JPH0348757B2 - - Google Patents
Info
- Publication number
- JPH0348757B2 JPH0348757B2 JP56037635A JP3763581A JPH0348757B2 JP H0348757 B2 JPH0348757 B2 JP H0348757B2 JP 56037635 A JP56037635 A JP 56037635A JP 3763581 A JP3763581 A JP 3763581A JP H0348757 B2 JPH0348757 B2 JP H0348757B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- flow rate
- water level
- generator
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 238000012795 verification Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B15/00—Controlling
- F03B15/02—Controlling by varying liquid flow
- F03B15/04—Controlling by varying liquid flow of turbines
- F03B15/06—Regulating, i.e. acting automatically
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Water Turbines (AREA)
- Control Of Eletrric Generators (AREA)
Description
【発明の詳細な説明】
本発明は、演算装置を用いた水力発電機の制御
装置に係り、その目的とするところは流量−発電
機制御出力変換と発電機出力−流量変換の誤差を
なくした安定した制御を行う制御装置を提供する
ことを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a hydraulic power generator using an arithmetic unit, and its purpose is to eliminate errors in flow rate-generator control output conversion and generator output-flow rate conversion. The purpose is to provide a control device that performs stable control.
第1図は、本発明の一実施例を示す水力発電機
の制御装置のブロツク図を示したものである。 FIG. 1 shows a block diagram of a control device for a hydraulic power generator showing one embodiment of the present invention.
同図において、1は流量設定器で、設定されて
いる流量QXを信号変換器であるDIインタフエー
ス3と後述の検定回路14に夫々出力する。2は
上水槽水位検出器で、上水槽の水位を検出してこ
の検出した水位HXをDIインタフエース3に出力
する。 In the figure, reference numeral 1 denotes a flow rate setting device, which outputs the set flow rate QX to a DI interface 3, which is a signal converter, and a verification circuit 14, which will be described later. 2 is a water tank water level detector which detects the water level of the water tank and outputs the detected water level HX to the DI interface 3;
点線で囲まれた4は、演算装置部で、流量−発
電機制御出力変換を行うQP演算装置41と発電
機出力−流量変換を行うPQ演算装置42とが共
に使用するメモリ回路43を夫々有している。 4 surrounded by a dotted line is an arithmetic device section, which has a memory circuit 43 used by both a QP arithmetic device 41 that performs flow rate-generator control output conversion and a PQ arithmetic device 42 that performs generator output-flow rate conversion. are doing.
また、メモリ回路43は、第2図に示すよう
に、流量Q、水位Hに伴う出力Pの関係がグラフ
に示されているが、このグラフに示されるような
△印の各プロツト点を複数記憶している。 Furthermore, as shown in FIG. 2, the relationship between the output P and the flow rate Q and the water level H is shown in a graph. I remember.
ここで、水位HXを軸として、第2図に示すよ
うな水位を横軸に流量を縦軸にとつた発電機の制
御出力のグラフ上のプロツト点のデータにより演
算して、流量QX発電機出制御力PXに変換する
ことをQP演算と定義し、このグラフのプロツト
点のデータにより演算して、発電器出力P′Xを検
定のための流量QX′に変換することをPQ演算と
定義する。 Here, with the water level HX as the axis, the flow rate QX generator is QP calculation is defined as converting to output control power PX, and PQ calculation is defined as converting generator output P′X into flow rate QX′ for verification by calculating based on the plot point data of this graph. do.
QP演算装置41は、流量設定器1より入力す
る流量QXと水位検出器2より入力する水位HX
とにより、メモリ回路43に記憶しているデータ
を用いてQP演算を施して発電機制御出力PXを求
め、この信号をDOインタフエース5に出力す
る。 The QP calculation device 41 includes a flow rate QX inputted from the flow rate setting device 1 and a water level HX inputted from the water level detector 2.
