JPH0349073B2 - - Google Patents
Info
- Publication number
- JPH0349073B2 JPH0349073B2 JP6645683A JP6645683A JPH0349073B2 JP H0349073 B2 JPH0349073 B2 JP H0349073B2 JP 6645683 A JP6645683 A JP 6645683A JP 6645683 A JP6645683 A JP 6645683A JP H0349073 B2 JPH0349073 B2 JP H0349073B2
- Authority
- JP
- Japan
- Prior art keywords
- insulation
- cable
- resistance
- voltage
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009413 insulation Methods 0.000 claims description 62
- 238000005260 corrosion Methods 0.000 claims description 17
- 230000007797 corrosion Effects 0.000 claims description 14
- 230000002950 deficient Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 240000005572 Syzygium cordatum Species 0.000 description 1
- 235000006650 Syzygium cordatum Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
本発明は活線下で高圧電力ケーブルの絶縁抵抗
値を測定する活線下ケーブル絶縁測定方法に関す
る。
第1図は従来の活線下で高圧電力ケーブルの絶
縁抵抗値を測定する方法を示す図である。高圧電
力ケーブルの絶縁層と防食層のそれぞれの絶縁抵
抗値をケーブルの送電を停止することなく活線下
で測定してケーブルの劣化度を把握することはケ
ーブルの予防保全上極めて重要なことである。第
1図において、1は高圧母線、2は接地用変圧
器、3は接地用変圧器2を通じて測定用電圧を高
圧母線1に送り出す直流電源、4は開閉器、5は
接地用変圧器2の中性点と大地間に挿入された保
安接地回路でその内容詳細の図示は省略したが平
常は中性点を直接大地に接続しておき、測定時に
は交流的に低インピーダンスの接地を継続するか
直流的には中性点を大地から絶縁状態としたうえ
で、電源側に向つては交流分の侵入を抑える波
回路を有するものである。一方、測定対象ケーブ
ル6のしやへい端末は保安接地回路7を通じて接
地され、側路的には切替開閉器8を通じて2肢か
ら成る絶縁測定回路に導びかれる。その1肢は防
食層絶縁抵抗測定用電源9と防食層絶縁抵抗測定
用電流計10との直列回路、残る1肢は絶縁層絶
縁抵抗測定用電流計11を有する回路である。
第1図を参照して従来の測定方法を具体的に説
明する。先ず開閉器4は開いたまゝで即ち測定対
象ケーブル6の高圧導体には測定用電圧が印加さ
れていない状態でケーブル保安接地回路7内のし
やへいの直接接地回路を開き、切替開閉器8を図
示の位置に切替えてあるとすると、防食層絶縁抵
抗測定用電源9からケーブルしやへい→防食層絶
縁不良抵抗→大地→防食層絶縁抵抗測定用電流計
10を経由して電源9に帰る閉回路ができる。従
つて、電流計10の指示から防食層絶縁抵抗値を
知ることができる。次に切替開閉器8を反対側に
倒し開閉器4を閉じて測定用電圧を直流電源3か
ら送り出すと高圧母線1を通じて測定対象ケーブ
ル6の高圧導体に測定用電圧が印加される。測定
対象ケーブル6に絶縁層の絶縁抵抗不良があれば
それを通じてしやへいに現われた電流は絶縁層絶
縁抵抗測定用電流計11から大地を経由して直流
電源3に戻る。従つて、電流計11の指示から絶
縁層絶縁抵抗値を知り得るのである。しかしなが
ら、この従来の測定方法は防食層絶縁抵抗測定用
電源と、絶縁層絶縁抵抗測定用電源との2種を予
め準備し、特定の高圧母線と、それに接がる特定
のケーブルとに他の附属設備と共に固定配線して
おくものであるから、他の高圧母線に接がる任意
のケーブルを測定対象とすることはできない欠点
があつた。限られた場所、限られたケーブルのみ
即ち既に装置が施設されそれに包含されるケーブ
ルのみが測定対象である。更に、1式の設備は限
られた範囲のケーブルに対する固定設備であり、
この範囲を広げようとすると莫大な設備数、施設
費が必要となるため経済的でない欠点もあつた。
本発明の目的は、発明者の知見になる劣化の進
行した電力ケーブルは活線下で顕著な直流分電圧
を絶縁層内に発生するという現象を利用して前述
の欠点を解消した、活線下で高圧電力ケーブルの
絶縁抵抗値を測定する活線下ケーブル絶縁測定方
法を提供することである。
以下に図面を参照して本発明について詳細に説
明する。
第2図は本発明に使用する測定対象ケーブル毎
の測定回路図である。第2図では固定配線として
示しているが勿論これはその全部又は一部を携帯
型持まわり測定回路としてもよいものである。1
は高圧母線、6はこれに接がる測定対象ケーブル
でそのしやへい端末はケーブル用保安接地回路7
を通じて接地される。保安接地回路7の内容詳細
の図示は省略するが、平常はケーブルしやへいを
直接大地に接続し、測定時には交流的には低イン
ピーダンスの接地を継続するが直流的には大地か
らケーブルしやへいを絶縁状態とする。即ち、静
電容量によるしやへい接地状態とするものであ
る。但し、非測定時も静電容量によるしやへい接
地状態とすることが妨げない。14及び15はそ
れぞれの異なる抵抗で切替開閉器13により電流
計12に交互接続される。第2図ではケーブルし
やへい側に2抵抗肢が接続され、大地側に挿入さ
れた電流計12が切替開閉器13により抵抗14
又抵抗15に切替え接続されるが如く示したが、
勿論これは述の状態即ち2抵抗肢が大地側に挿入
され、ケーブルしやへい側に挿入された電流計1
2が切替開閉器13により抵抗14又は抵抗15
に切替え接続される如く構成されてもよい。ここ
で電流計12は抵抗14又は抵抗15をその倍率
器抵抗とする電圧計として動作することになる。
測定対象ケーブル6には絶縁層絶縁不良部及び防
食層絶縁不良部があるものとし、この領域を16
として拡大視すると円内に示す如くであり、17
は高圧導体、18はしやへい、19は絶縁層絶縁
不良抵抗、20は絶縁層絶縁不良部に発生してい
る直流分電源、21は防食層絶縁不良抵抗、22
は防食層絶縁不良部に発生している局部電池であ
る。上記20及び22につき更に言及すると、2
0は水トリー発生による絶縁劣化の進行したCV
ケーブルの絶縁体中に活線下で顕著に現われる直
流分電源で、しやへい側をプラス電位、導体側を
マイナス電位とする極性でその電圧値は数ボルト
に達する。22は防食層絶縁不良部に発生するし
やへい金属側を概ねプラス電位とする0〜0.5V
の局部電池で通常は1V以上の電圧に達すること
はない。
