the secondary pressure port A or B is performed as follows. First, when the operation knob 1 is tilted in the X direction, the rotational deviation is applied to the lever 2, head cover 4,
The spring 10 is compressed via the push rod 7, and the spool 8 is displaced downward while pushing the spring 9. The spool 8 is displaced and the supply port 11
When the oil passes through the overlapping part of Supply port 11 is closed. That is, it is possible to generate a secondary pressure (equal to the load pressure when there is no flow) corresponding to the rotational deviation of the operating knob 1. When the operating knob 1 is returned to the middle direction, the force of the spring 9 becomes weaker and the secondary pressure displaces the spool 8 upward, so that the secondary pressure passes through the oil drain port 12 and at the same time flows to the oil drain port T. flows, and the secondary pressure decreases.

次に第1図についてリモコン弁の適用例を説明
する。図においてリモコン弁aの操作レバーbを
操作すると、2次圧口c、bのいずれかに2次圧
が発生し、例えばcに圧力が立つと、制御弁eが
矢印の方向に移動し、ポンプfからの圧油が制御
弁eの負荷ラインgへ流れ、アクチユエータiが
同じく矢印の方へ動く。そのときアクチユエータ
iの低圧側の油は、負荷ラインhを戻り、制御弁
eを経てタンクへ流れる。同様に制御弁eの反対
側の油は2次圧口dを通り、操作されていない側
のスプールを流れてタンクに戻る。
Next, an application example of the remote control valve will be explained with reference to FIG. In the figure, when operating lever b of remote control valve a is operated, secondary pressure is generated in either secondary pressure port c or b. For example, when pressure is built up in c, control valve e moves in the direction of the arrow. Pressure oil from pump f flows into load line g of control valve e, and actuator i also moves in the direction of the arrow. At this time, the oil on the low pressure side of the actuator i returns to the load line h and flows to the tank via the control valve e. Similarly, the oil on the opposite side of the control valve e passes through the secondary pressure port d, flows through the spool on the non-operated side, and returns to the tank.

(発明が解決しようとする課題) リモコン弁は上述の作動をするので、操作ノブ
1の操作力を軽減するには、スプール8の受圧面
積を小さくする必要がある。また流量即ち、負荷
の動作を速くするには、大流量にする必要がある
と共に、高圧化すると、スプール8の受圧面積を
小さくしないと操作力が大きくなる。一方操作力
を小さくするには、、レバー2を長くすれば良い
が、これでは動作範囲が大きくなり、不便で、し
かも操作に大きな力を必要とする。
(Problems to be Solved by the Invention) Since the remote control valve operates as described above, in order to reduce the operating force of the operating knob 1, it is necessary to reduce the pressure receiving area of the spool 8. Further, in order to speed up the flow rate, that is, the operation of the load, it is necessary to increase the flow rate, and when the pressure is increased, the operating force becomes large unless the pressure receiving area of the spool 8 is made small. On the other hand, in order to reduce the operating force, the lever 2 may be made longer, but this increases the operating range, is inconvenient, and requires a large amount of force for operation.

従つて操作力を小さくするためにスプール8の
受圧面積を小さくすると、流量が小となり、弁の
圧力損失が大となる。また流量を大きくするため
にスプール8の直径を大きくすると、前記の如く
操作力が大きくなるばかりか、バネ9の応力も限
界を超える。また高圧化(2次圧をより高くす
る)についても前記と同様の障害が出る欠点があ
つた。
Therefore, if the pressure-receiving area of the spool 8 is made smaller in order to reduce the operating force, the flow rate becomes smaller and the pressure loss of the valve becomes larger. Furthermore, if the diameter of the spool 8 is increased in order to increase the flow rate, not only will the operating force increase as described above, but the stress of the spring 9 will also exceed its limit. In addition, increasing the pressure (increasing the secondary pressure) also had the disadvantage of causing the same problems as described above.