Accordingly, a QP calculation is performed using the data stored in the memory circuit 43 to obtain the generator control output PX, and this signal is output to the DO interface 5.
PQ演算装置42は、水力発電機11からDIイ
ンタフエース12を介して入力する発電機出力
PX′と、水位検出器2からDIインターフエース3
を介して入力する水位HXとで、メモリ回路43
に記憶しているデータを用いてPQ演算を施して
流量Q′Xを求め、この信号をDOインターフエー
ス13に出力する。 The PQ calculation device 42 is a generator output input from the hydraulic power generator 11 via the DI interface 12.
PX' and water level detector 2 to DI interface 3
With the water level HX input via the memory circuit 43
A PQ calculation is performed using the data stored in , to obtain the flow rate Q'X, and this signal is output to the DO interface 13.
また、DOインタフエース5に入力した出力
PXは、突き合せ点6に入力され、発電機11か
らの出力P′Xとの引算をして、偏差比較器7、負
荷調整装置8、調速機9、水車10とを順に介し
て水力発電機11に出力されて、閉ループ制御が
行われるものである。 Also, the output input to DO interface 5
PX is input to the matching point 6, subtracted from the output P'X from the generator 11, and passed through the deviation comparator 7, load adjustment device 8, speed governor 9, and water turbine 10 in this order. It is output to the hydraulic power generator 11 and closed loop control is performed.
検定回路14は、流量設定器1から入力した流
量QXとDOインタフエース13から入力した流
量Q′xとを夫々比較し、この結果を遠方監視制御
装置15を介して上位コンピユータ(図示省略)
に出力する。 The verification circuit 14 compares the flow rate QX input from the flow rate setting device 1 and the flow rate Q'x input from the DO interface 13, and sends the results to a host computer (not shown) via a remote monitoring control device 15.
Output to.
以上のように構成されたものにおいて、特に本
発明は、次のような演算を行わせるために演算制
御装置4を設けたもので、次にその動作を説明す
る。 In the device configured as described above, the present invention is particularly provided with an arithmetic control device 4 for performing the following arithmetic operations, and the operation thereof will be explained next.
今、演算制御部4のQP演算装置41に流量設
定器1から流量QXと上水槽水位検出器2から水
位HXとを夫々DIインタフエース3を介して入力
する。QP演算装置41は、この流量QXと水位
HXとから次の方法によりその出力PXを求める。 Now, the flow rate QX from the flow rate setter 1 and the water level HX from the water tank water level detector 2 are input to the QP calculation device 41 of the calculation control section 4 via the DI interface 3, respectively. The QP calculation device 41 calculates this flow rate QX and the water level.
Find the output PX from HX using the following method.
先ず、入力された水位HXの信号をもとに、第
2図で示すグラフの△印の値がプロツトされてい
るメモリ回路43より、水位HXから負側に最も
近い水位HX−1を求め、しかも、この水位HX
−1上で且つ入力された流量QXの正負側で夫々
最も近いプロツト点、この場合A、Bを求める。 First, based on the input water level HX signal, the water level HX-1 closest to the negative side from the water level HX is determined from the memory circuit 43 in which the value marked with △ in the graph shown in FIG. 2 is plotted. Moreover, this water level HX
-1 and the closest plot points on the positive and negative sides of the input flow rate QX, in this case A and B, are found.
次に、同様にして、水位HXより正側に最も近
い水位HX+1求め、この水位HX+1上で且つ
流量QXの正負側で最も近いプロツト点C、Dを
求める。 Next, in the same manner, the water level HX+1 which is closest to the positive side of the water level HX is determined, and the plot points C and D which are on this water level HX+1 and which are the closest to the positive and negative sides of the flow rate QX are determined.
QP演算装置41は、求まつた点A〜Dのうち、
線ADと線BCを
水位の比=HX+1−HX/HX−HX−1
により分割して、点K、Lを求める。 The QP arithmetic unit 41 selects among the calculated points A to D,
Divide line AD and line BC by water level ratio=HX+1-HX/HX-HX-1 to find points K and L.