第3図は絶縁不良の存在する領域16の等価回
路を示す図である。第3図aに領域16の等価回
路を示す。RIは19に対応する絶縁層絶縁不良
抵抗、EIは絶縁層絶縁不良部に発生している直流
分電源20に対応する電池、RSは21に対応す
る防食層絶縁不良抵抗、ESは防食層絶縁不良部に
発生している局部電池22に対応する電池であ
る。直流回路的には高圧導体17は大地と同電位
であるのでRIとEIとより成る絶縁層絶縁不良回路
と、RS+ESより成る防食層絶縁不良回路とはし
やへい18と大地(導体17)間に全く並列に存
在することになり第3図aの如き等価回路となつ
たものである。電気回路的には第3図aの回路は
第3図bの回路と等価であるとして表せる。即
ち、見掛けの内部抵抗Rと見掛けの内部電源Eと
から成る回路がケーブルしやへいと大地間に存在
することになる。本発明では第2図に示した測定
回路により測定対象ケーブル6のしやへいと大地
間に存在する第3図bの等価回路で示される見掛
けの内部抵抗R及び見掛けの内部電源Eのそれぞ
れの値を先ず知つたうえで次に詳述する方法によ
り第3図aに示される絶縁層絶縁不良抵抗RI及
び防食層絶縁不良抵抗RSの近似値を求めようと
するものである。
以下に具体的に本発明の測定方法について述べ
る。第2図において、測定対象ケーブル6のしや
へいの大地への直接接地がケーブル用保安接地器
7の内部でなされている場合は先ずこれを外し、
切替開閉器13を抵抗値RIの抵抗14の側に倒
した場合の電流計12の読みE1及び抵抗値R2の
抵抗15の側に倒した場合の電流計12の読み
E2をとる。先に述べた如く電流計12は抵抗1
4及び抵抗15を異なつた値の倍率抵抗とする実
質電圧計であるので、読みE1及びE2の値はそれ
ぞれ電圧値(ボルト)で読み出せる。この回路に
は大きな静電容量があり、大きい特定数を持つの
で電圧計の読みをとるのには十分時間をかけて電
圧値の飽和も待つ必要がある。読みE1及びE2と、
E及びRとの間には次の関係がある。
E1=R1/R+R1E,E2=R2/R+R2E
E1/E2=R1/R+R1/R2/R+R2
上式を整理すると次のようにR及びEが求めら
れる。
R=R1R2(E1−E2)/E2R1−E1R2
E=E1×R+R1/R1=E2×R+R2/R2
次に具体的な数値をあげて計算すると、R1=
2MΩR2=0.1MΩの時にE1=1.40V,E2=0.09Vが
得られたとすると、
R=2×0.1(1.40−0.09)/0.09×2−1.40×0.1=
6.55(MΩ)
E=1.40×6.55+2/2=5.99(V)
これで第3図bに示す等価回路の見掛けの内部
抵抗R及び見掛けの内部電源Eの値は知り得た。
次に、絶縁不良抵抗RI及びRSの値を求める。
先ず、RSとRIとの比をαとおく
RS/RI=α∴RS=αRI
R=RIRS/RI+RS=α/1+αRI
RI=1+α/αR
RS=(1+α)R
従つて、比αが求められればRの値からRI及
びRSに分解できることがわかつた。
次に、全電圧の定理を適用して、
EI/RI+ES/RIα 1/RI+1/RIα=E
EIα+ES α+1=E
上式を整理すると
α=E−ES/EI−E
が得られる。即ち、比αはEI及びESを適当に仮定
すれば求めることができる。ここで局部電池ESの
電圧範囲を検討してみると、零ボルトから始まつ
て理論的には1ボルト程度までの範囲を想定し得
るが発明者の知見では0〜0.5ボルトの間にほと
んど納まるものである。直流分電源EIの電圧値は
発明者の知見では9ボルトとおく。この値は高圧
電力ケーブルの使用電圧とは無関係であることが
判つている。
以上で理論的準備は整つたので実計算に移る。
今、見掛けの内部電源E及び見掛けの内部抵抗R
の値がそれぞれ判明していて、前出計算例の如
く、E=5.99(V)、R=6.55(MΩ)が得られたと
する。この時ESの値が何ボルトであるのかが判ら
ないが0〜0.5Vの間にあることはほゞ間違いな
いので、
(ケース1)ES=0 V
(ケース2)ES=0.2V
(ケース3)ES=0.5V
の3つのケースにつきαを求め、次いでRI及び
RSを算出する。
The present invention relates to a cable insulation measurement method for measuring the insulation resistance of a high-voltage power cable under a live line. FIG. 1 is a diagram showing a conventional method of measuring the insulation resistance value of a high-voltage power cable under a live line. It is extremely important for the preventive maintenance of cables to measure the insulation resistance values of the insulating layer and anti-corrosion layer of high-voltage power cables under live lines without stopping the cable's power transmission and to understand the degree of cable deterioration. be. In Fig. 1, 1 is a high-voltage bus, 2 is a grounding transformer, 3 is a DC power supply that sends the measurement voltage to the high-voltage bus 1 through the grounding transformer 2, 4 is a switch, and 5 is a grounding transformer 2. This is a safety grounding circuit inserted between the neutral point and the ground. Although the details of the circuit are not shown in the diagram, normally the neutral point is connected directly to the ground, and during measurement, the grounding with low AC impedance is continued. In terms of direct current, the neutral point is insulated from the ground, and a wave circuit is provided toward the power source to suppress the intrusion of alternating current. On the other hand, the lower end of the cable 6 to be measured is grounded through a safety grounding circuit 7, and is laterally guided through a switching switch 8 to an insulation measuring circuit consisting of two limbs. One limb is a series circuit of a power supply 9 for measuring the insulation resistance of the corrosion protection layer and an ammeter 10 for measuring the insulation resistance of the corrosion protection layer, and the remaining limb is a circuit having an ammeter 11 for measuring the insulation resistance of the insulation layer. A conventional measuring method will be specifically explained with reference to FIG. First, while the switch 4 remains open, that is, no measurement voltage is applied to the high-voltage conductor of the cable 6 to be measured, the direct grounding circuit in the cable safety grounding circuit 7 is opened, and the switching switch 8 is opened. Assuming that is switched to the position shown in the figure, the cable runs from the power supply 9 for measuring the insulation resistance of the corrosion protection layer → the poor insulation resistance of the corrosion protection layer → the earth → returns to the power supply 9 via the ammeter 10 for measuring the insulation resistance of the corrosion protection layer. Creates a closed circuit. Therefore, the corrosion protection layer insulation resistance value can be known from the indication of the ammeter 10. Next, when the switching switch 8 is turned to the opposite side and the switch 4 is closed to send out the voltage for measurement from the DC power supply 3, the voltage for measurement is applied to the high voltage conductor of the cable 6 to be measured through the high voltage bus 1. If there is an insulation resistance defect in the insulation layer of the cable 6 to be measured, the current that appears through the defect returns from the insulation layer insulation resistance measuring ammeter 11 to the DC power supply 3 via the ground. Therefore, the insulation resistance value of the insulation layer can be known from the indication of the ammeter 11. However, in this conventional measurement method, two kinds of power supplies are prepared in advance: a power supply for measuring the insulation resistance of the corrosion protection layer and a power supply for measuring the insulation resistance of the insulation layer. Since it is fixedly wired together with auxiliary equipment, it has the disadvantage that any cable connected to another high voltage bus cannot be measured. Only a limited location and a limited number of cables are to be measured, that is, only cables that are already installed and included in the equipment are to be measured. Furthermore, one set of equipment is fixed equipment for a limited range of cables;
