JPH0349698A - Oligonucleotide for detecting bacteria and method for detecting bacteria using the same - Google Patents

Oligonucleotide for detecting bacteria and method for detecting bacteria using the same

Info

Publication number
JPH0349698A
JPH0349698A JP18568389A JP18568389A JPH0349698A JP H0349698 A JPH0349698 A JP H0349698A JP 18568389 A JP18568389 A JP 18568389A JP 18568389 A JP18568389 A JP 18568389A JP H0349698 A JPH0349698 A JP H0349698A
Authority
JP
Japan
Prior art keywords
oligonucleotide
reaction
nucleotide sequence
bacteria
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18568389A
Other languages
Japanese (ja)
Other versions
JPH0789958B2 (en
Inventor
Tetsuo Ohashi
鉄雄 大橋
Yoshinari Shirasaki
良成 白崎
Hirohisa Abe
浩久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18568389A priority Critical patent/JPH0789958B2/en
Priority to DE69032778T priority patent/DE69032778T2/en
Priority to EP90113661A priority patent/EP0409159B1/en
Publication of JPH0349698A publication Critical patent/JPH0349698A/en
Priority to US08/126,754 priority patent/US5529910A/en
Publication of JPH0789958B2 publication Critical patent/JPH0789958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable simple and rapid detection with a high sensitivity by carrying out polymerase chain reaction(PCR) treatment using a specific oligonucleotide functioning as a primer for nucleic acid synthetic reaction. CONSTITUTION:Microbial cells of the genus Salmonella are subjected to extraction treatment to provide a specimen (A) composed of a nucleic acid ingredient. The same sequence as the base sequence of ara C gene of the microorganism of the genus Salmonella is then chemically synthesized to afford a synthetic nucleotide (B) composed of a sequence group expressed by the formula. The ingredients (A) and (B) and a thermostable DNA polymerase are added to a buffer solution to afford a reaction solution (C). The resultant ingredient (C) is then thermally denatured at about 94 deg.C, subsequently annealed and further subjected to polymerization reaction. The PCR is performed in about 42 cycles to afford an amplified nucleotide fragment (D). The resultant ingredient (D) is then subjected to agarose electrophoresis, etc., to calculate the length of the nucleotide fragment and selectively detect the bacterium classified into the genus Salmonella in the specimen.