求めた点Lは、流量QX+1と、この流量QX
+1時におけるPX+1の出力値であり、点Kは、
流量QX−1と、この流量QX−1時におけるPX
−1の出力値であり、求めようとするPXの値で
はない。 The obtained point L is the flow rate QX + 1 and this flow rate QX
It is the output value of PX+1 at +1 time, and point K is
Flow rate QX-1 and PX at this flow rate QX-1
It is an output value of -1, and is not the value of PX that we are trying to find.
そこで、この点L、Kより求まつた流量QX+
1とQX−1から、
流量の比=QX+1−QX/QX−QX−1
を求める。 Therefore, the flow rate QX+ found from these points L and K
1 and QX-1, find the ratio of flow rate = QX + 1-QX/QX-QX-1.
すなわち、この比を求めることによつて、点
L、K間の分割点が求まり、これによつて流量
QX時における出力PXが求められ、QP演算装置
41は、この出力PXをDOインタフエース5に
出力して、前述のように水力発電機11を制御す
る。 In other words, by finding this ratio, the dividing point between points L and K can be found, and this determines the flow rate.
The output PX at the time of QX is determined, and the QP calculation device 41 outputs this output PX to the DO interface 5 to control the hydraulic power generator 11 as described above.
一方、PQ演算装置42は、DIインタフエース
12を介して入力する水力発電機11の出力P′X
と水位HXとにより次の方法で流量Q′Xを求め
る。 On the other hand, the PQ calculation device 42 calculates the output P'X of the hydroelectric generator 11 inputted via the DI interface 12.
and the water level HX, calculate the flow rate Q′X using the following method.
先ず、前述した方法で、点L′、K′を求める。 First, points L' and K' are determined using the method described above.
次いで、次式の出力の比により線分L′K′を分
配して流量Q′Xを求める。 Next, the flow rate Q'X is determined by distributing the line segment L'K' according to the output ratio of the following equation.
出力の比=P′X+1−P′X/P′X−P′X−1
このように、水位HXを軸としてPQ変換及び
QP変換を行うので、従来のような誤差はなくな
る。 Ratio of output = P'X + 1 - P'X / P'X - P'X - 1 In this way, PQ conversion and
Since QP conversion is performed, there are no errors like in the conventional method.
つまり、PX=P′Xのときは、以上の方法から
明らかなようにQX=Q′Xとなる。 In other words, when PX = P'X, QX = Q'X, as is clear from the above method.
従つて、PQ演算装置42からDOインタフエー
ス13を介して検定回路14に出力するデータは
誤差のないデータであり、検定回路14の結果を
遠方監視制御装置15を介して上位コンピユータ
に出力して安定した制御が行える。 Therefore, the data outputted from the PQ calculation device 42 to the verification circuit 14 via the DO interface 13 is error-free data, and the results of the verification circuit 14 are output to the host computer via the remote monitoring control device 15. Stable control can be performed.
また、検定回路14の比較結果を、上位コンピ
ユータに通知することの意義は、この検定の結果
により、この水力発電機の制御装置において正常
な制御が行われているか否かを判断することにあ
り、上位コンピユータは、この制御装置が正常か
否か判定できる。 Furthermore, the significance of notifying the higher-level computer of the comparison results of the verification circuit 14 is that the verification results can be used to determine whether or not normal control is being performed in the control device of this hydroelectric generator. , the host computer can determine whether this control device is normal or not.