(課題を解決するための手段) このための本発明は、液圧供給口と2次圧口の
連通を制御する制御スプールを有し、操作レバー
の回転偏位ひ対応した2次圧力を発生せしめて前
記制御スプールを動作させるリモコン弁におい
て、同制御スプールに相対摺動可能に嵌着され、
前記制御スプールに生ずる2次圧力による上向き
の力に見合つた下向きの力を、前記2次圧力を上
面に作用させることにより発生させるピストンが
下端に固着された操作力低域棒を、前記操作レバ
ーの操作により押圧されるプツシユロツドの下端
に垂下状態で保持せしめてなるもので、これを課
題解決のための手段とするものである。
(Means for Solving the Problem) To this end, the present invention has a control spool that controls communication between a hydraulic pressure supply port and a secondary pressure port, and generates secondary pressure corresponding to the rotational deviation of the operating lever. At least the remote control valve for operating the control spool is fitted to the control spool so as to be relatively slidable therein;
A piston that generates a downward force commensurate with the upward force due to the secondary pressure generated on the control spool by applying the secondary pressure to the upper surface is attached to the operating force low range rod, which is fixed to the lower end of the operating lever. The push rod is held in a hanging state at the lower end of the push rod that is pressed by the operation of the push rod.This is a means for solving the problem.

(作用) 操作レバーを方向へ倒すと、この動きがプツシ
ユロツドに伝達されて操作力低減棒が下方へ変位
すると共に、制御スプールも下方へ変位する。や
がてスプールの供給ポートが重合部をすぎると、
供給口からの圧油が供給ポートへ流入し、その流
れは油路を経て2次圧ポートから2次圧口へ通ず
る。ここで2次圧口に接続された負荷(制御対
象)に圧力が立つと、それに応じて2次圧ポート
に圧力がかかる。2次圧が立つとスプールが上方
へ移動しようとするが、調圧バネの力に見合つた
ところで、供給ポートと供給口との開口が断たれ
てバランスする。この時操作力低域棒のピストン
も同じ圧力を受けているので、スプールを上方へ
動かす力と同じ値の力が、ピストンを下方へ動か
す力として発生しており、従来に比べて大流量
化、低圧力損失防止、高圧化、操作力の低域等を
図ることができる。
(Function) When the operating lever is tilted in the direction, this movement is transmitted to the push rod, the operating force reduction rod is displaced downward, and the control spool is also displaced downward. Eventually, when the spool's supply port passes the overlapping part,
Pressure oil from the supply port flows into the supply port, and the flow passes from the secondary pressure port to the secondary pressure port via the oil passage. When pressure builds up in the load (controlled object) connected to the secondary pressure port, pressure is applied to the secondary pressure port accordingly. When the secondary pressure builds up, the spool tries to move upward, but when the force of the pressure adjustment spring is met, the openings between the supply port and the supply opening are cut off and balance is achieved. At this time, the piston of the low operating force rod is also receiving the same pressure, so the same force that moves the spool upward is generated as a force that moves the piston downward, resulting in a larger flow rate than before. , low pressure loss prevention, high pressure, low operating force, etc. can be achieved.

(実施例) 以下本発明の実施例を図面について説明する
と、第3図は本発明の実施例を示し、1は操作ノ
ブ、2はレバー、3は自在継手である。なお、図
において操作ノブ1はX−Y方向及び紙面に垂直
な前後方向に回動自在である。また4はカバー、
5はリモコン弁本体、6は蓋、7はプツシユロツ
ド、8はスプール、9は調圧バネ、10は操作ノ
ブ1及びレバー2の復帰バネ、11はスプール8
の供給ポート、12は同じく排油ポートである。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. Fig. 3 shows an embodiment of the present invention, in which 1 is an operating knob, 2 is a lever, and 3 is a universal joint. In the figure, the operating knob 1 is rotatable in the X-Y direction and in the front-rear direction perpendicular to the plane of the paper. Also, 4 is a cover,
5 is the remote control valve body, 6 is the lid, 7 is the push rod, 8 is the spool, 9 is the pressure adjustment spring, 10 is the return spring for the operating knob 1 and lever 2, 11 is the spool 8
The supply port 12 is also an oil drain port.

