JPH0349827Y2 - - Google Patents

Info

Publication number
JPH0349827Y2
JPH0349827Y2 JP17918985U JP17918985U JPH0349827Y2 JP H0349827 Y2 JPH0349827 Y2 JP H0349827Y2 JP 17918985 U JP17918985 U JP 17918985U JP 17918985 U JP17918985 U JP 17918985U JP H0349827 Y2 JPH0349827 Y2 JP H0349827Y2
Authority
JP
Japan
Prior art keywords
power supply
transformer
welding machine
pine
transformers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17918985U
Other languages
Japanese (ja)
Other versions
JPS6286981U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17918985U priority Critical patent/JPH0349827Y2/ja
Publication of JPS6286981U publication Critical patent/JPS6286981U/ja
Application granted granted Critical
Publication of JPH0349827Y2 publication Critical patent/JPH0349827Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は直流マツシユシーム溶接機、更に詳
しくは回転円板電極に直流電源を供給する直流電
源装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a DC pine seam welding machine, and more specifically to a DC power supply device that supplies DC power to a rotating disk electrode.

〔従来の技術〕[Conventional technology]

第5図は従来の直流マツシユシーム溶接機の給
電部を示す概略構成図、第6図は同溶接機のクラ
ンパ部を示す構成図である。
FIG. 5 is a schematic configuration diagram showing a power supply section of a conventional DC pine seam welding machine, and FIG. 6 is a configuration diagram showing a clamper section of the same welding machine.

図において、1は直流電源装置、2は直流電源
装置1に締結された二本の二次導体、3は一つの
二次導体2の端部に締結された上部導体、4はも
う一つの二次導体2の端部に締結された下部導
体、5は上部導体3に締結された上部回転円板電
極、6は下部導体4に締結された下部回転円板電
極である。7は二次導体2,2の近辺に配設され
たシヤー、8は入側クランプ、9は出側クラン
プ、10は溶接されるストリツプである。
In the figure, 1 is a DC power supply, 2 is two secondary conductors connected to the DC power supply 1, 3 is an upper conductor connected to the end of one secondary conductor 2, and 4 is another secondary conductor. A lower conductor is fastened to the end of the secondary conductor 2, 5 is an upper rotating disk electrode fastened to the upper conductor 3, and 6 is a lower rotating disk electrode fastened to the lower conductor 4. 7 is a shear disposed near the secondary conductors 2, 2, 8 is an inlet clamp, 9 is an outlet clamp, and 10 is a welded strip.

第7図は従来の直流マツシユシーム溶接機の直
流電源装置の回路図である。図において、11は
変圧器で、その一次側は交流電源12に接続され
ている。13は変圧器11の二次側に接続された
全波整流回路で、その出力側が二次導体2,2に
接続されている。14は変圧器11の一次側と交
流電源12との間に設けられた互いに極性を逆に
並列接続された二つのサイリスタで、スイツチの
作用をなす。
FIG. 7 is a circuit diagram of a conventional DC power supply device for a DC pine seam welding machine. In the figure, 11 is a transformer, the primary side of which is connected to an AC power source 12. 13 is a full-wave rectifier circuit connected to the secondary side of the transformer 11, and its output side is connected to the secondary conductors 2, 2. Reference numeral 14 denotes two thyristors connected in parallel with opposite polarities, which are provided between the primary side of the transformer 11 and the AC power source 12, and function as a switch.