Description

【発明の詳細な説明】 〔 産業上の利用分野 ] 本発明は、臨床検査5 殊に食中毒検査,.4たは食品
検査において Salaonella菌( Salmo
nella属に属する菌)を検出する. 〔 従来の技術と問題点 〕 検査材料が患者の嘔吐物、糞便,食品または拭き取り材
料の場合、Salmonel!a菌と同定するまでには
、増菌培簑、確認培養に至る操作を行わなければならな
い.各培養段階に要する時間は,18〜24時間であり
総所要時間にすると約2日間と1・人下乍、b なり、長時間を要する.確認培費では、TSI寒天、S
IM培地、VP−MR培地およびリジン脱炭酸テスト用
培地に接種し、37℃で一晩培養する.したがって、時
間ならびに費用がかかり、操作的にも煩雑である. 一方,最近では,オリゴヌクレオチドを用いたDNAプ
ロープ法あるいはパイプリダイゼーション法が試みられ
るようになってきた.しかし,オリゴヌクレオチドを標
識修飾したプローブにより、展上、あるいは他の支持体
上でハイプリダイゼーションを行い、これを検出する場
合、紹菌検査において十分な検出感度と選択性を得るの
が難しい.[ 発明の目的 ] 本発明は,オリゴヌクレオチドを核酸合成反応の1ライ
マーとして用いた遺伝子増幅技術によりSalsone
+1a菌由来の核酸を検出するもので、簡痩,迅速かつ
高感度なSalsonella田の検査法を提供するこ
とにある. [ 問題点を解決するための手段および作用 ]本発明
は、オリゴヌクレオチドを1ライマーとして機能させた
遺伝子増幅法によりSalmonella菌を選択的に
検出することを特徴としている.遺伝子増幅の方法につ
いては、Saiki らが、開発したPolymera
se Chain Reaction法(以下,略して
PCR法;  Science.230.1)50 (
1985))をもとに行っている.この方法は、ある特
定のヌクレオチド配列領域(本発明の場合はSal■o
nella菌のara C遺伝子〉を検出する場合、そ
の領域の両端の一方は+鎖を他方は一饋をそれぞれ認識
してハイブリダイゼーシシンするようなオリゴヌクレオ
チドを用意し、それを熱変性により1本鎖状態にした試
料核酸に対し鋳型依存性ヌクレオチド重合反応のプライ
マーとして機能させ、生成した2本mtl.酸を再び1
本鎖に分離し、再び5 同様な反応を起こさせる.この
一連の操作を繰り返すことにより2つのプライマーには
さまれた頼域は検出できるまでにコピー数が増大してく
る.検体としては,臨床検査材料、例えば、糞便、尿、
血液、組織ホモジェネートなど,また、食品材料でもよ
い.これら材料をPCHの試料として用いるには、材料
中に存在する菌体から核酸成分を遊離させる操作が前処
理として必要となる. しかし、プライマーがパイプリ
ダイズできる核酸が数分子から数十分子以上存在すれば
PCRは進むので、検査材料を溶菌酵素、界面活性剤、
アルカリ等で短時間処理するだけでPCRを進行させる
に十分な核酸量を持った試料液が調製できる.本発明で
1ライマーとして用いられるオリゴヌクレオチドは、選
択性や検出感度および再現性から考えて、10塩基以上
、望ましくはistx基以上の長さを持った核酸フラグ
メントで,化学合成あるいは天然のどちらでもよい.ま
た、プライマーは,特に検出用として標識されていなく
てもよい.1ライマーが規定しているSalsonel
la菌のara C遺伝子の増幅領域は,50塩基から
2.000塩基、望ましくは、 100塩基から1.0
00塩基となればよい.鋳型依存性ヌクレオチド重合反
応には、n{熱性DNAポリメラーゼを用いているが、
この酵素の起源については90〜95℃の温度で活性を
保持していれば,どの生物種由来でもよい.熟変性温度
は,90〜95℃,プライマーをハイブリダイズさせる
アニーリング操作の温度は37〜65℃,、重合反応は
50〜75℃で、これを1サイクルとしたPCR反応を
20から42サイクル行って増幅させる.検出は酵素反
応液をそのまま、アガロースゲル電気泳動にかけること
で増幅されたヌクレオチド断片の存在およびその長さが
確認できる.その結果から、検体中に、目的とするヌク
レオチドが存在しているかどうが判定することができる
.この判定はそのままSalmonella菌の有無を
判定するものとなる.増輻されたヌクレオチド断片の検
出には,その池の電気泳動やクロマトグラフィーも有効
で[ 実施例] (実施例l) 検」L曵」L製 Salmonella菌は表1の櫂の見出しに示した7
菌種14株を用いてそれぞれを適当な増田培地に接種し
、37℃、好気的条件下で終夜培養を行い、その培地.
  1.5mlから遠心操作により菌体を回収した.1
0mMトリスー塩酸緩衝液( P H 7.5〉でlr
gJ洗浄後,同護衝液にリゾチームをlmg / m 
Iとなるように溶かした液、0.5mlで懸濁させ、3
7℃、 10分で溶菌させた.溶菌液に前記Mfli液
で飽和させたフェノールを同容量加え,よく攬はんした
.遠心後,上層液を回収し.エタノール沈澱処理を行っ
て核酸成分を沈澱させ,その沈澱物を前記綬街液, l
mlに溶がして,これを検体とした. 一 マー ▲ Salmonellafflのara C遺伝子の塩基
配列( CI.xrke,P.,et  al.;  
Gene  18,157−163(1982))  
から、 特z′f請求範囲第2項に示した配列を選び、
それと同じ配列を持つオリゴヌクレオチドを化学合成し
た.化学合成は島津DNA合成1fINS−1を用い、
トリエステル法により行った.合成したヌクレオチド断
片の精製はCla逆相カラムを用いて行った.旦コΣ旦 前記検体液を3μ1を用いそれに滅菌蒸留水16.05
μ!、10×反応用バッファ−3μ1、dNTP溶液4
.8μ1、プライマ−(1)1。5μ1,プライマー(
2}1、 5μ1そして耐熟性DNAポリメラーゼ0.
 15μlを加え、30μ!の反応液を調製した.  
この反応液の入った容器にミネラルオイル(SIGMA
社製)を50μl加え反応液上に重層する.各添加され
た液の内容を下記に示す. 10×反応用バッ7y  :  500mM  KC 
I,100mM  Tris−HCI(pH8.  3
>,1 5mM  MgC I2,  0.  1%(
 w/ v )ゼラチン dNTP溶液:  dATP.  dCTP,  dG
TP,dTTPを混合させた物で各終濃度が1.25m
M プライマ−(1)および(2): 前述した化学合成精
製品の各水、溶液( 5 00(1/ ml)プライマ
ーの組合せは、特許lII求範囲第2項に示した配列(
(a〉〜(c〉)より、次の組合せを用いた. マー   +   マー (a)         +      (b)(.L
〉+(c} 耐熱性DNAポリメラーゼ:  Taq  DNAポリ
メラーゼ( 5 unit/ ml;  Perkin
 Elaer Cetus社製) 反応条件は、次の通りである. 熱変性: 94℃ 1分 アニーリング= 37℃ 1分 重合反応: 60″C l分 熱変性からア二一リングを経て重合反応に至る過程を1
サイクル(所要時間5.7分)とし、これを42サイク
ル〈総所要時間約4時rff!)行った.これらの操作
は、Perkin Elmer Cetus社′!AD
NAThermal Cyclerに上記反応条件をプ
ログラムすることで行った. 栓エ出 反応液から、増輻されたヌクレオチド断片を検出するた
め,アガロース電気泳動を以下の様に行った. アガロースゲルはゲル濃度2%( w / v )とし
、臭化エチジウム《0.5μg/m I )を含むもの
を用いた.泳動の電気的条件は、定電圧1 0 0 V
,&9間は30分行った.操作方法ならびに他の条件は
Maniatis等、Molecular Cloni
ng(1982)に記載されている技法で行った.反応
液の他に分子量マーカーの泳動も、同時に行い、相対移
動度の比較により、ヌクレオチド断片の長さを算出した
.直1 前述したように、ara C遺伝子は、すでに塩基配列
が決定されており、本発明のオリゴヌクレオチド、すな
わち、プライマーがPCRにより、!!ltaさせてく
るヌクレオチドの大きさは推定できる.それによると,
プライマ− (a)と(b)では、329塩基、 (a
)と(c)では、 539塩基の長さのヌクレオチドが
増幅されてくるはずである.表1に示した数値は,上記
