JPH0348806B2 - - Google Patents

Info

Publication number
JPH0348806B2
JPH0348806B2 JP58128133A JP12813383A JPH0348806B2 JP H0348806 B2 JPH0348806 B2 JP H0348806B2 JP 58128133 A JP58128133 A JP 58128133A JP 12813383 A JP12813383 A JP 12813383A JP H0348806 B2 JPH0348806 B2 JP H0348806B2
Authority
JP
Japan
Prior art keywords
eye
refractive power
examined
chart
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128133A
Other languages
Japanese (ja)
Other versions
JPS6021736A (en
Inventor
Yasufumi Fukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP58128133A priority Critical patent/JPS6021736A/en
Publication of JPS6021736A publication Critical patent/JPS6021736A/en
Publication of JPH0348806B2 publication Critical patent/JPH0348806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自覚式眼屈折力測定装置、すなわち合
焦検出用チヤートからの光束を被検眼瞳と共役な
位置に配置した複数の開口部を有する絞りを通し
て被検眼眼底へ投影するように構成した自覚式眼
屈折力測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a subjective eye refractive power measurement device, that is, an aperture diaphragm having a plurality of apertures in which a light beam from a focus detection chart is arranged at a position conjugate with the pupil of the eye to be examined. The present invention relates to a subjective eye refractive power measuring device configured to project images onto the fundus of an eye to be examined.

従来技術 従来の自覚式眼屈折力測定装置の例としては、
眼屈折力測定チヤートを投影レンズ系によつて被
検眼眼底へ投影し、チヤート像が被検眼眼底上に
合焦する位置、すなわち被検者がチヤートをはつ
きりと見える位置まで該チヤートを投影レンズ系
の光軸上で移動させる。そして、上記チヤートが
この調整のために視度0に対応する基準位置から
どちらの方向にどれだけ移動したかを検出して眼
屈折力を測定するものがある。
Prior Art Examples of conventional subjective eye refractive power measuring devices include:
Project the eye refractive power measurement chart onto the fundus of the subject's eye using a projection lens system, and project the chart to a position where the chart image is focused on the fundus of the subject's eye, that is, a position where the subject can clearly see the chart. Move it on the optical axis of the lens system. For this adjustment, there is a method that measures the eye refractive power by detecting in which direction and how much the chart has moved from a reference position corresponding to a diopter of 0.

従来の自覚式眼屈折力測定装置の他の例として
は上記従来例において、チヤートを光軸上で移動
させる代りに該光軸上に屈折力の異なるレンズを
選択的に挿入し、該挿入したレンズの屈折力から
眼屈折力を測定するように構成したものがある。
Another example of the conventional subjective eye refractive power measurement device is that in the above conventional example, instead of moving the chart on the optical axis, lenses with different refractive powers are selectively inserted on the optical axis. Some devices are configured to measure the eye refractive power from the refractive power of the lens.

しかしながら、上記従来の装置においては、チ
ヤート像が被検眼眼底に合焦しているか否かをチ
ヤート像のぼけの程度によつて判断しなければな
らないが、この判断は被検者にとつて困難なこと
であり、高精度の測定を期待できなかつた。
However, with the above-mentioned conventional apparatus, it is necessary to judge whether or not the chart image is focused on the fundus of the examinee's eye based on the degree of blur in the chart image, but this judgment is difficult for the examinee. Therefore, high precision measurements could not be expected.

従来の自覚式眼屈折力測定装置のさらに他の例
としては、上記従来の装置の問題を解消するため
に、チヤートからの光束を被検眼瞳と共役な位置
に配置した2孔絞りを通して被検眼眼底へ投影す
るように構成したものがある。これは、チヤート
からの光束が被検眼眼底で合焦している時には、
被検眼眼底上で2つのチヤート像が合致して結像
し、合焦していない時には、2つのチヤート像が
分離して結像し、従つてチヤート像の合焦状態を
容易かつ正確に判別できる、いわゆる合致式の自
覚式屈折力測定装置と呼ばれるものである。
In yet another example of a conventional subjective eye refractive power measuring device, in order to solve the problems of the conventional device described above, the light beam from the chart is passed through a two-hole diaphragm placed at a position conjugate with the pupil of the patient's eye. There is one that is configured to project onto the fundus of the eye. This means that when the light beam from the chart is focused on the fundus of the examinee's eye,
When the two chart images are aligned and formed on the fundus of the subject's eye, but are not in focus, the two chart images are formed separately, so the in-focus state of the chart images can be easily and accurately determined. This is a so-called matching type subjective refractive power measuring device.