以上のように、本発明は、演算制御装置におい
て、縦軸に流量、横軸に水位出力特性を用いて演
算を施すことにより、QP変換、PQ変換の誤差が
なく、その分制御精度が向上する等の優れた利点
を有するものである。 As described above, the present invention eliminates errors in QP conversion and PQ conversion by performing calculations using the flow rate on the vertical axis and the water level output characteristics on the horizontal axis in the arithmetic control device, thereby improving control accuracy. It has excellent advantages such as:
第1図は本発明の一実施例を示した構成図、第
2図は本発明を説明するためのグラフ図である。
1は流量設定器、2は上水槽水位検出器、3,
12はDIインタフエース、4は演算装置部、4
1はQP演算装置、42はPQ演算装置、43はメ
モリ回路、5,13はDOインタフエース、6は
突き合せ点、7は偏差比較器、8は負荷調整装
置、9は調速器、10は水車、11は水力発電
機、14は検定回路、15は遠方監視制御装置。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a graph diagram for explaining the present invention. 1 is a flow rate setting device, 2 is a water tank water level detector, 3,
12 is the DI interface, 4 is the arithmetic unit, 4
1 is a QP calculation device, 42 is a PQ calculation device, 43 is a memory circuit, 5 and 13 are DO interfaces, 6 is a matching point, 7 is a deviation comparator, 8 is a load adjustment device, 9 is a speed governor, 10 1 is a water turbine, 11 is a hydraulic power generator, 14 is a verification circuit, and 15 is a remote monitoring and control device.
Claims (1)
水位検出器2からの水位HXの信号をもとに水力
発電機を制御するものにおいて、 前記流量QXの信号と水位HXの信号とをDIイ
ンターフエース3を介して導入するQP演算装置
41と、発電機出力P′XをDIインタフエース12
を介して導入するPQ演算装置42と、予め流量
Qと水位Hに伴う出力Pのグラフのプロツト点が
記憶されたメモリ回路43と、DOインタフエー
ス5を通して前記QP演算装置41の出力PXを導
入し、この出力と発電機の出力P′Xとの偏差を求
める偏差比較器7の出力を導入し、調速器9、水
車10を介して発電機11に出力する負荷調整装
置と、前記PQ演算装置42の出力Q′XをDOイン
タフエース13を介して導入して流量設定器1の
出力QXと比較し、その出力を遠方監視制御装置
15に出力する検定回路14とを設けると共に、 前記QP演算装置41は、メモリ回路43に記
憶された流量Q、水位Hより水位信号HXに負側
に近いHX−1と正側に近いHX+1の値より 水位の比=HX+1−HX/HX−HX−1 を演算し、且つ、前記HX上の流量信号QXに正、
負側に近い流量QX−1、QX+1のプロツト点
を求め、 流量の比=QX+1−QX/QX−QX−1 を演算し、この流量の比とこのプロツト点の出力
のデータから演算した発電器制御出力PXをDO
インタフエース5に出力し、 更に、前記PQ演算装置42は、水位HX−1、
HX+1上で且つ発電機出力P′Xの正負側に最も
近い値P′X−1、P′X+1のプロツト点を求め、
前記水位の比とプロツト点のデータにより、水位
HX上で且つ出力P′X−1、P′X+1に対応して
いる流量Q′X+1、Q′X−1を求め、 出力の比=P′X+1−P′X/P′X−P′X−1 により演算して流量Q′Xを得て、DOインタフエ
ース13に出力するように構成したことを特徴と
する水力発電機の制御装置。[Claims] 1. In a device that controls a hydroelectric generator based on a flow rate QX signal from a flow rate setting device 1 and a water level HX signal from an upper water tank water level detector 2, the flow rate QX signal and the water level A QP calculation device 41 that introduces the HX signal via the DI interface 3, and a DI interface 12 that inputs the generator output P'X.
The output PX of the QP calculation device 41 is introduced through a memory circuit 43 in which the plot points of the graph of the output P according to the flow rate Q and the water level H are stored in advance, and the DO interface 5. The output of the deviation comparator 7 which calculates the deviation between this output and the output P′X of the generator is introduced, and the load adjustment device outputs the output to the generator 11 via the speed governor 9 and the water turbine 10, and the PQ A verification circuit 14 is provided which introduces the output Q'X of the arithmetic unit 42 via the DO interface 13, compares it with the output QX of the flow rate setting device 1, and outputs the output to the remote monitoring control device 15. The QP calculation device 41 calculates the ratio of water level = HX + 1 - HX / HX - HX from the values of HX - 1 which is closer to the negative side and HX + 1 which is closer to the positive side of the water level signal HX than the flow rate Q and water level H stored in the memory circuit 43. -1, and add positive to the flow rate signal QX on the HX,
Find the plot points of the flow rates QX-1 and QX+1 that are close to the negative side, calculate the flow rate ratio = QX + 1-QX/QX-QX-1, and calculate the generator calculated from this flow rate ratio and the output data of this plot point. DO control output PX
The PQ calculation device 42 outputs the water level HX-1 to the interface 5.
Find the plot points of P'X-1 and P'X+1, which are closest to the positive and negative sides of the generator output P'X, on HX+1,
Based on the water level ratio and plot point data, the water level is
Find the flow rates Q'X+1 and Q'X-1 on HX and corresponding to the outputs P'X-1 and P'X+1, and calculate the output ratio = P'X+1-P'X/P'X-P' 1. A control device for a hydraulic power generator, characterized in that the control device for a hydraulic power generator is configured to obtain a flow rate Q'X by calculating the flow rate Q'X using X-1, and output it to a DO interface 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56037635A JPS57153600A (en) | 1981-03-16 | 1981-03-16 | Controlling method for hydraulic power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56037635A JPS57153600A (en) | 1981-03-16 | 1981-03-16 | Controlling method for hydraulic power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57153600A JPS57153600A (en) | 1982-09-22 |
JPH0348757B2 true JPH0348757B2 (en) | 1991-07-25 |
Family
ID=12503095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56037635A Granted JPS57153600A (en) | 1981-03-16 | 1981-03-16 | Controlling method for hydraulic power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57153600A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008010557A1 (en) * | 2006-07-20 | 2008-01-24 | The Chugoku Electric Power Co., Inc. | Generated electric energy calculating device for hydraulic power generation plants, generated electric energy calculating method, computer program, and its recording medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445730A (en) * | 1977-09-19 | 1979-04-11 | Toshiba Corp | Automatic load regulator |
-
1981
- 1981-03-16 JP JP56037635A patent/JPS57153600A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445730A (en) * | 1977-09-19 | 1979-04-11 | Toshiba Corp | Automatic load regulator |
Also Published As
Publication number | Publication date |
---|---|
JPS57153600A (en) | 1982-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920005279B1 (en) | Digital control system | |
JP2681105B2 (en) | Method of generating periodic waveform | |
JPH0348757B2 (en) | ||
US4577271A (en) | Sampled data servo control system | |
JPH07336901A (en) | Frequency controller for power system | |
CN109308008B (en) | Active disturbance rejection control device with abnormality coping capability | |
JPH01120607A (en) | Motor controller | |
JPH0614464A (en) | Economic load distributing equipment for generator | |
CN110970924A (en) | Clean energy consumption method and device for power grid generator set | |
JPH0461367B2 (en) | ||
JP2715446B2 (en) | Governor control device | |
JP2564001B2 (en) | Water level adjustment device | |
JPH0434161B2 (en) | ||
Ayadi et al. | Robust control of nonlinear polynomial systems | |
JPS6224804B2 (en) | ||
JPH0626080Y2 (en) | Autonomous operation control device | |
JPH0339599B2 (en) | ||
JPS63115206A (en) | Data input device | |
JPS5726235A (en) | Control method for number of engine revolutions | |
JP3265152B2 (en) | Phase synchronization controller | |
JPH06168003A (en) | Controller | |
JPH05127701A (en) | Controller | |
JPH0654244B2 (en) | Inflow calculation device | |
JPS6343529A (en) | Load regulating controller of hydro-electric power station | |
JPH0434765B2 (en) |