方法で増幅されてきたヌクレオチドの長さを測定した結
果で、単位はキロ塩基対である. 同表からわかるように、 各フ゜ライマーの 組合せとも、 推定されたヌクレオチドの長さと一 致しており、 これらが、 C遺伝子の標的として いる領域を正しく増幅してきていることを示している. 表 1 (a)+(b) (a)+(c) 旧22l:農林水産省32畜衛生試験場(実施例2〉 実施例1で得られた結果が, . SalIl+one
lla菌に対し選択的なものか確かめるため,B床検査
においてSal+wonella菌以外で検査対象とな
り得る菌種について比較検討した. 方法は、実施例1に示したものと同じであるが、(2)
. (6). (1g)の株については嫌気的条件下、
40℃で終夜培養を行い、PCR法に適用しうる試料を
調製してきた.検体の調製において培養した菌は,表2
の縦の見出しに示した11菌株である.また,ヒト胎盤
由来DNAは1μg / m Iの濃度のものをfIi
lFJシ、これも同様にPCRを行わせた.結果を表2
に示す.表1と同様、澗内の数値の単位はキロ塩基対で
ある.一部の菌種においてPCHの副次的産物とみられ
る,増幅されたヌクレオチド断片が検出されたが,どれ
もara C遺伝子のFA基配列から推定されるヌクレ
オチド断片の長さとは異なっている.Salaonel
lユ苗と同じara C道伝子をこれらの菌種が持って
いれば実施例1の結果と同じ長さのヌクレオチドがはず
である.従って、これらの菌種由来の増幅されたヌクレ
オチド断片はara C遺伝子を22 識して生成され
たものではないことが明かであり、Salmonell
a菌とは容易に区別し、検出できることがわかる.なお
、本発明の実施例にに用いているアガロース電気泳動を
前述の泳動条件で行えば100塩基対以下の範囲であれ
ば5から104基対、100から500塩基対の範囲で
あれば10から20塩基対のヌクレオチドの長さの違い
を区別することがでる.さらに、アクリルアミドなどを
ゲルに用いることでヌクレオチドの長さの測定の精度を
向上させれば、選択的検出における信頼度はさらに高ま
るものと考えられる. (以下余白) 表 2 菌株名 ブライマーの組合せ (a)+(b)  (a)+(c) !;almonella typhig+urium (IFO12529) 0.33 0.54 Bacillus  cereus Ca+apylobacter  jeJuniEsc
herichia  coli Vibr[o  parihaemolyticusS
tapylococcus  aureusClost
ridius  perfringensShige目
a dysenteriaeShigella  fl
exnerlShigella  sonnei (1)0.20 (2) (3)0.50 (4)0.50 (5)0.10 〈6〉 (7)0.80 (8)0.50 (9)0.80 0.20 0.40 0,20 0.20 Human  plasenta (12) Gollectlxn,(12冫Humanpface
ntal DNA Onco社製 [ 発明の効果 ] 本発明では,PCR法を用いたことで,SユImo−n
ella菌の検出に3いて,遺伝子増幅作用による高い
検出感度と、2つあるいは、 それ以上のプライマーで
反応が規定されることによる高い選択性を得ることがで
きる. また、高い検出感度のため、多量の検体を必要
とせず、検体の前処理が簡便で済む.しかも、反応時間
が短く、検出も簡単な機材だけで済み,操作も容易なた
め同定までの時間を大幅に短縮できることができる.以
下の実施例に示すが、反応時間が4時間,検出にかかる
操作が30分である.また.検出にアガロースゲル電気
泳動と奥化エチジウムによる核酸染色法をもちいること
r、プライマー等に標識せずに検出が行え、しかも、核
酸の長さが確2″2できるので結果の信頼性が高いもの
となる,  Salmonella菌のara C道伝
子は、Sala+one目amに属する全ての閑株に背
遍的に存在していると考えられる. したがって,この
遺伝子を標的とすることでS^lsone l Iaf
fl G FJを一括して検出することができる.一方
、ヌクレオチド配列における他の生物種のira C遺伝子とは相 同性が少ないことからSalmonella菌に対する
選択性は維持される.
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to clinical tests, especially food poisoning tests. 4. In food inspection, Salaonella bacteria (Salmo
Bacteria belonging to the genus nella) are detected. [Prior art and problems] When the test material is patient's vomit, feces, food, or swabbing material, Salmonel! Before identifying the bacterium as a bacterium, operations including enrichment culture and confirmation culture must be performed. The time required for each culture stage is 18 to 24 hours, and the total time required is approximately 2 days and 1 person, which is a long time. Confirmation culture costs include TSI agar, S
Inoculate into IM medium, VP-MR medium and lysine decarboxylation test medium and culture at 37°C overnight. Therefore, it is time consuming, expensive, and operationally complicated. On the other hand, recently, DNA probe methods or piperidization methods using oligonucleotides have been attempted. However, when detecting oligonucleotides by hybridization on a spread or other support using labeled-modified probes, it is difficult to obtain sufficient detection sensitivity and selectivity for bacterial introduction tests. [Purpose of the Invention] The present invention is directed to the production of Salsone by gene amplification technology using oligonucleotides as one primer in a nucleic acid synthesis reaction.
The purpose of this invention is to provide a simple, rapid, and highly sensitive method for testing Salsonella fields, which detects nucleic acids derived from +1a bacteria. [Means and effects for solving the problems] The present invention is characterized in that Salmonella bacteria is selectively detected by a gene amplification method in which an oligonucleotide functions as a primer. Regarding the gene amplification method, Polymera developed by Saiki et al.