しかしながら、上記合致式の自覚式屈折力測定
装置においては、2孔絞りを通過した測定光束が
被検眼瞳を通過させるために、測定装置の光軸と
被検眼光軸とを合致させるいわゆるアライメント
調整を行れなければならず、測定操作が困難であ
る問題があつた。
However, in the above-mentioned matching type subjective refractive power measuring device, in order for the measurement light flux that has passed through the two-hole diaphragm to pass through the pupil of the subject's eye, so-called alignment adjustment is performed to match the optical axis of the measuring device and the optical axis of the subject's eye. This posed the problem of difficult measurement operations.

発明の目的 本発明は上記従来の問題を鑑みなされたもので
あり、容易に高精度な屈折力測定が可能であり、
かついわゆるアライメント調整を実質上不要とし
た自覚式屈折力測定装置を提供することを目的と
する。
Purpose of the Invention The present invention was made in view of the above-mentioned conventional problems, and enables easy and highly accurate refractive power measurement.
Another object of the present invention is to provide a subjective refractive power measuring device that does not substantially require so-called alignment adjustment.

発明の構成 本発明によれば、眼屈折力測定用チヤートと、
前記チヤートからの投影光束の光路上で被検眼瞳
と略共役な位置に配置された複数の開口を有する
絞りと、前記絞りの開口を透過した光束により被
検眼眼底へチヤート像を投影するとともに前記絞
りと被検眼瞳とを略共役関係にするための投影レ
ンズ系とからなり、前記絞りの開口は該絞りにお
ける被検眼瞳に対応した大きさより広い領域に配
置され、かつ該被検眼瞳に対応した大きさ内に常
に2つ以上の絞りの開口を含むように前記開口を
通過する各光束により被検眼眼底に形成れる各眼
屈折力測定用チヤート像の合成状態から被検眼の
眼屈折力を測定することを特徴とする自覚式眼屈
折力測定装置が提供される。
Structure of the Invention According to the present invention, a chart for measuring eye refractive power;
a diaphragm having a plurality of apertures disposed on the optical path of the projected light flux from the chart at a position substantially conjugate with the pupil of the subject's eye; and a diaphragm having a plurality of apertures that is arranged on the optical path of the projected light flux from the chart, and projecting a chart image onto the fundus of the subject's eye by the light flux transmitted through the aperture of the diaphragm. It comprises a projection lens system for creating a substantially conjugate relationship between the diaphragm and the pupil of the eye to be examined, and the aperture of the diaphragm is arranged in an area wider than the size corresponding to the pupil of the eye to be examined in the diaphragm, and corresponds to the pupil of the eye to be examined. The eye refractive power of the eye to be examined is determined from the composite state of a chart image for measuring the refractive power of each eye formed on the fundus of the eye to be examined by each light beam passing through the aperture such that the size always includes two or more diaphragm apertures. A subjective eye refractive power measuring device is provided.

実施例 第1実施例は、被検眼瞳を含む平面上において
該瞳よりはるかに広い領域にわたつて円形絞り像
を結像させる構成である。第1図は第1実施例の
光学系の斜視図であり、右被検眼用光学系Rと左
被検眼用光学系Lとからなる。両光学系R,Lは
同一の構成であり、それぞれの光軸RO,LO上
に、光源10、光源10によつて照明され被検眼
眼底19と共役な位置付近に配置される十字指標
12付のチヤート板14、複数の円形孔16を有
する多孔絞り板18、十字指標12の像を被検眼
眼底19と共役な位置21付近に結像するリレー
レンズ20、及び十字指標12を被検眼眼底19
に投影し円形孔16の像を被検眼瞳22上に投影
レンズ24からなる。投影レンズ24の投影倍率
は、第2図に示すように、円形孔16の像16′
が被検眼瞳22内に例えば4個含まれるように決
められる。
Embodiment The first embodiment has a configuration in which a circular aperture image is formed over a much wider area than the pupil on a plane containing the pupil of the eye to be examined. FIG. 1 is a perspective view of the optical system of the first embodiment, which consists of an optical system R for the right eye to be examined and an optical system L for the left eye to be examined. Both optical systems R and L have the same configuration, and are provided with a light source 10 and a cross mark 12 illuminated by the light source 10 and arranged near a position conjugate with the fundus 19 of the eye to be examined, on the respective optical axes RO and LO. a chart plate 14 , a multi-hole aperture plate 18 having a plurality of circular holes 16 , a relay lens 20 that forms an image of the cross mark 12 near a position 21 that is conjugate with the fundus 19 of the eye to be examined, and a relay lens 20 that focuses the image of the cross mark 12 on the fundus 19 of the eye to be examined.
A projection lens 24 projects an image of the circular hole 16 onto the pupil 22 of the eye to be examined. The projection magnification of the projection lens 24 is as shown in FIG.
It is determined that, for example, four are included in the pupil 22 of the eye to be examined.

