JPH0349652B2 - - Google Patents

Info

Publication number
JPH0349652B2
JPH0349652B2 JP58131050A JP13105083A JPH0349652B2 JP H0349652 B2 JPH0349652 B2 JP H0349652B2 JP 58131050 A JP58131050 A JP 58131050A JP 13105083 A JP13105083 A JP 13105083A JP H0349652 B2 JPH0349652 B2 JP H0349652B2
Authority
JP
Japan
Prior art keywords
thinnest
shaft
extrusion
present
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58131050A
Other languages
Japanese (ja)
Other versions
JPS6024218A (en
Inventor
Samon Yanagimoto
Takeshi Miki
Masahiro Toda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13105083A priority Critical patent/JPS6024218A/en
Publication of JPS6024218A publication Critical patent/JPS6024218A/en
Publication of JPH0349652B2 publication Critical patent/JPH0349652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 本発明は鋼材より段付シヤフトを前方押出しに
よつて製造する方法に関するものである。 自動車部品等に用いられる太径部と細径部を有
するシヤフトを製造するには切剤、熱間鍛造、冷
間鍛造、冷間押出しなどの方法があるが、コスト
と生産性で有利な冷間押出しを用いられる例が多
い。冷間押出しは、鋼材を加熱することなく厳し
い加工を加えるので、熱間加工では問題にならな
かつた鋼材の破壊を発生することがある。その破
壊の様式としては、表面割れと内部割れの2種類
に分類されるが、後者は前者のように加工後の製
品検査で目視検査にかゝらないため見過ごされ易
く、機械部品にこの種の欠陥を内蔵したまゝ使用
されると重大な事故を引き起こす可能性がある。
比較的大型の部品の場合には、非破壊検査によつ
てオンラインで全数検査することも可能であり、
これを実施している工場もある。 しかしながら、小型部品ではその検査も困難で
あるし、また少量生産の場合には、こうした非破
壊検査設備を保有することは経済上許されないこ
とも多い。そもそもこの種の欠陥は、鋼材を冷間
で厳しい加工をすることに起因して発生するもの
であるから、それを防止するには鋼材性質の改善
が一つの方法であり、既にそれを目指した鋼材も
最近開発されている。しかしながら、鋼材加工業
者としてはそうした鋼材を用いつゝも、尚一層厳
しい加工を与えようという要求が必然的に生じて
くる。 第1図A,B,C,D,E,D′は段付シヤフ
トの製造過程を示す一態様図であり、A→B→C
→D→Eの順に成形すれば軸径の太い方から細い
方へと順番にd0→d1→d2→d3→d4と加工されるこ
とになり、これは従来の加工法である。ところ
が、このような加工を行なうと内部割れの欠陥が
しばしば発生し、加工の制約を受ける。そこで、
このような問題の生じるような冷間押出し法の開
発が望まれている。 本発明はこうした現状に鑑みなされたものであ
り、従来に比べはるかに高い加工度を与えること
を可能とするものであつて、その要旨は、3回以
上の前方押出しによつて段付シヤフトを製造する
にあたつて、3番目に細い軸部を押出した後、最
も細い軸部を3番目に細い軸部から押出し、しか
る後2番目に細い軸部を3番目に細い軸部から押
出すことを特徴とする冷間押出し法にある。 以下、本発明を詳述する。 本発明法は、第1図A,B,C,D,E,
D′の工程において、Cで軸径d2を押出した後、D
に代えてD′に移り、先に最も細い軸径d4を押出
し、その後Eに戻つて、2番目に細い軸径d3を押
出すものである。 第1図の例では4段押出しの例であるが、5段
押出し、6段押出しなども同様に3番目に細い軸
部を押出した後、最も細い部を3番目に細い軸部
から押出し、しかる後3番目に細い軸部を3番目
に細い軸部から押出すことが主要な点である。 こうした成形法の改善により、内部割れを発生
させずに加工できる限界が大幅に向上する。それ
は内部割れの発生がダイスを通して押出し回数と
強い相関性があるためであつて、割れを防止する
には押出し回数を減らすのが最も有効ということ
になるからである。 即ち、第1図A→B→C→D→Eという工程を
用いれば、最も細い径d4部は素材d0から4回押出
しで形成されることになる。この場合、鋼材によ
つては径d4の部分で内部割れを発生する恐れがあ
る。しかるに同じ鋼材をA→B→C→D′→Eの
本発明工程にかければ、ほとんどの場合径d4の部
分には内部割れを生ずることはない。それは、こ
の条件下ではd4の部分は素材d0からの押出し回数
が3回のみであるからである。 さらに、より加工性の良い鋼材で5段目で内部
割れが出るものについても、最も細い径を先に4
段目で押出し完了すれば内部割れは発生しない。
以下、段数がふえても同様である。 なお、本発明は3回以上の前方押出しによつて
段付シヤフトを製造することを前提条件としてい
るのは、こうした加工に供される鋼材では2回以
下の前方押出しで成形される場合には内部割れの
発生する危険性は著しく低いからである。このよ
うに本発明法によつて鋼材の加工限界を高めるこ
とになるので、従来では太い部分と細い部分の寸
法差の大きい部材を一体で作製する必要のある場
合、太い部分を据込みにするは又は細い部分を切
削加工にたよるかせねばならなかつたのを連続押
出しで製造できるようになり、生産性の向上は著
しく大きくなる。しかも工程変更を必要とする部
分は単にダイスの順序の入れ替えのみに過ぎずコ
ストアツプは全くない。 次に本発明の効果を実施例によつてさらに具体
的に説明する。 表に機械構造用炭素鋼S15C、S45C、S55C焼な
らし材を用い、3回乃至5回の押出しを実施し
た。用いたダイスは超硬製で、ダオス半角は17゜
である。いずれの例でも従来法は太い径から順に
細くして最後に最も細い部分を押出す手順となつ
ているが、本発明では最初は太い径から順に押出
すが、最後は2番目に細い部分を押出すものであ
り、最も細い部分はその1段前に押出される。 このような工程の差によつて、従来法では最終
工程で最も細い部分に内部割れを発生したが、本
発明法ではいずれも健全であつた。これらの例で
は表右欄に示すように従来法で健全に押出せる減
面率に比べて、本発明法では約70%以上の向上が
見られる。 以上に述べた如く、本発明は従来法に比べて設
備コストは全く上がることなく、鋼材の加工限を
著しく高めることにより、結果的に据込みあるい
は切削の工程を省いて大きなコストダウンと生産
性向上をもたらすものであつて、生産上貢献する
ところ大である。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a stepped shaft from steel by forward extrusion. There are several methods to manufacture shafts with large and small diameter parts used in automobile parts, etc., such as cutting, hot forging, cold forging, and cold extrusion, but cold is advantageous in terms of cost and productivity. In many cases, interextrusion is used. Since cold extrusion applies severe processing to the steel material without heating it, breakage of the steel material may occur, which would not be a problem with hot working. The mode of fracture is classified into two types: surface cracking and internal cracking, but the latter type is easily overlooked because it is not comparable to visual inspection during post-processing product inspection, and mechanical parts of this type are If the product is used with a built-in defect, it may cause a serious accident.
In the case of relatively large parts, it is also possible to conduct a complete online inspection using non-destructive testing.
Some factories are implementing this. However, it is difficult to inspect small parts, and in the case of small-volume production, it is often economically impractical to have such non-destructive inspection equipment. In the first place, this type of defect occurs due to severe cold processing of steel materials, so one way to prevent them is to improve the properties of steel materials, and we have already aimed at this. Steel materials have also been recently developed. However, as a steel material processor, whenever such steel materials are used, a demand inevitably arises for the steel materials to be subjected to even more severe processing. Figures 1A, B, C, D, E, and D' are views showing one aspect of the manufacturing process of the stepped shaft, and A→B→C
If the molding is done in the order of →D→E, the shaft diameter will be machined in order from the thickest to the thinnest as d 0 →d 1 →d 2 →d 3 →d 4 , which is the conventional processing method. be. However, when such processing is performed, defects such as internal cracks often occur, which limits processing. Therefore,
It is desired to develop a cold extrusion method that does not cause such problems. The present invention has been developed in view of the current situation, and enables a much higher degree of processing than conventional methods. During manufacturing, after extruding the third thinnest shaft, the thinnest shaft is extruded from the third thinnest shaft, and then the second thinnest shaft is extruded from the third thinnest shaft. The cold extrusion method is characterized by: The present invention will be explained in detail below. The method of the present invention is shown in Fig. 1 A, B, C, D, E,
In the step D', after extruding the shaft diameter d 2 at C, D
Instead, move to D' and first extrude the smallest shaft diameter d 4 , then return to E and extrude the second smallest shaft diameter d 3 . The example in Figure 1 is an example of 4-stage extrusion, but in 5-stage extrusion, 6-stage extrusion, etc., the third thinnest shaft is extruded, and then the thinnest part is extruded from the third thinnest shaft. The key point is then to extrude the third thinnest shank from the third thinnest shank. These improvements in forming methods will significantly increase the limits of what can be processed without internal cracking. This is because the occurrence of internal cracks has a strong correlation with the number of extrusions through a die, and the most effective way to prevent cracks is to reduce the number of extrusions. That is, if the steps A→B→C→D→E in FIG. 1 are used, the smallest diameter d 4 portion will be formed by extruding the material d 0 four times. In this case, depending on the steel material, there is a risk that internal cracks will occur at the portion with a diameter of d4 . However, if the same steel material is subjected to the process of the present invention from A→B→C→D'→E, no internal cracks will occur in the portion having a diameter of d4 in most cases. This is because under this condition, the portion d 4 is extruded from the material d 0 only three times. Furthermore, for steel materials with better workability that develop internal cracks at the 5th stage,
If extrusion is completed at each step, no internal cracks will occur.
The same holds true even if the number of stages increases. Note that the present invention is based on the prerequisite that the stepped shaft is manufactured by forward extrusion three or more times, because steel materials subjected to such processing cannot be formed by forward extrusion two or less times. This is because the risk of internal cracks occurring is extremely low. In this way, the method of the present invention increases the machining limit of steel materials, so when it is necessary to fabricate a part with a large dimensional difference between thick and thin parts in one piece, conventionally the thick part is upset. It is now possible to manufacture thin parts by continuous extrusion, which previously had to be done by cutting, resulting in a significant improvement in productivity. Furthermore, the process change required is simply a change in the order of the dice, and there is no cost increase at all. Next, the effects of the present invention will be explained in more detail with reference to Examples. Extrusion was performed 3 to 5 times using normalized carbon steel S 15 C, S 45 C, and S 55 C for mechanical structures. The die used was made of carbide and had a daos half angle of 17°. In either example, the conventional method is to start with the thickest diameter and then extrude the thinnest part. However, in the present invention, the diameter is first extruded starting from the thickest part, and then the second thinnest part is extruded. It is extruded, and the thinnest part is extruded one step before that. Due to this difference in process, internal cracks occurred in the thinnest part in the final process in the conventional method, but in the method of the present invention, all were sound. In these examples, as shown in the right column of the table, the method of the present invention shows an improvement of about 70% or more in area reduction rate compared to the conventional method that allows for sound extrusion. As mentioned above, the present invention does not increase the equipment cost at all compared to the conventional method, significantly increases the machining limit of steel materials, and as a result eliminates the upsetting or cutting process, resulting in significant cost reduction and productivity. It brings about improvements and makes a great contribution to production. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,B,C,D,E,D′は前方押出し
の工程例を示す模式図である。
FIGS. 1A, B, C, D, E, and D' are schematic diagrams showing an example of the forward extrusion process.

Claims (1)

【特許請求の範囲】[Claims] 1 3回以上の前方押出しによつて段付シヤフト
を製造するにあたつて、3番目に細い軸部を押出
した後、最も細い軸部を3番目に細い軸部から押
出し、しかる後3番目に細い軸部を3番目に細い
軸部から押出することを特徴とする、冷間押出し
法。
1. When manufacturing a stepped shaft by forward extrusion three or more times, after extruding the third thinnest shaft, extrude the thinnest shaft from the third thinnest shaft, and then A cold extrusion method that is characterized by extruding a thin shaft from the third thinnest shaft.
JP13105083A 1983-07-20 1983-07-20 Method for cold extrusion Granted JPS6024218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13105083A JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13105083A JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Publications (2)

Publication Number Publication Date
JPS6024218A JPS6024218A (en) 1985-02-06
JPH0349652B2 true JPH0349652B2 (en) 1991-07-30

Family

ID=15048838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13105083A Granted JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Country Status (1)

Country Link
JP (1) JPS6024218A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245933A (en) * 1985-04-25 1986-11-01 Honda Motor Co Ltd Manufacture of multistage shaft
JPH0537991U (en) * 1991-10-31 1993-05-21 日本特殊塗料株式会社 Soundproof material
KR100810103B1 (en) * 2006-09-20 2008-03-06 맹혁재 Forging method of decreasing diameter type product
JP6485832B2 (en) * 2015-04-07 2019-03-20 新日鐵住金株式会社 Method for forward extrusion of hollow member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257076A (en) * 1974-11-01 1977-05-11 Gorukofusukoe Proizv K Obiedei Method of making headed shank member from binary titanium alloy of high strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257076A (en) * 1974-11-01 1977-05-11 Gorukofusukoe Proizv K Obiedei Method of making headed shank member from binary titanium alloy of high strength

Also Published As

Publication number Publication date
JPS6024218A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
JP3443528B2 (en) Method for manufacturing stepped and flanged annular members
JPH0349652B2 (en)
JP2009050859A (en) Method of manufacturing two parts, for example, inner parts and outer parts
JPS5819429A (en) Production of hot-extruded alloy material
CN1045910C (en) Drawing method for metal conic tube of integrated road lamp pole
JP2000140979A (en) Stepped shaft part and its production method
US1994863A (en) Method of manufacturing forged, pressed, or rolled work pieces, especially crank shafts
JPH086160B2 (en) Method for manufacturing conical tubular member
JPH08243680A (en) Upsetting method for tube
JP3920581B2 (en) Manufacturing method for thick thin tube
JP2768849B2 (en) Grain refining method for non-magnetic steel cylindrical forgings
US3142115A (en) Method and apparatus for manufacturing annular workpieces of metal, particularly steel, to be subsequently shaped by cold forging
RU2162381C1 (en) Method for cold rolling of rods
US1383747A (en) Method of making flexible sleeve-valves
DE2624610C3 (en) Process for the production of rims from an aluminum alloy by die casting
JPH01104434A (en) Manufacture of connecting rod bolt
US1712972A (en) Method of forming blanks for making seamless tubes
SU1657248A1 (en) Pressing die
JPS6330095B2 (en)
SU1616743A1 (en) Method of producing round tubes
JPH0386335A (en) Cylindrical member and its manufacture
RU2695095C1 (en) Method of making thin-walled axially symmetric vessels bodies from alloyed steels operating under high pressure
JPH0775848A (en) Forging method of stepped shaft material
JP2970504B2 (en) Rolling method of constant parallel flange channel steel with external method
SU1003983A1 (en) Blank forging method