chain reaction method (hereinafter abbreviated as PCR method; Science. 230.1) 50 (
(1985)). This method is based on a specific nucleotide sequence region (in the case of the present invention, Sal
When detecting the ara C gene of the B. nella bacterium, prepare oligonucleotides that recognize and hybridize the positive strand at one end of the region and the single strand at the other end, and denature the oligonucleotide by heat denaturation. Two mtl. 1 acid again
Separate into main strands and repeat the same reaction in 5. By repeating this series of operations, the copy number of the reliable region sandwiched between the two primers increases to the point where it can be detected. Specimens include clinical test materials such as feces, urine,
Blood, tissue homogenates, etc., and food materials may also be used. In order to use these materials as PCH samples, a pretreatment process is required to release nucleic acid components from the bacterial cells present in the materials. However, if there are several to tens of molecules or more of nucleic acids that can be piperidized by the primers, PCR will proceed, so the test material should be prepared using lytic enzymes, surfactants,
A sample solution with a sufficient amount of nucleic acid for PCR to proceed can be prepared by simply treating with alkali or the like for a short time. The oligonucleotide used as a primer in the present invention is a nucleic acid fragment having a length of 10 bases or more, preferably an istx group or more, in terms of selectivity, detection sensitivity, and reproducibility, and can be either chemically synthesized or natural. good. Furthermore, the primers do not need to be specifically labeled for detection purposes. Salsonel specified by 1 Reimer
The amplified region of the ara C gene of La bacteria ranges from 50 bases to 2,000 bases, preferably from 100 bases to 1.0 bases.
It should be 00 bases. Template-dependent nucleotide polymerization reaction uses n{thermal DNA polymerase,
The origin of this enzyme may be any biological species as long as it maintains its activity at a temperature of 90 to 95°C. The ripening temperature was 90 to 95°C, the temperature of the annealing operation for hybridizing the primer was 37 to 65°C, and the polymerization reaction was 50 to 75°C, and 20 to 42 cycles of the PCR reaction were performed, with this being one cycle. Amplify. For detection, the presence and length of the amplified nucleotide fragment can be confirmed by subjecting the enzyme reaction solution as is to agarose gel electrophoresis. From the results, it can be determined whether the target nucleotide is present in the sample. This determination directly determines the presence or absence of Salmonella bacteria. Electrophoresis and chromatography are also effective for detecting enriched nucleotide fragments. 7
Using 14 strains of bacteria, each was inoculated into an appropriate Masuda medium and cultured overnight at 37°C under aerobic conditions.
Bacterial cells were collected from 1.5 ml by centrifugation. 1
lr with 0mM Tris-HCl buffer (PH 7.5)
After washing with gJ, add 1 mg/m of lysozyme to the same protective solution.
Suspend in 0.5 ml of the solution dissolved to make 3
Bacteria were lysed at 7°C for 10 minutes. The same volume of phenol saturated with the Mfli solution was added to the lysate, and the mixture was stirred well. After centrifugation, collect the upper layer. Nucleic acid components are precipitated by ethanol precipitation treatment, and the precipitate is added to the above-mentioned solution, l