以上の構成において、チヤート板14の十字指
標12が被検眼眼底19へ合焦して投影される
と、ただ一つの十字指標12の像が結像する。一
方、非合焦て投影されると、被検眼瞳22内の円
形孔の像16′の数だけの十字指標12の像が異
なつた位置に結像する。ところで、被検眼瞳22
上には、第2図に示すように、その面積の10倍前
後の面積にわたつて円形孔の像16′ができてい
るから、被検眼瞳22の位置が光軸LO,ROに対
しかなりずれても円形孔16を通つた光束が被検
眼眼底19に結像可能である。
In the above configuration, when the cross mark 12 of the chart board 14 is focused and projected onto the fundus 19 of the eye to be examined, an image of only one cross mark 12 is formed. On the other hand, when the image is projected out of focus, as many images of the cross mark 12 as there are images 16' of the circular hole in the pupil 22 of the subject's eye are formed at different positions. By the way, the pupil of the eye to be examined 22
As shown in Fig. 2, the image 16' of the circular hole is formed over an area approximately 10 times that area, so the position of the pupil 22 of the eye to be examined is quite different from the optical axes LO and RO. Even if there is a deviation, the light beam passing through the circular hole 16 can form an image on the fundus 19 of the eye to be examined.

上記実施例の装置において、被検者の応答によ
りチヤート板14を光軸RO,LO上を移動させ、
あるいは被検者自身がチヤート板14を移動させ
て、十字指標12の像を被検眼眼底19に合焦さ
せる。この際、チヤート板14の屈折力Oの位置
からの移動量から該被検眼の屈折力を測定するこ
とができる。この時、レンズ20の被検眼側焦点
をレンズ40による瞳と共役な位置に置くと、チ
ヤートの移動距離は被検眼の主点屈折力とリニア
になり、一方メガネ装用位置と共役な位置におけ
ば、被検眼の屈折度と移動距離はリニアとなる。
この測定方法は以下第2ないし6の実施例におい
ても同じである。
In the apparatus of the above embodiment, the chart plate 14 is moved on the optical axes RO and LO according to the test subject's response,
Alternatively, the subject himself moves the chart board 14 to focus the image of the cross mark 12 on the fundus 19 of the subject's eye. At this time, the refractive power of the eye to be examined can be measured from the amount of movement of the chart plate 14 from the position of the refractive power O. At this time, if the focal point of the lens 20 on the subject's eye side is placed at a position conjugate with the pupil formed by the lens 40, the moving distance of the chart becomes linear with the principal point refractive power of the subject's eye, while at a position conjugate with the glasses wearing position. For example, the refractive power and movement distance of the eye to be examined are linear.
This measuring method is the same in the second to sixth embodiments below.

第2実施例は、第1の実施例の絞り板を、互に
平行な複数のスリツトを有する絞り板に代えるこ
とによつて構成される。絞り板の被検眼瞳上への
投影倍率は、第3図に示すように、絞り板像5
0′の少なくとも2つのスリツト像52が被検眼
瞳22上にあるように決められる。
The second embodiment is constructed by replacing the aperture plate of the first embodiment with an aperture plate having a plurality of parallel slits. The projection magnification of the aperture plate onto the pupil of the subject's eye is as shown in FIG.
At least two slit images 52 of 0' are determined to be on the pupil 22 of the eye to be examined.

以上の構成において、十字指標像12が被検眼
眼底19合焦して投影されると、第1実施例と同
じく、ただ一つの十字指標12の像が結像する。
一方、十字指標12が被検眼眼底19上へ非合焦
で投影されると、被検眼瞳22内スリツトの像5
2の数だけの十字指標12の像がスリツト長さ方
向と直角をなす方向に互にずれて結像される。
In the above configuration, when the cross mark image 12 is focused and projected onto the fundus 19 of the subject's eye, an image of only one cross mark 12 is formed, as in the first embodiment.
On the other hand, when the cross index 12 is projected onto the fundus 19 of the subject's eye without focusing, the image 5 of the slit in the pupil 22 of the subject's eye
Two images of the cross marks 12 are formed while being shifted from each other in a direction perpendicular to the slit length direction.

第3実施例は、第1実施例の絞り板を、複数の
円形孔を有する絞り円板を回転させる絞り装置に
代えて構成される。絞り円板100は、第4図に
示すように、円形孔帯域102に複数の円孔を有
し、円形孔帯域の中間を光軸LO(RO)が通過す
る。
The third embodiment is constructed by replacing the aperture plate of the first embodiment with an aperture device that rotates an aperture disk having a plurality of circular holes. As shown in FIG. 4, the aperture disk 100 has a plurality of circular holes in a circular hole zone 102, and the optical axis LO (RO) passes through the middle of the circular hole zone.