従来の直流マツシユシーム溶接機は上記によう
に構成され、たとえば直流電源装置1の二つのサ
イリスタ14,14を点孤することにより、交流
電源12によつて変圧器11が励磁され、全波整
流回路13で直流に整流されて二次導体2に直流
電流が流れる。この直流電流は上部導体4を介し
て上部回転円板電極6、重ね合わされたストリツ
プ10,10、下部回転円板電極6、下部導体
4、二次導体2へと流れ、ストリツプ10,10
を流れるときにジユール熱を発生して溶接を行
う。
A conventional DC pine seam welding machine is configured as described above. For example, by firing the two thyristors 14, 14 of the DC power supply 1, the transformer 11 is excited by the AC power supply 12, and the full-wave rectifier circuit is activated. The DC current is rectified into direct current at step 13 and flows through the secondary conductor 2 . This direct current flows through the upper conductor 4 to the upper rotating disk electrode 6, the superimposed strips 10, 10, the lower rotating disk electrode 6, the lower conductor 4, the secondary conductor 2, and the strips 10, 10.
When it flows, it generates heat and performs welding.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記のような従来の直流マツシユシール溶接機
では、直流電源装置1は一つの変圧器11の二次
側に一つの全波整流回路13が設けられているだ
けであるから、全波整流回路13によつて整流さ
れた直流電流の極性が反転することはない。従つ
て、ストリツプ10,10の溶接のために、直流
電源装置1から直流電流を流すと、二次導体2,
2には溶接に必要な大きな直流電流が流れ、二次
導体2,2近辺のシャー7や入側クランプ8、出
側クランプ9などの磁性材はこれらの中を通過す
る磁束によつて磁化される。このため、磁化され
たシャー7や入及び出側クランプ8,9などの磁
性材は大気中を浮遊する鉄粉や鉄片などを吸引
し、ストリツプ10の先端を切断する時にシャー
7の刃面が欠けたり、入及び出側クランプ8,9
のクランプ時にストリツプ10に傷を付けたりす
るという問題点があつた。
In the conventional DC pine seal welding machine as described above, the DC power supply 1 is only provided with one full-wave rectifier circuit 13 on the secondary side of one transformer 11. Therefore, the polarity of the rectified direct current is never reversed. Therefore, when direct current is applied from the DC power supply 1 to weld the strips 10, 10, the secondary conductors 2,
A large direct current necessary for welding flows through the secondary conductor 2, and magnetic materials such as the shear 7, the inlet clamp 8, and the outlet clamp 9 near the secondary conductors 2 and 2 are magnetized by the magnetic flux passing through them. Ru. Therefore, the magnetic materials such as the magnetized shear 7 and the inlet and outlet clamps 8 and 9 attract iron powder and pieces of iron floating in the atmosphere, and when cutting the tip of the strip 10, the blade surface of the shear 7 Missing, input and exit clamps 8, 9
There was a problem in that the strip 10 was damaged when clamped.

この考案は、かかる問題点を解決するためにな
されたもので、シャーや入及び出側クランプ等の
磁性材が大気中を浮遊する鉄粉や鉄片などを吸引
しないようにした直流マツシユシーム溶接機を得
ることを目的とする。
This invention was made to solve this problem, and it is a DC pine seam welding machine that prevents the magnetic materials such as the shear and the inlet and outlet clamps from attracting iron powder and iron pieces floating in the atmosphere. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係る直流マツシユシーム溶接機は交
流電源に一次側が並列接続された二つの変圧器
と、2つの変圧器の二次側にそれぞれ接続され、
出力側の極性を互いに逆に接続された二つの全波
整流回路と、二つの変圧器の一次側と交流電源と
の接続を交互に切り換える切換スイツチとからな
る直流電源装置を備えるように構成したものであ
る。
The DC pine seam welding machine according to this invention is connected to two transformers whose primary sides are connected in parallel to an AC power source, and to the secondary sides of the two transformers.
It was configured to include a DC power supply device consisting of two full-wave rectifier circuits whose output sides are connected with opposite polarities, and a changeover switch that alternately switches the connection between the primary sides of the two transformers and the AC power supply. It is something.

〔作用〕[Effect]

この考案においては、切換スイツチの切り換え
によつて交流電源が二つの変圧器に交互に供給さ
れ、各変圧器に対応して設けられ、出力側の極性
を互いに逆に接続された二つの全波整流回路も交
互に作動させられて二次導体に流れる直流電流の
極性が反転するから、二次導体近辺の磁性材は磁
化されても残留磁束が保持力を有しない。
In this device, alternating current power is alternately supplied to two transformers by switching a changeover switch, and two full-wave transformers are provided corresponding to each transformer, and the output side polarities are connected to each other in reverse. Since the rectifier circuit is also operated alternately to reverse the polarity of the direct current flowing through the secondary conductor, the residual magnetic flux does not have a coercive force even if the magnetic material near the secondary conductor is magnetized.

〔実施例〕〔Example〕

第1図はこの考案の一実施例を示す回路図、第
2図は変圧器の鉄心を示す斜視図、第3図は反転
直流電流波形を示す説明図、第4図は二次導体に
通電した場合の磁束方向を示す説明図である。
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is a perspective view showing the core of the transformer, Fig. 3 is an explanatory diagram showing an inverted DC current waveform, and Fig. 4 is energizing the secondary conductor. FIG. 3 is an explanatory diagram showing the direction of magnetic flux when

図において、従来例と同一の構成は従来例と同
一符号を付して重複した構成の説明を省略する。
11aは第1変圧器、11bは第2変圧器で、こ
れから変圧器11a,11bの一次側は交流電源
12に並列接続されている。これら第1及び第2
変圧器11a,11bの鉄心15は第2図に示す
如く、5脚鉄心構造とし、構造を一体化並びに簡
略化したもので、第1変圧器11aの一次巻線、
2次巻線と第2変圧器11bの一次巻線、2次巻
線はそれぞれ別個に絶縁されている。13aは第
1変圧器11aの二次側に接続された第1全波整
流回路、13bは第2変圧器11bの二次側に接
続された第2全波整流回路である。これら第1及
び第2全波整流回路13a,13bの出力側は極
性を互いに逆となるように接続され、直流出力端
子16を共通化して二次導体2,2に接続されて
いる。14aは第1変圧器14aの一次側と交流
電源12との間に設けられた互いに極性を逆に並
列接続されたスイツチ作用をなす二つの第1サイ
リスタ、14bは第2変圧器14bの一次側と交
流電源12との間に設けられた互いに極性を逆に
並列接続されたスイツチ作用をなす二つの第2サ
イリスタである。
In the figure, the same components as those in the conventional example are given the same reference numerals as those in the conventional example, and the explanation of the redundant components will be omitted.
11a is a first transformer, 11b is a second transformer, and the primary sides of the transformers 11a and 11b are connected in parallel to an AC power source 12. These first and second
As shown in FIG. 2, the cores 15 of the transformers 11a and 11b have a five-legged core structure, and the structure is integrated and simplified, and the primary winding of the first transformer 11a,
The secondary winding and the primary and secondary windings of the second transformer 11b are separately insulated. 13a is a first full-wave rectifier circuit connected to the secondary side of the first transformer 11a, and 13b is a second full-wave rectifier circuit connected to the secondary side of the second transformer 11b. The output sides of these first and second full-wave rectifier circuits 13a and 13b are connected so that the polarities are opposite to each other, and are connected to the secondary conductors 2, 2 by sharing the DC output terminal 16. Reference numeral 14a indicates two first thyristors connected in parallel with opposite polarities, which are provided between the primary side of the first transformer 14a and the AC power supply 12, and which function as a switch. Reference numeral 14b indicates the primary side of the second transformer 14b. Two second thyristors are provided between the AC power source 12 and the AC power source 12 and are connected in parallel with opposite polarities to each other and function as a switch.

上記のように構成された直流マツシユシーム溶
接機においては、まず二つの第1サイリスタ14
a,14aを点孤することにより、第1変圧器1
1aが励磁され、第1変圧器11aの二次側に接
続された第1全波整流回路13aによつて整流さ
れた直流電流は、二次導体2、上部導体3を介し
て上部回転円板電極5ストリツプ10,10、下
部回転円板電極6、下部導体4、二次導体2へと
流れる。このとき、第2変圧器13bのセンター
タツプより分流が流れようとするが、二つの第2
サイリスタ14b,14bが点孤していないた
め、第2変圧器11bの内部インピーダンスは高
いレベルとなり、励磁電流程度の電流で殆どの直
流電流が上下導体3,4、即ち上部及び下部回転
円板電極5,6に流れる。
In the DC pine seam welding machine configured as described above, first, the two first thyristors 14
a, 14a, the first transformer 1
1a is excited, and the DC current rectified by the first full-wave rectifier circuit 13a connected to the secondary side of the first transformer 11a is transmitted to the upper rotating disk via the secondary conductor 2 and the upper conductor 3. It flows through the electrode 5 strips 10, 10, the lower rotating disk electrode 6, the lower conductor 4, and the secondary conductor 2. At this time, a branch current tries to flow from the center tap of the second transformer 13b, but the two second
Since the thyristors 14b and 14b are not ignited, the internal impedance of the second transformer 11b is at a high level, and most of the DC current is transmitted to the upper and lower conductors 3 and 4, that is, the upper and lower rotating disk electrodes, at a current similar to the excitation current. It flows to 5 and 6.

次に、直流電流の極性を反転させる場合には、
二つの第2サイリスタ14b,14bを点孤する
ことにより、上記と同様に作用し、殆どの直流電
流が今度は二次導体2、下部導体4を介して下部
回転円板電極6、ストリツプ10,10、上部導
体3、二次導体2へと流れ、直流電流の極性が反
転する。この直流電流の反転直流電流波形Wは第
3図に示す如くである。このような直流電流の極
性の反転は溶接するときに第1サイリスタ14
a,14aと第2サイリスタ14b,14bの点
弧を交互に切り換えることによつて行うことがで
き、これらのサイリスタ14a,14a,14
b,14bが切換スイツチとなる。
Next, when reversing the polarity of the DC current,
By firing the two second thyristors 14b, 14b, it acts in the same manner as above, and most of the direct current is now passed through the secondary conductor 2, the lower conductor 4 to the lower rotating disk electrode 6, the strip 10, 10, it flows to the upper conductor 3 and the secondary conductor 2, and the polarity of the DC current is reversed. The inverted DC current waveform W of this DC current is as shown in FIG. Such reversal of the polarity of the DC current is caused by the first thyristor 14 when welding.
This can be done by alternately switching the ignition of the thyristors 14a, 14a and the second thyristors 14b, 14b.
b, 14b serves as a changeover switch.

また、かかる直流電流の極性の反転は二次導体
2,2の近辺の磁束の反転となる。これは二次導
体2,2に直流電流を流した場合、発生する磁束
Φの方向が第4図に示すように電流の流れる方向
と一定の法則に従うため、二次導体2,2を流れ
る直流電流の極性即ち流れる方向が反転すれば発
生する磁束Φの方向も反転するからである。従つ
て、二次導体2,2の近辺のシャー7、入及び出
側クランプ8,9等の磁性材が一且磁化されて
も、直流電流の流れる方向が反転すると、その磁
性材は今後は極性が逆となつて磁化されるために
残留磁束が保磁力を有せず、大気中を浮遊する鉄
粉や鉄片を吸引しなくなる。このような直流電流
の極性の反転は溶接ごとに切り換えるようにすれ
ば通常足りるが、直流電流の大きさによつては一
つの溶接を行うときに数回切り換えてもよく、時
間積によつて切り換えるようにしてもよいことは
勿論である。なお、時間積のときには反転電流も
同等の時間積通電することとなる。
Further, the reversal of the polarity of the direct current results in the reversal of the magnetic flux near the secondary conductors 2, 2. This is because when direct current flows through the secondary conductors 2, 2, the direction of the generated magnetic flux Φ follows a certain law with the direction of current flow, as shown in Figure 4, so the direct current flowing through the secondary conductors 2, 2 This is because if the polarity of the current, that is, the direction of flow is reversed, the direction of the generated magnetic flux Φ is also reversed. Therefore, even if the magnetic material such as the shear 7, inlet and outlet clamps 8, 9, etc. near the secondary conductors 2, 2 is magnetized, if the direction of direct current flow is reversed, the magnetic material will no longer be magnetized. Because it is magnetized with reversed polarity, the residual magnetic flux has no coercive force, and it no longer attracts iron powder or pieces of iron floating in the atmosphere. It is usually sufficient to reverse the polarity of the DC current each time weld, but depending on the magnitude of the DC current, it may be possible to reverse the polarity several times during one welding, and the polarity may vary depending on the time product. Of course, it is also possible to switch. Note that when the time product is used, the inversion current is also applied for the same time product.

ところで上記説明では、この考案を直流マツシ
ユシーム溶接機に適用される場合を述べたが、こ
れにのみ適用されるものではなく、溶接機全般に
適用することができることはいうまでもない。
By the way, in the above explanation, the case where this invention is applied to a DC pine seam welding machine has been described, but it goes without saying that it is not only applicable to this, but can be applied to welding machines in general.

〔考案の効果〕[Effect of idea]

この考案は以上説明したとおり、切換スイツチ
の切り換えによつて交流電流が二つの変圧器に交
互に供給され、各変圧器に対応して設けられ、出
力側の極性を互いに逆に接続された二つの全波整
流回路も交互に作動させられて二次導体に流れる
直流電流の極性が反転するようにしたので、二次
導体近辺のシャーや入及び出側クランプ等の磁性
材は磁化されても残留磁束が保持力を有しないこ
ととなり、磁性材が大気中を浮遊する鉄粉や鉄片
などを吸引することがなくなるという効果があ
る。
As explained above, this device alternately supplies alternating current to two transformers by switching a changeover switch, and two The two full-wave rectifier circuits were also activated alternately to reverse the polarity of the DC current flowing through the secondary conductor, so that magnetic materials such as the shear and inlet and outlet clamps near the secondary conductor were magnetized. The residual magnetic flux has no coercive force, and there is an effect that the magnetic material no longer attracts iron powder, iron pieces, etc. floating in the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す回路図、第
2図は変圧器の鉄心を示す斜視図、第3図は反転
直流電流波形を示す説明図、第4図は二次導体に
通電した場合に磁束方向を示す説明図、第5図は
従来の直流マツシユシーム溶接機の給電部を示す
概略構成図、第6図は同溶接機のクランパ部を示
す構成図、第7図は同溶接機の直流電源装置の回
路図である。 図において、1は直流電源装置、2は二次導
体、5は上部回転円板電極、6下部回転円板電
極、11aは第1変圧器、11bは第2変圧器、
12は交流電源、13aは第1全波整流回路、1
3bは第2全波整流回路、14aは第1サイリス
タ(切換スイツチ),14bは第2サイリスタ
(切換スイツチ)である。なお、各図中同一符号
は同一または相当部分を示す。
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is a perspective view showing the core of the transformer, Fig. 3 is an explanatory diagram showing an inverted DC current waveform, and Fig. 4 is energizing the secondary conductor. Fig. 5 is a schematic configuration diagram showing the power supply part of a conventional DC pine seam welding machine, Fig. 6 is a configuration diagram showing the clamper part of the welding machine, and Fig. 7 is a diagram showing the same welding machine. FIG. 2 is a circuit diagram of the DC power supply device of the machine. In the figure, 1 is a DC power supply, 2 is a secondary conductor, 5 is an upper rotating disk electrode, 6 is a lower rotating disk electrode, 11a is a first transformer, 11b is a second transformer,
12 is an AC power supply, 13a is a first full-wave rectifier circuit, 1
3b is a second full-wave rectifier circuit, 14a is a first thyristor (changeover switch), and 14b is a second thyristor (changeover switch). Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 二つの回転円板電極に二次導体を介して直流
電源を供給する直流電源装置を備えた直流マツ
シユシーム溶接機において、直流電源装置は交
流電源に一次側が並列接続された二つの変圧器
と、2つの変圧器の二次側にそれぞれ接続さ
れ、出力側の極性を互いに逆に接続された二つ
の全波整流回路と、二つの変圧器に一次側と交
流電源との接続を交互に切り換える切換スイツ
チとからなることを特徴とする直流マツシユシ
ーム溶接機。 (2) 切換スイツチは交流電源と各変圧器との間に
設けられた互いに極性を逆に並列接続された二
つのサイリスタであることを特徴とする実用新
案登録請求の範囲第1項記載の直流マツシユシ
ーム溶接機。
[Claims for Utility Model Registration] (1) In a DC pine seam welding machine equipped with a DC power supply that supplies DC power to two rotating disc electrodes via a secondary conductor, the DC power supply has a primary side connected to an AC power supply. Two transformers are connected in parallel, two full-wave rectifier circuits are connected to the secondary sides of the two transformers, and the output side polarities are opposite to each other, and the two transformers are connected to the primary side and A DC pine seam welding machine characterized by comprising a changeover switch that alternately switches connection to an AC power source. (2) The direct current according to claim 1 of the utility model registration claim, wherein the changeover switch is two thyristors connected in parallel with opposite polarities and provided between the alternating current power source and each transformer. Pine seam welding machine.
JP17918985U 1985-11-22 1985-11-22 Expired JPH0349827Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17918985U JPH0349827Y2 (en) 1985-11-22 1985-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17918985U JPH0349827Y2 (en) 1985-11-22 1985-11-22

Publications (2)

Publication Number Publication Date
JPS6286981U JPS6286981U (en) 1987-06-03
JPH0349827Y2 true JPH0349827Y2 (en) 1991-10-24

Family

ID=31122027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17918985U Expired JPH0349827Y2 (en) 1985-11-22 1985-11-22

Country Status (1)

Country Link
JP (1) JPH0349827Y2 (en)

Also Published As

Publication number Publication date
JPS6286981U (en) 1987-06-03

Similar Documents

Publication Publication Date Title
JP2602778B2 (en) High frequency power supply
JPH06234072A (en) Inverter power supply for welding
US4897773A (en) Inverter output circuit
JPH0349827Y2 (en)
JPH0871771A (en) Dc mash seam welding machine
CA2077080C (en) Ac power source for welding
JPH0312452Y2 (en)
JPS63160317A (en) Laminated iron-core with gap for transformer
US2274356A (en) Polarity control system
KR800000194B1 (en) D c welding machine
JP2578845B2 (en) AC / DC dual-purpose arc welding machine
JP3701704B2 (en) AC / DC dual-purpose arc machining system
JPH0371985A (en) Capacitor type spot welding machine
RU1834761C (en) Power source for electric welding
JPH0237507Y2 (en)
WO1986000035A1 (en) Resistance welder
JPH035925Y2 (en)
AU587165B2 (en) Resistance welder
JPS6128432B2 (en)
JPS6128431B2 (en)
JPS5922538Y2 (en) Semiconductor device testing equipment
JPS6178581A (en) Power source unit for resistance welder
JPH09168869A (en) Resistance welding controller
JPS6021186A (en) High frequency welding apparatus
SU605292A1 (en) Single-cycle electromagnetic vibrator supply source