ml and used this as the sample. One mer ▲ Base sequence of Salmonella affl ara C gene (CI. xrke, P., et al.;
Gene 18, 157-163 (1982))
From the above, select the arrangement shown in claim 2,
An oligonucleotide with the same sequence was chemically synthesized. Chemical synthesis uses Shimadzu DNA synthesis 1fINS-1,
This was done using the triester method. Purification of the synthesized nucleotide fragments was performed using a Cla reverse phase column. Add 3 μl of the sample solution to 16.05 ml of sterile distilled water.
μ! , 10x reaction buffer - 3μ1, dNTP solution 4
.. 8μ1, primer (1) 1.5μ1, primer (
2}1, 5μ1 and ripening-resistant DNA polymerase 0.
Add 15μl, 30μl! A reaction solution was prepared.
Add mineral oil (SIGMA) to the container containing this reaction solution.
Add 50 µl of 50 μl of 100% of the solution (manufactured by Co., Ltd.) and layer it on top of the reaction solution. The contents of each added liquid are shown below. 10x reaction bag 7y: 500mM KC
I, 100mM Tris-HCI (pH 8.3
>, 1 5mM MgC I2, 0. 1% (
w/v) Gelatin dNTP solution: dATP. dCTP, dG
A mixture of TP and dTTP, each with a final concentration of 1.25 m
M Primers (1) and (2): Each water solution (500 (1/ml) of the chemically synthesized purified product described above) The combination of primers has the sequence (
From (a> to (c)), we used the following combination: Mar + Mar (a) + (b) (.L
〉+(c} Thermostable DNA polymerase: Taq DNA polymerase (5 units/ml; Perkin
(manufactured by Elaer Cetus) The reaction conditions are as follows. Thermal denaturation: 94°C 1 minute annealing = 37°C 1 minute Polymerization reaction: 60″Cl minute The process from thermal denaturation to polymerization reaction via anneal ring
cycle (required time 5.7 minutes), this is 42 cycles (total required time approximately 4 hours rff! )went. These operations were performed by Perkin Elmer Cetus Company'! A.D.
The reaction was carried out by programming the above reaction conditions into the NA Thermal Cycler. In order to detect the enriched nucleotide fragments from the stopper elution reaction solution, agarose electrophoresis was performed as follows. The agarose gel used had a gel concentration of 2% (w/v) and contained ethidium bromide (0.5 μg/ml). The electrical conditions for electrophoresis are a constant voltage of 100 V.
, &9 went for 30 minutes. The operating method and other conditions are described in Maniatis et al., Molecular Cloni
(1982). In addition to the reaction solution, a molecular weight marker was also run at the same time, and the length of the nucleotide fragment was calculated by comparing the relative mobility. Direction 1 As mentioned above, the nucleotide sequence of the ara C gene has already been determined, and the oligonucleotide of the present invention, that is, the primer, is used by PCR! ! The size of the nucleotide that causes lta can be estimated. according to it,
Primers (a) and (b) have 329 bases, (a
) and (c), nucleotides with a length of 539 bases should be amplified. The numerical values shown in Table 1 are the results of measuring the length of the nucleotides amplified by the above method, and the unit is kilobase pairs. As can be seen from the table, each combination of primers matches the estimated nucleotide length, indicating that they are correctly amplifying the targeted region of the C gene. Table 1 (a) + (b) (a) + (c) Old 22l: Ministry of Agriculture, Forestry and Fisheries 32 Livestock Hygiene Laboratory (Example 2) The results obtained in Example 1 are as follows: .SalIl+one