Pは供給口で、液圧源に接続されており、A及
びBは2次圧口で、例えば液圧シリンダの作動圧
口に接続され、またTは排油口でタンクへ接続さ
れる。21は操作力低減棒、22は操作力低減棒
21の下部に一体となつたピストン、23はスプ
ール8の内径部と操作力低減棒21の外径部で形
成された油路、24は2次圧ポートを示す。
P is a supply port connected to a hydraulic pressure source, A and B are secondary pressure ports connected to, for example, an operating pressure port of a hydraulic cylinder, and T is a drain port connected to a tank. 21 is an operating force reducing rod, 22 is a piston integrated with the lower part of the operating force reducing rod 21, 23 is an oil passage formed by the inner diameter part of the spool 8 and the outer diameter part of the operating force reducing rod 21, and 24 is 2 Shows secondary pressure port.

次に作用を説明する。操作ノブ1とレバー2で
構成された操作レバーをX方向に倒すと、ヘツド
カバー4が自在継手3を中心として回転偏位し、
この動きがプツシユロツド7に伝達されて操作力
低減棒21が下方へ変位するとともに、復帰バネ
10を圧縮し、かつ調圧バネ9を押しつつスプー
ル8も下方へ変位する。やがてスプール8の供給
ポート11が重合部をすぎると、供給口Pからの
圧油が供給ポート11へ流入し、その流れは、油
路23を経て、2次圧ポート24から2次圧口A
へ通ずる。
Next, the action will be explained. When the operating lever consisting of the operating knob 1 and lever 2 is tilted in the X direction, the head cover 4 is rotated about the universal joint 3,
This movement is transmitted to the push rod 7 and the operating force reduction rod 21 is displaced downward, and the spool 8 is also displaced downward while compressing the return spring 10 and pushing the pressure adjustment spring 9. Eventually, when the supply port 11 of the spool 8 passes the overlapping part, the pressure oil from the supply port P flows into the supply port 11, and the flow passes through the oil path 23 and flows from the secondary pressure port 24 to the secondary pressure port A.
Leads to.

ここで2次圧口Aに接続された負荷(制御対
象)に圧力が立つと、それに応じて2次圧ポート
24に圧力がかかる。2次圧が立つとスプール8
が上方へ移動しようとするが、調圧バネ9の力に
見合つたところで、供給ポート11と供給口Pと
の開口が断たれてバランスする。この時操作力低
減棒21のピストン22も同じ圧力を受けている
ので、スプール8を上方へ動かす力と同じ値の力
が、ピストン22を下方へ動かす力と発生してい
る。その結果、プツシユロツド7に働く力として
は、復帰バネ10の反撥力のみとなる。
When pressure builds up in the load (controlled object) connected to the secondary pressure port A, pressure is applied to the secondary pressure port 24 accordingly. When secondary pressure builds up, spool 8
tries to move upward, but when the force of the pressure adjustment spring 9 is met, the openings between the supply port 11 and the supply port P are cut off and the supply port P is balanced. At this time, since the piston 22 of the operating force reduction rod 21 is also receiving the same pressure, the same force as the force that moves the spool 8 upward is generated as the force that moves the piston 22 downward. As a result, the only force acting on the push rod 7 is the repulsive force of the return spring 10.

いま操作ノブ1を偏位したときに、プツシユロ
ツド7がx変位する。バネ9のバネ定数をκ9と
し、取付荷重を無視すれば、スプール8を下げる
力F1は(κ9×x)である。またスプール8の重
合量を無視して2次圧力の受圧面積をasとすれ
ば、2次圧力PA=F1/as=κ9×x/asとなる。
When the operating knob 1 is now deflected, the push rod 7 is displaced by x. If the spring constant of the spring 9 is κ9 and the mounting load is ignored, the force F1 that lowers the spool 8 is (κ9×x). Moreover, if the pressure receiving area of the secondary pressure is set as as, ignoring the amount of polymerization of the spool 8, then the secondary pressure PA=F1/as=κ9×x/as.

さらにプツシユロツド7には復帰用バネ10の
バネ力も働くので、バネ定数をκ10とすれば、変
位xは同じであるので、反力F2は(κ10×x)で
ある。即ち、2次圧力PAを発生するには、 反力F1+F2=(κ9+κ10)x =PA・as+κ10・x これに対し操作力低減棒21が作用すると、
PA・as分が逆方向(図において下方)に働くの
で、上式はF2=κ10・xのみとなり、圧力による
影響を受けないことが分る。
Furthermore, since the spring force of the return spring 10 also acts on the push rod 7, if the spring constant is κ10, the displacement x is the same, so the reaction force F2 is (κ10×x). That is, to generate the secondary pressure PA, the reaction force F1 + F2 = (κ9 + κ10) x = PA・as+κ10・x When the operating force reduction rod 21 acts on this,
Since the PA・as component acts in the opposite direction (downward in the figure), the above equation becomes only F2=κ10・x, which shows that it is not affected by pressure.

一方図の状態で操作しない側のスプールに何ら
かの現象で2次圧力が発生すると、その圧力PA
によつて操作力低減棒はxR=κ10/as・PAで下方に xR変位する。しかし制御ピストンは同じく2次
圧力PAによつてxP=κP/as・PAで上方にxP変位 する。いまκ9とκ10を等しくしておけば、2次圧
力PAによつてピストンがその分だけ補正して変
位するので、実害は起こらないことが分かる。
On the other hand, if secondary pressure occurs due to some phenomenon in the spool on the side that is not operated in the state shown in the figure, the pressure PA
As a result, the operating force reduction rod is displaced xR downward by xR = κ10/as・PA. However, the control piston is also displaced xP upward by xP=κP/as·PA due to the secondary pressure PA. If we now set κ9 and κ10 equal, the piston will be displaced by the amount compensated by the secondary pressure PA, so it can be seen that no actual damage will occur.

(発明の効果) 以上詳細に説明した如く本発明は、制御スプー
ルに生ずる2次圧力による上向きの力に見合つた
下向きの力を、前記2次圧力を上面に作用させる
ことにより発生させるピストンが下端に固着され
た操作力低域棒を、前記操作レバーの操作により
押圧されるプツシユロツドの下端に垂下状態で保
持せしめるようにしたので、制御スプールに作用
する上向きと等しい下向き力を発生させて、プツ
シユロツドに作用する2次圧力の影響を無くすこ
とができ、2次圧力が高圧をなつても、プツシユ
ロツド、即ち操作レバーの操作力が大きく増加す
るようなことはない。
(Effects of the Invention) As described above in detail, the present invention provides a piston that generates a downward force commensurate with an upward force due to the secondary pressure generated on the control spool by applying the secondary pressure to the upper surface of the piston. Since the operating force low range rod fixed to the control spool is held in a hanging state at the lower end of the push rod that is pressed by operating the control lever, a downward force equal to the upward force acting on the control spool is generated, and the push rod is The influence of the secondary pressure acting on the push rod, that is, the operating force of the operating lever, will not increase significantly even if the secondary pressure becomes high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のリモコン弁の適用状態を示す配
管図、第2図は従来のリモコン弁の縦断面図、第
3図は本発明の実施例を示すリモコン弁の縦断面
図である。 図の主要部分の説明、1……操作ノブ、2……
レバー、5……リモコン弁本体、7……プツシユ
ロツド、8……スプール、9……調圧バネ、10
……復帰バネ、21……操作力低減棒、21……
ピストン。
FIG. 1 is a piping diagram showing an application state of a conventional remote control valve, FIG. 2 is a vertical cross-sectional view of the conventional remote control valve, and FIG. 3 is a vertical cross-sectional view of a remote control valve showing an embodiment of the present invention. Explanation of the main parts of the diagram, 1... Operation knob, 2...
Lever, 5... Remote control valve body, 7... Push rod, 8... Spool, 9... Pressure adjustment spring, 10
...Return spring, 21...Operating force reduction rod, 21...
piston.

Claims (1)

【特許請求の範囲】[Claims] 1 液圧供給口と2次圧口の連通を制御する制御
スプールを有し、操作レバーの回転偏位に対応し
た2次圧力を発生せしめて前記制御スプールを動
作させるリモコン弁において、同制御スプールに
相対摺動可能に嵌着され、前記制御スプールに生
ずる2次圧力による上向きの力に見合つた下向き
の力を、前記2次圧力を上面に作用させることに
より発生させるピストンが下端に固着された操作
力低域棒を、前記操作レバーの操作により押圧さ
れるプツシユロツドの下端に垂下状態で保持せし
めたことを特徴とするリモコン弁。
1. In a remote control valve that has a control spool that controls communication between a hydraulic pressure supply port and a secondary pressure port, and that operates the control spool by generating secondary pressure corresponding to rotational deviation of an operating lever, the control spool A piston is fixed to the lower end of the control spool to generate a downward force commensurate with the upward force due to the secondary pressure generated on the control spool by applying the secondary pressure to the upper surface. A remote control valve characterized in that a low operating force rod is held in a hanging state at the lower end of a push rod that is pressed by operating the operating lever.
JP23932083A 1983-12-19 1983-12-19 Remote control valve Granted JPS60132180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23932083A JPS60132180A (en) 1983-12-19 1983-12-19 Remote control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23932083A JPS60132180A (en) 1983-12-19 1983-12-19 Remote control valve

Publications (2)

Publication Number Publication Date
JPS60132180A JPS60132180A (en) 1985-07-15
JPH0350126B2 true JPH0350126B2 (en) 1991-07-31

Family

ID=17042958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23932083A Granted JPS60132180A (en) 1983-12-19 1983-12-19 Remote control valve

Country Status (1)

Country Link
JP (1) JPS60132180A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146202U (en) * 1987-03-18 1988-09-27
JPH0290403U (en) * 1988-12-28 1990-07-18
JP2528854Y2 (en) * 1989-04-28 1997-03-12 株式会社小松製作所 Pilot valve
JPH0749042Y2 (en) * 1989-05-08 1995-11-13 川崎重工業株式会社 Pilot valve

Also Published As

Publication number Publication date
JPS60132180A (en) 1985-07-15

Similar Documents

Publication Publication Date Title
US5366202A (en) Displacement controlled hydraulic proportional valve
JPH0544626Y2 (en)
US5285878A (en) Cylinder including a piston with a valve control
KR970075393A (en) Heavy-duty control valve with variable regeneration function
JP2786401B2 (en) Hydraulic operation valve
EP0427865A4 (en) Hydraulic driving device of construction equipment
US8944104B2 (en) Hydraulic pilot control unit
JP3549126B2 (en) Directional control valve
JPH0350126B2 (en)
JPH0245569Y2 (en)
JPH0128390Y2 (en)
KR950003940A (en) Direction and speed control device of hydraulic actuator
KR830008077A (en) Control method and system of hydraulic drive system
JPS6145247Y2 (en)
JPH0426727Y2 (en)
JPH059521Y2 (en)
JP2509447B2 (en) Proportional solenoid pressure reducing valve
KR960016823B1 (en) Pressure control valve
JP3697269B2 (en) Hydraulic circuit device
JP3046046B2 (en) Direction switching valve device
JP3532344B2 (en) Spool valve
JPH0717898Y2 (en) Proportional solenoid pressure control valve
JPS5841365Y2 (en) booster
JPS6188008A (en) Hydraulic control device
JPS60175878A (en) Electromagnetic proportioning type pressure control valve