上記構成において、屈折力の測定は絞り円板1
00を回転中心Oを中心にして回転させながら行
われる。チヤート板14の十字指標12が被検眼
眼底19上へ合焦して投影されると、一つの固定
した十字指標像が結像する。一方、非合焦で投影
されると、複数の十字指標像が分離されると同時
に上下方向に移動する。
In the above configuration, the refractive power is measured using the aperture disk 1.
00 is rotated around the rotation center O. When the cross mark 12 of the chart board 14 is focused and projected onto the fundus 19 of the eye to be examined, a single fixed cross mark image is formed. On the other hand, when projected in an out-of-focus state, the plurality of cross-shaped index images are separated and simultaneously moved in the vertical direction.

第4実施例は、第1実施例の絞り板を、放射方
向の複数のスリツトを有する絞り円板を回転させ
る絞り装置に代えて構成される。絞り円板150
は、第5図に示すように、スリツト帯域152に
放射方向の複数のスリツト154を有し、スリツ
ト帯域152の中間を光軸LO(RO)が通過する。
The fourth embodiment is constructed by replacing the aperture plate of the first embodiment with an aperture device that rotates an aperture disk having a plurality of slits in the radial direction. Aperture disk 150
As shown in FIG. 5, the slit zone 152 has a plurality of slits 154 in the radial direction, and the optical axis LO (RO) passes through the middle of the slit zone 152.

上記構成において、屈折力の測定は絞り円板1
50を回転中心Oを中心にして回転させながら行
われる。チヤート板14の十字指標12が被検眼
眼底19上へ合焦して投影されると、一つの固定
した十字指標像が結像する。一方、非合焦で投影
されると、複数の十字指標像が一本の垂直線上を
移動し十字指標12を固定した場合と比較して、
さらに容易に合焦状態を検出できる。
In the above configuration, the refractive power is measured using the aperture disk 1.
50 is rotated around the rotation center O. When the cross mark 12 of the chart board 14 is focused and projected onto the fundus 19 of the eye to be examined, a single fixed cross mark image is formed. On the other hand, when projected out of focus, the multiple crosshair images move on a single vertical line, compared to the case where the crosshair index 12 is fixed.
Furthermore, the in-focus state can be detected more easily.

第5実施例は、一対の指標及び絞りを異なる光
軸上に配置して構成するものである。第5実施例
を示す第6図は左右どちらか一方の被検眼の屈折
力を測定する光学系を示す。すなわち、第5実施
例の光学系は、第1光軸O1に配置された第1光
源200、第1光源200によつて照明され被検
眼眼底202と共役位置付近に移動可能に配置さ
れる第1チヤート板204、第1チヤート板20
4を被検眼眼底202と共役な位置に結像する第
1リレーレンズ206、被検眼瞳208と共役に
配置される第1多孔絞り板210と、第1光軸
O1と同じ構成で第2光軸O2上に配置される第2
光源212、第2チヤート板214、第2リレー
レンズ216、第2多孔絞り板218とを包含す
る。第5実施例の光学系は、さらに、第2光軸
O2上に配置されて第2光軸O2を第1光軸O1の方
向に曲げるミラー220と、第1光軸O1に沿つ
た光束を透過し、第2光軸O2に沿つた光束を反
射するハーフミラー222と、第1チヤート板2
04及び第2チヤート板214の像を被検眼眼底
202に投影し、第1多孔絞り板210及び第2
多孔絞り板218を被検眼瞳208に投影する投
影レンズ224を包含する。
The fifth embodiment is configured by arranging a pair of indicators and a diaphragm on different optical axes. FIG. 6 showing the fifth embodiment shows an optical system for measuring the refractive power of either the left or right eye to be examined. That is, the optical system of the fifth embodiment is a first light source 200 disposed on the first optical axis O1 , and is illuminated by the first light source 200 and movably disposed near a conjugate position with the fundus 202 of the eye to be examined. First chart board 204, first chart board 20
A first relay lens 206 that forms an image of 4 at a position conjugate with the fundus 202 of the eye to be examined, a first multi-hole diaphragm plate 210 arranged conjugate to the pupil 208 of the eye to be examined, and a first optical axis.
The second optical axis has the same configuration as O 1 and is located on the second optical axis O 2 .
It includes a light source 212, a second chart plate 214, a second relay lens 216, and a second porous aperture plate 218. The optical system of the fifth embodiment further has a second optical axis.
A mirror 220 is disposed on O 2 and bends the second optical axis O 2 in the direction of the first optical axis O 1 , and a mirror 220 is arranged on the optical axis O 2 to transmit the light beam along the first optical axis O 1 and bend the second optical axis O 2 in the direction of the first optical axis O 1 . A half mirror 222 that reflects the rays of light, and a first chart board 2
04 and the second chart plate 214 are projected onto the fundus 202 of the eye to be examined, and the images of the first porous aperture plate 210 and the second
It includes a projection lens 224 that projects the multi-hole diaphragm plate 218 onto the pupil 208 of the eye to be examined.