In order to confirm whether it is selective for B. lla bacteria, we conducted a comparative study of bacterial species other than Sal + wonella bacteria that could be tested in the B-bed test. The method is the same as that shown in Example 1, but (2)
.. (6). For the strain (1 g) under anaerobic conditions,
We have prepared samples that can be used in PCR by culturing at 40°C overnight. Bacteria cultured in specimen preparation are shown in Table 2.
These are the 11 strains shown in the vertical headings. In addition, human placenta-derived DNA was prepared at a concentration of 1 μg/mI.
IFJ was also subjected to PCR in the same manner. Table 2 shows the results.
It is shown in As in Table 1, the units of numbers in squares are kilobase pairs. Amplified nucleotide fragments, which appear to be by-products of PCH, were detected in some bacterial species, but all of them differed in length from the nucleotide fragments estimated from the FA base sequence of the ara C gene. Salaonel
If these bacterial species have the same araC gene as the Lyu seedlings, the nucleotides should have the same length as the results of Example 1. Therefore, it is clear that the amplified nucleotide fragments derived from these bacterial species were not produced by recognizing the ara C gene, and Salmonell
It can be seen that it can be easily distinguished from and detected from A bacterium. In addition, if the agarose electrophoresis used in the examples of the present invention is performed under the above-mentioned electrophoresis conditions, if the range is 100 base pairs or less, it will be 5 to 104 base pairs, and if the range is 100 to 500 base pairs, it will be 10 to 104 base pairs. Can distinguish between 20 base pair nucleotide length differences. Furthermore, if the accuracy of nucleotide length measurement is improved by using a gel such as acrylamide, it is thought that the reliability of selective detection will further increase. (Leaving space below) Table 2 Combination of strain name Brimer (a) + (b) (a) + (c)! ;almonella typhig+urium (IFO12529) 0.33 0.54 Bacillus cereus Ca+apylobacter jeJuniEsc
herichia coli Vibr[o parihaemolyticusS
tapylococcus aureus Clost
ridius perfringensShigeordera dysenteriaeShigella fl
exnerlShigella sonnei (1)0.20 (2) (3)0.50 (4)0.50 (5)0.10 <6> (7)0.80 (8)0.50 (9)0.80 0.20 0.40 0,20 0.20 Human placenta (12) Gollectlxn, (12 冫Humanpface
ntal DNA Manufactured by Onco [Effects of the Invention] In the present invention, by using the PCR method, S
When detecting B. ella , it is possible to obtain high detection sensitivity due to the gene amplification effect and high selectivity due to the reaction being defined by two or more primers. In addition, because of its high detection sensitivity, it does not require a large amount of specimen, and pretreatment of the specimen is simple. Furthermore, the reaction time is short, detection requires only simple equipment, and operation is easy, so the time required for identification can be significantly shortened. As shown in the following example, the reaction time was 4 hours and the detection operation was 30 minutes. Also. For detection, agarose gel electrophoresis and nucleic acid staining with ethidium are used. Detection can be performed without labeling primers, etc. Furthermore, since the length of the nucleic acid can be precisely 2"2, the results are highly reliable. It is thought that the ara C gene of Salmonella bacterium is present ubiquitously in all idle strains belonging to the order Sala+one. Therefore, by targeting this gene, S^lsone l Iaf
fl G FJ can be detected all at once. On the other hand, since the nucleotide sequence has little homology with the ira C gene of other species, selectivity against Salmonella bacteria is maintained.