Attempting to widen this range would require an enormous amount of equipment and facility costs, which also had the disadvantage of being uneconomical. The object of the present invention is to provide a live line that eliminates the above-mentioned drawbacks by utilizing the phenomenon that a deteriorated power cable, which has been discovered by the inventor, generates a significant DC voltage component in the insulation layer under a live line. An object of the present invention is to provide a cable insulation measurement method for measuring the insulation resistance of a high-voltage power cable under a live line. The present invention will be described in detail below with reference to the drawings. FIG. 2 is a measurement circuit diagram for each cable to be measured used in the present invention. Although it is shown as a fixed wiring in FIG. 2, it goes without saying that all or part of this may be used as a portable rotational rotation measuring circuit. 1
is the high-voltage busbar, 6 is the cable to be measured that connects to it, and its low end is the safety grounding circuit for the cable 7
grounded through. Although illustration of the details of the safety grounding circuit 7 is omitted, normally the cable cable or shield is connected directly to the ground, and during measurement, the low-impedance grounding is continued for AC, but for DC, the cable is connected directly to the ground. The shield is insulated. That is, a weak grounding state is established due to capacitance. However, this does not prevent the capacitance from being in a grounded state even when not measuring. 14 and 15 have different resistances and are alternately connected to the ammeter 12 by the switching switch 13. In Fig. 2, two resistor limbs are connected to the lower side of the cable, and the ammeter 12 inserted into the ground side is connected to the resistor 14 by the switching switch 13.
Also, although it is shown as being switched and connected to the resistor 15,
Of course, this is the case as described above, i.e., two resistive limbs are inserted on the ground side, and the ammeter 1 is inserted on the cable side.
2 is a resistor 14 or a resistor 15 by a switching switch 13
It may be configured such that the connection is switched between the two. Here, the ammeter 12 will operate as a voltmeter with the resistor 14 or the resistor 15 as its multiplier resistance.
It is assumed that the cable 6 to be measured has a defective part in the insulation layer and a defective part in the insulation layer in the anticorrosion layer, and this area is divided into 16
When magnified as shown in the circle, it is 17
18 is a high voltage conductor, 18 is a resistor, 19 is a resistance with poor insulation in the insulation layer, 20 is a DC power supply generated in the defective part of the insulation layer, 21 is a resistance with poor insulation in the anti-corrosion layer, 22
is a local battery occurring in an area with poor insulation of the corrosion protection layer. To further refer to 20 and 22 above, 2
0 is CV where insulation deterioration has progressed due to water tree generation
It is a direct current power source that appears prominently in the insulation of a cable under live wires, and its voltage reaches several volts with polarity such that the soft side has a positive potential and the conductor side has a negative potential. 22 is 0 to 0.5V, which makes the weak metal side that occurs in the insulation defective part of the corrosion protection layer approximately positive potential.
The local battery normally does not reach voltages above 1V. FIG. 3 is a diagram showing an equivalent circuit of the region 16 where insulation defects exist. FIG. 3a shows an equivalent circuit of region 16. R I is the insulation failure resistance of the insulation layer corresponding to 19, E I is the battery corresponding to the DC power supply 20 generated in the insulation layer insulation failure part, R S is the corrosion protection layer insulation failure resistance corresponding to 21, E S is a battery corresponding to the local battery 22 occurring in the corrosion protection layer insulation defect area. In terms of a DC circuit, the high voltage conductor 17 is at the same potential as the ground, so a circuit with poor insulation layer consisting of R I and E I and a circuit with poor insulation layer with corrosion protection layer consisting of R S + E S are connected to the ground 18 and the ground. (conductor 17) and are completely parallel to each other, resulting in an equivalent circuit as shown in FIG. 3a. In terms of an electrical circuit, the circuit of FIG. 3a can be expressed as being equivalent to the circuit of FIG. 3b. That is, a circuit consisting of an apparent internal resistance R and an apparent internal power source E exists between the cable cable and the ground. In the present invention, the measurement circuit shown in FIG. 2 is used to measure the apparent internal resistance R and the apparent internal power source E shown in the equivalent circuit of FIG. After first knowing the values, approximate values of the insulating layer insulation failure resistance R I and the anticorrosion layer insulation failure resistance R S shown in FIG. 3a are determined by the method described in detail below. The measuring method of the present invention will be specifically described below. In FIG. 2, if the cable to be measured 6 is directly grounded to the ground inside the cable safety grounding device 7, first remove it.
The reading of the ammeter 12 when the switching switch 13 is turned to the side of the resistor 14 with a resistance value R I , and the reading of the ammeter 12 when it is turned to the side of the resistor 15 of a resistance value R 2 .
Take E 2 . As mentioned earlier, the ammeter 12 is connected to the resistor 1
4 and the resistor 15 are multiplier resistors of different values, so the values of reading E 1 and E 2 can be read out as voltage values (volts), respectively. Since this circuit has a large capacitance and a large specific number, it is necessary to take enough time to wait for the voltage value to saturate before taking a reading on the voltmeter. Reading E 1 and E 2 ,
The following relationship exists between E and R. E 1 = R 1 / R + R 1 E, E 2 = R 2 / R + R 2 E E 1 / E 2 = R 1 / R + R 1 / R 2 / R + R 2 By rearranging the above equation, R and E can be found as follows. It will be done. R=R 1 R 2 (E 1 −E 2 )/E 2 R 1 −E 1 R 2 E=E 1 ×R+R 1 /R 1 =E 2 ×R+R 2 /R 2. Next, give specific numbers. When calculated, R 1 =
If E 1 = 1.40V and E 2 = 0.09V are obtained when 2MΩR 2 = 0.1MΩ, R = 2×0.1 (1.40−0.09)/0.09×2−1.40×0.1=
6.55 (MΩ) E = 1.40 x 6.55 + 2/2 = 5.99 (V) Now we know the values of the apparent internal resistance R and the apparent internal power source E of the equivalent circuit shown in Figure 3b. Next, find the values of the insulation failure resistances R I and R S.
First, let the ratio of R S and R I be α. R S /R I = α∴R S = αR I R = R I R S /R I +R S = α/1+αR I R I =1+α/αR R S = (1+α)R Therefore, it was found that if the ratio α is determined, it can be decomposed into R I and R S from the value of R. Next, applying the total voltage theorem, E I /R I +E S /R I α 1/R I +1/R I α=E E I α+E S α+1=E Rearranging the above equation, α=E− E S /E I −E is obtained. That is, the ratio α can be determined by appropriately assuming E I and E S. If we consider the voltage range of the local battery E S here, we can assume a range starting from zero volts and theoretically up to about 1 volt, but according to the inventor's knowledge, most voltages are between 0 and 0.5 volts. It fits. According to the inventor's knowledge, the voltage value of the DC power source E I is set at 9 volts. It has been found that this value is independent of the working voltage of the high voltage power cable. Now that the theoretical preparations are complete, we can move on to actual calculations.
Now, the apparent internal power supply E and the apparent internal resistance R
Assume that the values of are known, and as in the calculation example above, E=5.99 (V) and R=6.55 (MΩ) are obtained. At this time, we do not know how many volts the value of E S is, but it is almost certain that it is between 0 and 0.5 V, so (Case 1) E S = 0 V (Case 2) E S = 0.2 V (Case 3) Find α for the three cases of E S = 0.5V, then calculate R I and
Calculate R S.
【表】
即ち、絶縁層絶縁不良抵抗RI=9.98(MΩ)、防
食層絶縁不良抵抗RS=19.08(MΩ)が得られて目
的が達せられた。ケース1ないしケース3の間で
得られた値には数%以下の偏差しかなかつたので
平均値を求めるのに算術平均を使つたが、もし各
ケース間の数値に数+%の偏差が認められたなら
ば平均値は幾何平均によるのが妥当であろう。こ
のようなケースはEの値が低く観測された場合に
起りEの最小値を1Vとして最大偏差率は約38%
に達する。よつて、1Vを越える電圧値を見掛け
の内部電源電圧値として観測した場合にのみ本発
明は実用上の意義があるといえる。
本発明の効果は、特定の測定用電源設備を予め
特定の高圧母線に施設しておく必要がないので任
意の高圧母線に接がる任意の高圧ケーブルを測定
対象とすることができること即ち全ての高圧ケー
ブルを適用範囲とできること、本発明による持ま
わり測定器は簡単な構成で安価に製作でき測定操
作も簡単で1台を持ちまわれば多数のケーブルの
劣化状態を把握でき固定電源説備が不要であるの
で経済的に活線ケーブルの絶縁劣化状態が検出で
きることが挙げられる。
本発明の応用分野は高圧、特高圧電力ケーブル
主として高圧CVケーブルがある。[Table] That is, the objective was achieved, with the insulation layer insulation failure resistance R I =9.98 (MΩ) and the anticorrosion layer insulation failure resistance R S =19.08 (MΩ). Since the values obtained between Cases 1 and 3 had a deviation of less than a few percent, we used the arithmetic mean to find the average value. If so, it would be appropriate to use the geometric mean for the average value. Such a case occurs when the value of E is observed to be low, and the maximum deviation rate is approximately 38% when the minimum value of E is 1V.
reach. Therefore, it can be said that the present invention has practical significance only when a voltage value exceeding 1V is observed as an apparent internal power supply voltage value. An advantage of the present invention is that since it is not necessary to install a specific measurement power supply equipment on a specific high-voltage bus in advance, any high-voltage cable connected to any high-voltage bus can be measured. The rotation measuring device according to the present invention can be applied to high-voltage cables, has a simple configuration, can be manufactured at low cost, and has easy measurement operation.If you carry one device around, you can understand the deterioration state of many cables, and there is no need for a fixed power source. Therefore, it is possible to economically detect the insulation deterioration state of a live cable. The field of application of the present invention is high voltage and extra high voltage power cables, mainly high voltage CV cables.
第1図は従来の活線下で高圧電力ケーブルの絶
縁抵抗値を測定する方法を示す図、第2図は本発
明に使用する測定対象ケーブル毎の測定回路図、
第3図は絶縁不良の存在する領域16の等価回路
を示す図である。
1:高圧母線、2:接地用変圧器、3:直流電
源、4:開閉器、5,7:保安接地回路、6:測
定対象ケーブル、8,13:切替開閉器、9:電
源、10,11,12:電流計、17:高圧導
体、18:しやへい、19,RI:絶縁層絶縁不
良抵抗、20,EI:直流分電源、21,RS:防
食層絶縁不良抵抗、22,ES:局部電池。
Fig. 1 is a diagram showing a conventional method of measuring the insulation resistance value of a high-voltage power cable under live wires, Fig. 2 is a measurement circuit diagram for each cable to be measured used in the present invention,
FIG. 3 is a diagram showing an equivalent circuit of the region 16 where insulation defects exist. 1: High voltage busbar, 2: Grounding transformer, 3: DC power supply, 4: Switch, 5, 7: Safety grounding circuit, 6: Cable to be measured, 8, 13: Switching switch, 9: Power supply, 10, 11, 12: Ammeter, 17: High voltage conductor, 18: Resistance, 19, R I : Resistance with poor insulation in the insulation layer, 20, E I : DC power supply, 21, R S : Resistance with poor insulation in the anti-corrosion layer, 22 , E S : Local battery.
Claims (1)
抗を異にする電圧測定を2回行ない、その結果か
らしやへいと大地間に存在する見掛けの内部電源
電圧及び見掛けの内部抵抗を求め、前記見掛けの
内部電源電圧が1ボルト以上であつた場合に絶縁
層絶縁不良部に発生している直流分電源と防食層
絶縁不良部に発生している局部電池とのそれぞれ
の電圧値を仮定して、前記見掛けの内部抵抗を分
解して絶縁層絶縁不良抵抗及び防食層絶縁不良抵
抗を求めることを特徴とする活線下ケーブル絶縁
測定方法。1 Measure the voltage twice with different multiplier resistances between the edge of the live cable and the ground, and from the results, determine the apparent internal power supply voltage and apparent internal resistance that exist between the edge of the live cable and the ground. , assuming that the apparent internal power supply voltage is 1 volt or more, the respective voltage values of the DC power supply generated in the defective insulation layer and the local battery generated in the defective insulation layer of the corrosion protection layer. A method for measuring cable insulation under a live wire, characterized in that the apparent internal resistance is decomposed to determine the insulation failure resistance of the insulation layer and the insulation failure resistance of the corrosion protection layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6645683A JPS59192971A (en) | 1983-04-15 | 1983-04-15 | Measuring method of cable insulation in hot-line work |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6645683A JPS59192971A (en) | 1983-04-15 | 1983-04-15 | Measuring method of cable insulation in hot-line work |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59192971A JPS59192971A (en) | 1984-11-01 |
JPH0349073B2 true JPH0349073B2 (en) | 1991-07-26 |
Family
ID=13316287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6645683A Granted JPS59192971A (en) | 1983-04-15 | 1983-04-15 | Measuring method of cable insulation in hot-line work |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59192971A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62170858A (en) * | 1986-01-23 | 1987-07-27 | Asahi Eng Kk | Measuring method for insulation resistance of cable or electric equipment |
JPS62170857A (en) * | 1986-01-23 | 1987-07-27 | Asahi Eng Kk | Method and device for measuring insulation resistance of cable of electric equipment |
-
1983
- 1983-04-15 JP JP6645683A patent/JPS59192971A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59192971A (en) | 1984-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001084117A3 (en) | System to measure the state of corrosion of buried metallic structures continuously in time and in length | |
JPH0349073B2 (en) | ||
JPH0619416B2 (en) | Insulation diagnosis method | |
JPH0429982B2 (en) | ||
JP2876322B2 (en) | Diagnosis method for insulation deterioration of CV cable | |
JPS6228655A (en) | Diagnosing method for insulation deterioration | |
JPH0378588B2 (en) | ||
JP2612648B2 (en) | Deterioration judgment method for insulation of three-phase power cable | |
JPH01110267A (en) | Insulation deterioration diagnostic apparatus | |
JPH0575980B2 (en) | ||
JP2003057288A (en) | Fault-point specifying method for branch cable line | |
JPH0546906B2 (en) | ||
JP2943986B2 (en) | Degradation diagnostic device under power line for power cable | |
JPH11231016A (en) | Deterioration diagnostic method of power cable connector | |
JPS6091272A (en) | Diagnosis of deterioration in insulating properties of power cable | |
JPH02194371A (en) | Measurement of dielectric loss of cable | |
JPS5856116B2 (en) | Method for locating defective points of corrosion protection layer insulation under live wires | |
JPH0425504B2 (en) | ||
JPH11211783A (en) | Method for diagnosing deterioration of power cable joint | |
JPH0562309B2 (en) | ||
JPH07248346A (en) | Insulation deterioration diagnosing method and diagnosing device for hot-line cable | |
JPH01267469A (en) | Method for diagnosing insulation of power cable | |
JPH02198369A (en) | Measuring method of insulation resistance of electronic cable | |
JPS63281073A (en) | Detecting method for water tree current of cv cable | |
JPS63281075A (en) | Measuring instrument for insulation deterioration relation quantity |