第1チヤート板204及び第2チヤート板21
4は、第7A及び7B図に示すように、それぞれ
2つの円弧状スリツト230,232、および2
34,236を有し、上記4つの円弧状スリツト
230,232,234,236を合せると一つ
の円環を構成する。第1多孔絞り板210及び第
2多孔絞り板218は、それぞれ複数の円孔21
0A,218Aを設けて構成され、該円孔210
A,218Aの位置は、被検眼瞳208上に投影
されたとき、第8図に示すように、円孔像210
A′の横列と円孔像218A′の横列が縦方向に交
互に並ぶように決められる。また、円孔210
A,218Aの大きさ及び間隔は、第8図に示す
ように、被検眼瞳208に円孔像210A′及び
218A′がそれぞれ各2個入るように決められ
る。さらに、第1チヤート板204及び第2チヤ
ート板214はそれぞれの光軸上を一体に移動す
るように構成される。
First chart board 204 and second chart board 21
4 has two arcuate slits 230, 232, and 2, respectively, as shown in FIGS. 7A and 7B.
34, 236, and when the four arcuate slits 230, 232, 234, 236 are combined, they form one ring. The first multi-hole aperture plate 210 and the second multi-hole aperture plate 218 each have a plurality of circular holes 21
0A, 218A, and the circular hole 210
When projected onto the pupil 208 of the subject's eye, the position of A, 218A is the same as that of the foramen image 210, as shown in FIG.
The rows of A' and the rows of hole images 218A' are arranged alternately in the vertical direction. In addition, the circular hole 210
The size and spacing of A and 218A are determined so that two hole images 210A' and 218A' each enter the pupil 208 of the eye to be examined, as shown in FIG. Furthermore, the first chart board 204 and the second chart board 214 are configured to move together on their respective optical axes.

以上の構成において、第1チヤート板204及
び第2チヤート板214が被検眼眼底202に合
焦して投影されると、一つの円環状のチヤート像
が結像し、非合焦で投影されると、2重又はそれ
以上の円環のチヤート像が結像する。
In the above configuration, when the first chart plate 204 and the second chart board 214 are focused and projected onto the fundus 202 of the eye to be examined, one toric chart image is formed and projected out of focus. Then, a double or more circular chart image is formed.

第6実施例は、第5実施例において2つの光軸
に沿つた2つの光束によつてチヤート投影光束を
構成したのに対し、一つの光軸上に直交する2つ
の方向に偏光軸を有する偏光板を配置してチヤー
ト投影光束を構成するものである。すなわち、第
6実施例は、第9図に示すように、光軸O上に光
源250、光源250によつて照明されるリング
スリツト板252、リングスリツト板252の像
を被検眼眼底254と共役な位置に結像するリレ
ーレンズ256、被検眼瞳258と共役に配置さ
れる多孔絞り板260、リングスリツト板252
の像を被検眼眼底254に投影し、多孔絞り板2
60を被検眼瞳258に投影する投影レンズ26
2によつて構成される。そして、上記リングスリ
ツト板252は、第10図に示すように、リング
スリツト264の中心を通る線によつて4等分さ
れ、各分割された部分には第10図に矢印で示す
方向の偏光軸をもつ偏光板が貼付けられる。一
方、多孔絞り板260の複数の円孔266にはそ
れぞれ第11図に矢印で示す方向の偏光軸をもつ
偏光板が貼付けられる。また、上記複数の円孔2
66の大きさ及び間隔は、多孔絞り板260が被
検眼瞳258上に投影されたとき、被検眼瞳25
8にほぼ4個の円孔266の像が入るように決め
られる。
The sixth embodiment has polarization axes in two directions perpendicular to one optical axis, whereas in the fifth embodiment the chart projection light flux is composed of two light fluxes along two optical axes. A chart projection light beam is constructed by arranging polarizing plates. That is, in the sixth embodiment, as shown in FIG. 9, a light source 250 is placed on the optical axis O, a ring slit plate 252 illuminated by the light source 250, and an image of the ring slit plate 252 is conjugated with the fundus 254 of the subject's eye. A relay lens 256 that forms an image at a certain position, a porous diaphragm plate 260 arranged conjugately with the pupil 258 of the eye to be examined, and a ring slit plate 252.
The image is projected onto the fundus 254 of the eye to be examined, and
60 onto the pupil 258 of the eye to be examined.
Consisting of 2. The ring slit plate 252 is divided into four equal parts by a line passing through the center of the ring slit 264, as shown in FIG. A polarizing plate with an axis is attached. On the other hand, a polarizing plate having a polarization axis in the direction indicated by the arrow in FIG. 11 is attached to each of the plurality of circular holes 266 of the multi-hole aperture plate 260. In addition, the plurality of circular holes 2
The size and interval of 66 are such that when the multi-hole diaphragm plate 260 is projected onto the pupil 258 of the eye to be examined,
It is determined that the images of approximately four circular holes 266 fit into the area 8.

以上の構成において、リングスリツト板252
が被検眼眼底202上に合焦して投影されると、
一つの円環チヤート像が結像し、非合焦で投影さ
れると2重又はそれ以上の円環チヤート像が結像
する。
In the above configuration, the ring slit plate 252
is focused and projected onto the fundus 202 of the eye to be examined,
When one toroidal chart image is formed and projected out of focus, two or more toric chart images are formed.

なお、前述の実施例では、分割する手段として
偏光性を用いたが、波長で分割することも可能で
ある。すなわち、第10図に示す偏光板の代わり
に透過波長の異なる2種あるいは3種のフイルタ
ーをリングスリツト板に貼り付け、多孔絞り板2
60の複数の円孔266には、複数の異なる波長
のうち1つの波長の光束のみを透過する波長選択
フイルターを交互に配置することにより、前述の
実施例と同様の効果を得ることができる。
In the above-mentioned embodiment, polarization was used as a means for dividing, but it is also possible to divide by wavelength. That is, instead of the polarizing plate shown in FIG. 10, two or three types of filters with different transmission wavelengths are attached to the ring slit plate, and the porous aperture plate 2 is attached.
By alternately arranging wavelength selection filters that transmit only light beams of one wavelength out of a plurality of different wavelengths in the plurality of circular holes 266 of 60, the same effect as in the above embodiment can be obtained.

第7実施例は、第12図に示すように、第1実
施例のチヤート板14を移動させる代りに、絞り
板18の被検眼側前後に各種の屈折力をもつたレ
ンズ300をタレツト式に選択的に挿入するもの
である。この時レンズ24により眼鏡位置と共役
なる位置に置けばレンズ300の屈折力がそのま
ま被検眼の矯正屈折力となる。第12図におい
て、第1実施例と同一の部材については同一の符
号を付してその説明を省略する。
In the seventh embodiment, as shown in FIG. 12, instead of moving the chart plate 14 of the first embodiment, lenses 300 with various refractive powers are placed in a turret type arrangement before and after the diaphragm plate 18 on the eye side to be examined. It is inserted selectively. At this time, if the lens 24 is placed in a position that is conjugate with the position of the eyeglasses, the refractive power of the lens 300 becomes the corrective refractive power of the eye to be examined. In FIG. 12, the same members as those in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted.

第8実施例は、第13図に示すように、第1実
施例のチヤート板14を作動させる代りに、被検
眼瞳22と投影レンズ24の間に各種の屈折力を
もつたレンズ400をターレツト式に選択的に挿
入するものである。この時も第7実施例と同様に
眼鏡装用位置に置けばそのままレンズ400の屈
折度がそのまま被検眼の矯正屈折力となる。第1
3図においても第1実施例と同一の部材について
は同一の符号を付してその説明を省略する。
In the eighth embodiment, as shown in FIG. 13, instead of operating the chart plate 14 of the first embodiment, a turret 400 with various refractive powers is placed between the pupil 22 of the eye to be examined and the projection lens 24. It is inserted selectively into the expression. At this time, as in the seventh embodiment, if the lens 400 is placed in the spectacle wearing position, the refractive power of the lens 400 becomes the corrective refractive power of the eye to be examined. 1st
In FIG. 3 as well, the same members as those in the first embodiment are designated by the same reference numerals, and the explanation thereof will be omitted.

第7及び第8実施例の十字指標12の被検眼眼
底19における結像状態も第1実施例と同じであ
る。そして、挿入されたレンズ300又は400
の基準屈折力と、ある被検眼について合焦したと
きに挿入されていたレンズの屈折力との差から所
望の屈折力を求めることができる。
The image formation state of the cross mark 12 on the fundus 19 of the subject's eye in the seventh and eighth embodiments is also the same as in the first embodiment. and the inserted lens 300 or 400
The desired refractive power can be determined from the difference between the reference refractive power of the eye and the refractive power of the lens that was inserted when focusing on a certain eye.

発明の効果 本発明は、以上のように構成されるから、指標
像の合致を検出することにより被検眼眼底におけ
る指標像の合焦状態を容易かつ確実に検出するこ
とができ、屈折力の測定を能率的かつ高精度に行
うことができる。また、測定装置の光軸に被検眼
の光軸を合わせるアライメント調整を実質上不要
とする。すなわち、本発明者の行つた実験による
と、従来±0.5mmの範囲でアライメント調整を行
わなければならなかつたものが、本発明の装置に
よれば±10.0mmの範囲内にあれば測定可能であ
り、一般に測定装置の接眼レンズを普通に覗いた
時のままで測定可能である。このアライメント調
整の許容範囲が大きいことは、特に、第1実施例
のように両眼の屈折力を同時に測定する装置にお
いて眼幅調整を不要にできる利点を有する。
Effects of the Invention Since the present invention is configured as described above, the in-focus state of the target image in the fundus of the subject's eye can be easily and reliably detected by detecting the coincidence of the target images, and the refractive power can be measured. can be performed efficiently and with high precision. Further, alignment adjustment to align the optical axis of the eye to be examined with the optical axis of the measuring device is substantially unnecessary. In other words, according to experiments conducted by the present inventor, alignment adjustment that conventionally required alignment within a range of ±0.5 mm can be measured within a range of ±10.0 mm using the device of the present invention. Generally, measurements can be made by looking normally through the eyepiece of the measuring device. The large tolerance range for alignment adjustment has the advantage that interpupillary distance adjustment can be made unnecessary, especially in an apparatus that simultaneously measures the refractive power of both eyes as in the first embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の光学系の斜視
図、第2図は第1図の絞り板像の説明図、第3図
は第2実施例の絞り板像の説明図、第4図は第3
実施例の絞り円板の平面図、第5図は第4実施例
の絞り円板の平面図、第6図は第5実施例の光学
図、第7A,7B図は第5実施例のチヤート板の
平面図、第8図は第5実施例の多孔絞り板の説明
図、第9図は第6実施例の光学図、第10図は第
6実施例のリングスリツト板の平面図、第11図
は第6実施例の多孔絞り板の平面図、第12図は
第7実施例の光学図、第13図は第8実施例の光
学図である。 14……チヤート板、16……円形孔、18…
…多孔絞り板、19……被検眼眼底、22……被
検眼瞳、24……投影レンズ、100……絞り円
板、204……第1チヤート板、214……第2
チヤート板。
FIG. 1 is a perspective view of the optical system of the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the diaphragm plate image of FIG. 1, and FIG. 3 is an explanatory diagram of the diaphragm plate image of the second embodiment. Figure 4 is the third
FIG. 5 is a plan view of the aperture disk of the fourth embodiment, FIG. 6 is an optical diagram of the fifth embodiment, and FIGS. 7A and 7B are charts of the fifth embodiment. A plan view of the plate, FIG. 8 is an explanatory diagram of the multi-hole aperture plate of the fifth embodiment, FIG. 9 is an optical diagram of the sixth embodiment, and FIG. 10 is a plan view of the ring slit plate of the sixth embodiment. FIG. 11 is a plan view of a multi-hole aperture plate according to the sixth embodiment, FIG. 12 is an optical diagram of the seventh embodiment, and FIG. 13 is an optical diagram of the eighth embodiment. 14... Chart board, 16... Circular hole, 18...
...Porous aperture plate, 19... Fundus of the eye to be examined, 22... Pupil of the eye to be examined, 24... Projection lens, 100... Aperture disk, 204... First chart plate, 214... Second
Chart board.

Claims (1)

【特許請求の範囲】 1 眼屈折力測定用チヤートと、前記チヤートか
らの投影光束の光路上で被検眼瞳と略共役な位置
に配置された複数の開口を有する絞りと、前記絞
りの開口を透過した光束により被検眼眼底へチヤ
ート像を投影するとともに前記絞りと被検眼瞳と
を略共役関係にするための投影レンズ系とからな
り、前記絞りの開口は該絞りにおける被検眼瞳に
対応した大きさより広い領域に配置され、かつ該
被検眼瞳に対応した大きさ内に常に2つ以上の絞
りの開口を含むように構成し、前記開口を通過す
る各光束により被検眼眼底に形成される各眼屈折
力測定用チヤート像の合致状態から被検眼の眼屈
折力を測定することを特徴とする自覚式眼屈折力
測定装置。 2 上記絞りの開口は、円形状である特許請求の
範囲第1項記載の自覚式眼屈折力測定装置。 3 上記絞りの開口は、スリツト状である特許請
求の範囲第1項記載の自覚式眼屈折力測定装置。 4 上記絞りは、投影レンズ系の光軸と直角な方
向に移動可能に構成した特許請求の範囲第1ない
し3項のいずれか1項に記載の自覚式眼屈折力測
定装置。 5 上記眼屈折力測定用チヤートは、投影レンズ
系の光軸と直角な方向に移動可能に構成した特許
請求の範囲第1ないし4項のいずれか1項に記載
の自覚式眼屈折力測定装置。
[Scope of Claims] 1. A chart for measuring eye refractive power, a diaphragm having a plurality of apertures arranged at positions substantially conjugate with the pupil of the eye to be examined on the optical path of the projection light flux from the chart, and an aperture of the diaphragm. The system includes a projection lens system for projecting a chart image onto the fundus of the eye to be examined using the transmitted light flux and for creating a substantially conjugate relationship between the aperture and the pupil of the eye to be examined, and the aperture of the aperture corresponds to the pupil of the eye to be examined at the aperture. It is arranged in an area wider than the pupil of the subject's eye, and is configured to always include two or more diaphragm apertures within the size corresponding to the pupil of the subject's eye, and is formed on the fundus of the subject's eye by each light flux passing through the aperture. A subjective eye refractive power measuring device characterized in that the eye refractive power of the eye to be examined is measured based on the matching state of chart images for measuring the refractive power of each eye. 2. The subjective eye refractive power measuring device according to claim 1, wherein the aperture of the diaphragm is circular. 3. The subjective eye refractive power measuring device according to claim 1, wherein the aperture of the diaphragm has a slit shape. 4. The subjective eye refractive power measuring device according to any one of claims 1 to 3, wherein the diaphragm is configured to be movable in a direction perpendicular to the optical axis of the projection lens system. 5. The subjective eye refractive power measuring device according to any one of claims 1 to 4, wherein the chart for measuring eye refractive power is configured to be movable in a direction perpendicular to the optical axis of the projection lens system. .
JP58128133A 1983-07-14 1983-07-14 Self-conscious eye refractive force measuring apparatus Granted JPS6021736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128133A JPS6021736A (en) 1983-07-14 1983-07-14 Self-conscious eye refractive force measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128133A JPS6021736A (en) 1983-07-14 1983-07-14 Self-conscious eye refractive force measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6021736A JPS6021736A (en) 1985-02-04
JPH0348806B2 true JPH0348806B2 (en) 1991-07-25

Family

ID=14977213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128133A Granted JPS6021736A (en) 1983-07-14 1983-07-14 Self-conscious eye refractive force measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6021736A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361189A (en) * 1976-11-12 1978-06-01 Akio Nakagawa Eye*s qualitative refraction detector
JPS53132193A (en) * 1977-04-23 1978-11-17 Tokyo Optical Ophthalmoscope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859197U (en) * 1971-11-02 1973-07-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361189A (en) * 1976-11-12 1978-06-01 Akio Nakagawa Eye*s qualitative refraction detector
JPS53132193A (en) * 1977-04-23 1978-11-17 Tokyo Optical Ophthalmoscope

Also Published As

Publication number Publication date
JPS6021736A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
US3841760A (en) Zonal focus method for determining the amount of astigmatic correction for an optical system
US3600098A (en) Optical alignment method and apparatus
US4238157A (en) Process and arrangement for the alignment of imaging systems
US4679921A (en) Apparatus for eye examination
JPH0348806B2 (en)
JPH0365488B2 (en)
JPH0353572B2 (en)
JPH059092B2 (en)
JPS60261425A (en) Self-conscious eye refraction force measuring apparatus
JPH06245909A (en) Ophthalmorefractometer
JPS61220624A (en) Opthalmic apparatus
JPS6052371B2 (en) Focal position measuring device
JPH0315448B2 (en)
US2049223A (en) Apparatus for the objective determination of the refraction of the eye
JPH035168B2 (en)
JPS62164449A (en) Operation microscope
JPS6161115A (en) Stereoscopic microscope
JPH0669799U (en) Lens meter
JPS5975035A (en) Apparatus for measuring cornea shape
SU1580159A1 (en) Measuring microscope for checking the quality of optical components and system
JP2951991B2 (en) Eye refractometer
JPS5977827A (en) Apparatus for measuring shape of cornea
JPS6161120A (en) Stereoscopic microscope
JPH066110B2 (en) Positioning device for ophthalmic instruments
JPH041619B2 (en)