Claims (7)

【特許請求の範囲】[Claims] (1)検体中におけるSalmonella属に分類さ
れる菌を選択的に検出するためのオリゴヌクレオチドま
たは、Salmonella菌のaraC遺伝子をコー
ドするヌクレオチド配列を標的とし、そのヌクレオチド
配列と相補的となるように化学合成されたオリゴヌクレ
オチドであつて、 合成ヌクレオチドが以下の配列群、 (5’)d−GGCGAGCAGTTTGTCTGTC
(3’)…(a) (5’)d−TACCGCCATACGTCTGAGC
(3’)…(b) (5’)d−GTTTCGCCTGGCTGATACG
(3’)…(c) または対応する相補的配列から成ることを特徴とするオ
リゴヌクレオチド。
(1) Oligonucleotides for selectively detecting bacteria belonging to the genus Salmonella in a sample, or oligonucleotides that target the nucleotide sequence encoding the araC gene of Salmonella bacteria, and chemically A synthesized oligonucleotide, wherein the synthetic nucleotide has the following sequence group, (5') d-GGCGAGCAGTTTGTCTGTC
(3')...(a) (5')d-TACCGCCATACGTCTGAGC
(3')...(b) (5')d-GTTTCGCCTGGCTGATACG
(3')...(c) or a corresponding complementary sequence.
(2)請求項第1項に記載された各オリゴヌクレオチド
の配列のうち、少なくとも連続した10塩基以上を含む
オリゴヌクレオチド。
(2) An oligonucleotide comprising at least 10 or more consecutive bases among the sequences of each oligonucleotide described in claim 1.
(3)請求項第1項に記載されたオリゴヌクレオチドの
配列のうちの1つを有するオリゴヌクレオチドを鎖長反
応のプライマーとして機能させ標的ヌクレオチド配列を
選択的に増幅させることを特徴とする方法であって、 (a)検体中の1本鎖状態の標的ヌクレオチド配列にプ
ライマーをハイブリダイズさせ4種のヌクレオチドの重
合反応により鎖長反応を行わせ、 (b)得られた2本鎖ヌクレオチド配列を1本鎖に分離
した場合その相補鎖は他方のプライマーによる鎖長反応
の鋳型として機能し、 (c)これら2種のプライマーによる同時の鎖長反応、
鎖長生成物の鋳型からの分離、そして新たなプライマー
によるハイブリダイゼーシヨンを繰り返すことにより特
定のヌクレオチド配列を増幅させ、それを電気泳動、ク
ロマトグラフィーで検出し、 (d)その結果、前記検体中に認識されるべき配列が存
在しているか否かを判定することでSalmonell
a菌の検出を行うことを含む方法。
(3) A method characterized in that an oligonucleotide having one of the oligonucleotide sequences set forth in claim 1 functions as a primer for a chain length reaction to selectively amplify a target nucleotide sequence. (a) A primer is hybridized to the single-stranded target nucleotide sequence in the sample to perform a chain length reaction by polymerization reaction of four types of nucleotides, (b) the obtained double-stranded nucleotide sequence is When separated into single strands, the complementary strand functions as a template for the chain length reaction by the other primer, (c) simultaneous chain length reaction by these two primers,
By repeating separation of the long-chain product from the template and hybridization with new primers, a specific nucleotide sequence is amplified, which is detected by electrophoresis and chromatography; (d) As a result, the aforementioned specimen Salmonell
A method comprising detecting bacteria.
(4)請求項第3項記載の方法における反応物から電気
泳動、ないしクロマトグラフイーにより増幅されたヌク
レオチド配列を分離し、この分子量を決定することによ
り前記検体中に認識されるべき配列が存在しているか否
かを判定することでSalmonella菌の検出を行
うことを含む方法。
(4) The presence of the sequence to be recognized in the sample is determined by separating the nucleotide sequence amplified by electrophoresis or chromatography from the reaction product in the method according to claim 3 and determining its molecular weight. A method comprising detecting Salmonella bacteria by determining whether Salmonella bacteria are present.
(5)請求項番3項記載の方法における反応物からアガ
ロース電気泳動および臭化エチジウムによる核酸染色を
行うことによる検出方法。
(5) A detection method by performing agarose electrophoresis and nucleic acid staining with ethidium bromide from the reaction product in the method according to claim 3.
(6)請求項第1項に記載されたオリゴヌクレオチドの
配列の1つを有するオリゴヌクレオチドをプローブとし
て機能させ、膜上あるいはその他支持体上の標的ヌクレ
オチド配列を選択的に検出する方法。
(6) A method for selectively detecting a target nucleotide sequence on a membrane or other support by using an oligonucleotide having one of the oligonucleotide sequences described in claim 1 as a probe.
(7)請求項第1項に記載されたオリゴヌクレオチドの
配列の1つを有するオリゴヌクレオチドが標識物で修飾
されていることを特徴とする請求項第6項記載の方法。
(7) The method according to claim 6, wherein the oligonucleotide having one of the oligonucleotide sequences described in claim 1 is modified with a label.
JP18568389A 1989-07-18 1989-07-18 Oligonucleotide for detection of Salmonella and detection method using the same Expired - Fee Related JPH0789958B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18568389A JPH0789958B2 (en) 1989-07-18 1989-07-18 Oligonucleotide for detection of Salmonella and detection method using the same
DE69032778T DE69032778T2 (en) 1989-07-18 1990-07-17 Process for examining food poisoning caused by microorganisms and reagent therefor
EP90113661A EP0409159B1 (en) 1989-07-18 1990-07-17 Method for testing causative microorganism of food poisoning and reagents therefor
US08/126,754 US5529910A (en) 1989-07-18 1993-09-27 Method for testing causative microorganisms of food poisioning and reagents therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18568389A JPH0789958B2 (en) 1989-07-18 1989-07-18 Oligonucleotide for detection of Salmonella and detection method using the same

Publications (2)

Publication Number Publication Date
JPH0349698A true JPH0349698A (en) 1991-03-04
JPH0789958B2 JPH0789958B2 (en) 1995-10-04

Family

ID=16175040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18568389A Expired - Fee Related JPH0789958B2 (en) 1989-07-18 1989-07-18 Oligonucleotide for detection of Salmonella and detection method using the same

Country Status (1)

Country Link
JP (1) JPH0789958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241566B2 (en) 2001-06-22 2007-07-10 Marshfield Clinic Methods and oligonucleotides for the detection of Salmonella sp., E. coli O157:H7, and Listeria monocytogenes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241566B2 (en) 2001-06-22 2007-07-10 Marshfield Clinic Methods and oligonucleotides for the detection of Salmonella sp., E. coli O157:H7, and Listeria monocytogenes

Also Published As

Publication number Publication date
JPH0789958B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP3097059B2 (en) Generation of specific probes for target nucleotide sequences
KR100388548B1 (en) A method for detecting Mycobacterium tuberculosis by PCR amplification of REP13E12 repeated sequence
Debruyne et al. Comparative performance of different PCR assays for the identification of Campylobacter jejuni and Campylobacter coli
JP2792462B2 (en) Oligonucleotides for detection of Salmonella spp. And detection methods using the same
WO2016203740A1 (en) Method for examining microorganism, kit for examining microorganism, microarray for examining microorganism, carrier for detecting mold, method for detecting mold and kit for detecting mold
JP2775663B2 (en) Oligonucleotides for bacterial detection and detection methods using them
JPH0349698A (en) Oligonucleotide for detecting bacteria and method for detecting bacteria using the same
GB2549799A (en) A multiplex assay for the sensitive and specific detection and differentiation of Clostridium difficile
JPH03112498A (en) Oligonucleotide for detecting campylobacter jejuni and detection using the same oligonucleotide
JP3134907B2 (en) Oligonucleotide for detecting Vibrio cholerae and detection method using the same
JPH0349699A (en) Oligonucleotide for detecting bacteria and method for detection using the same
JPH03228700A (en) Oligonucleotide for detection of bacteria and detection of bacteria using the same
JP2654890B2 (en) Simple identification method of lactic acid bacteria and identification kit used for this identification method
JP3871834B2 (en) Method for detecting and identifying Legionella using nucleic acid fragments
JP3419299B2 (en) Oligonucleotide for detecting Welsh bacteria and detection method using the same
JPH07114719B2 (en) Oligonucleotide for detecting bacteria and detection method using the same
JPH0349697A (en) Oligonucleotide for detecting bacteria and method for detection using the same
JP3331977B2 (en) Oligonucleotides for detection of Shigella and detection methods using them
JPH11332600A (en) Oligonucleotide for detecting enteropathogenic escherichia colt 0157 and detection using the same
JP2885081B2 (en) Oligonucleotide for detecting enterotoxin-producing C. perfringens and detection method using the same
JP3141976B2 (en) Oligonucleotides for detection of Shigella and detection methods using them
JPH03112497A (en) Oligonucleotide for detecting pathogenic escherichia coli and detection using the same oligonucleotide
JP5189747B2 (en) Oligonucleotides for Coagulase Type of Staphylococcus aureus
JPH0789960B2 (en) Oligonucleotide for detection of Staphylococcus aureus and detection method using the same
JPH03112499A (en) Oligonucleotide for detecting thermostable toxicogenic pathogenic escherichia coli and detection using the same oligonucleotide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees