JPH0348487Y2 - - Google Patents

Info

Publication number
JPH0348487Y2
JPH0348487Y2 JP18091584U JP18091584U JPH0348487Y2 JP H0348487 Y2 JPH0348487 Y2 JP H0348487Y2 JP 18091584 U JP18091584 U JP 18091584U JP 18091584 U JP18091584 U JP 18091584U JP H0348487 Y2 JPH0348487 Y2 JP H0348487Y2
Authority
JP
Japan
Prior art keywords
hole
frame plate
measurement probe
moving device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18091584U
Other languages
Japanese (ja)
Other versions
JPS6196303U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18091584U priority Critical patent/JPH0348487Y2/ja
Publication of JPS6196303U publication Critical patent/JPS6196303U/ja
Application granted granted Critical
Publication of JPH0348487Y2 publication Critical patent/JPH0348487Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は穴の計測工具に関する。[Detailed explanation of the idea] <Industrial application field> The present invention relates to a hole measuring tool.

<従来の技術> 穴、凹凸などの起伏、これらの立体的形状及び
位置を測定することは種々の分野において多々必
要とされている。しかも、人間が直接目視できな
い2つの板状体間など狭い場所にある場合、例え
ば第8図に示す如く、環状囲繞体01に囲まれた
部分の槽状体02に穴03がある場合などは、何
らかの方法によつて遠隔的に測定することができ
る装置が必要である。
<Prior Art> It is often necessary in various fields to measure undulations such as holes and irregularities, and their three-dimensional shapes and positions. Moreover, if the hole 03 is located in a narrow place such as between two plate-like bodies that cannot be seen directly by humans, for example, as shown in FIG. , there is a need for a device that can be measured remotely by some method.

従来、この種の穴の測定にはフアイバスコープ
が使用されている。
Traditionally, fiberscopes have been used to measure holes of this type.

<考案が解決しようとする問題点> しかし、フアイバスコープを用いても、穴や凹
凸の大体の状況を把握することができるだけで、
寸法を含めたその立体形状及び位置の正確な測定
は断念せざるを得ないのが現状である。
<Problem that the invention aims to solve> However, even if a fiberscope is used, it is only possible to grasp the general condition of holes and unevenness.
At present, we have no choice but to give up on accurate measurement of its three-dimensional shape and position, including its dimensions.

本考案は上述した問題点に鑑み、穴や凹凸の形
状及び位置を遠隔的に正確に測定することができ
る計測工具を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a measuring tool that can accurately measure the shape and position of holes and irregularities remotely.

<問題点を解決するための手段> 上述した目的を達成する本考案の穴の計測工具
の構成は、囲繞体と協働してせまい隙間を画成す
る構造物の穴の形状を計測するものにおいて、該
隙間に挿入される支持用の枠板と、該枠板の中心
部に設けられ該構造物に対向する面に対して直交
方向に移動する計測プローブと、該計測プローブ
を囲んで枠板に分布した配設され前記囲繞体に向
かつて伸出自在な複数の面倣い部材と、該枠板に
配設され、該枠板と該構造物との距離を検出する
複数のセンサと、該枠板に該計測プローブに接近
して設けられ、該穴の存在を検出するセンサとを
具備し、前記計測プローブは、該枠板に設けら
れ、枠板の面に直交方向に移動する移動装置と、
移動装置の移動量を検出するセンサと、移動装置
の移動方向に直交する面内の円周上において移動
装置に複数設けられ、被測物体の穴の内面に先端
が係合して穴の中心方向に変位するスプリングフ
インガと、各スプリングフインガの変位量を検出
するセンサとからなり、移動量及び変位量の検出
信号を該穴の内面形状及び位置の情報として出力
することを特徴とする。
<Means for solving the problem> The configuration of the hole measuring tool of the present invention that achieves the above-mentioned purpose is to measure the shape of a hole in a structure that defines a narrow gap in cooperation with a surrounding body. , a supporting frame plate inserted into the gap, a measurement probe provided at the center of the frame plate and movable in a direction perpendicular to the surface facing the structure, and a frame surrounding the measurement probe. a plurality of surface tracing members distributed on a plate and extendable towards the surrounding body; a plurality of sensors arranged on the frame plate and detecting a distance between the frame plate and the structure; A sensor is provided on the frame plate close to the measurement probe and detects the presence of the hole, and the measurement probe is provided on the frame plate and moves in a direction perpendicular to the surface of the frame plate. a device;
A plurality of sensors are provided on the moving device on the circumference in a plane perpendicular to the moving direction of the moving device to detect the amount of movement of the moving device, and the tip engages the inner surface of the hole in the object to be measured to detect the center of the hole. It consists of a spring finger that is displaced in the direction and a sensor that detects the amount of displacement of each spring finger, and is characterized in that it outputs detection signals of the amount of movement and displacement as information on the inner surface shape and position of the hole. .

<実施例> 第1図〜第8図により本考案の一実施例に係る
穴の計測工具を説明する。
<Example> A hole measuring tool according to an example of the present invention will be described with reference to FIGS. 1 to 8.

第1図〜第7図において、101は後述する計
測プローブであり、計測プローブ101の端面
は、支持用の枠板102の円筒部102aに収め
られて水平方向に移動するピストン103に固定
されている。104はピストン103を移動させ
るための給排水管である。枠板102には、穴の
位置検出用のUT(超音波)センサ105、枠板
102を穴のある対象物(第8図中の01や02
など)に対し平行に保持させるための近接センサ
106、同じく穴のある対象物間の間隔や肉厚を
測定するためのUTセンサ107,108、並び
に測定部位を遠隔目視するためのフアイバスコー
プ109が取付けられている。枠板102は支持
機構110に連結されている。111と112は
面倣い部材であり、例えば板状をなし、穴のある
対象物の狭隘間隙を倣う。例えば第8図で言え
ば、一方の面倣い部材111は槽状体02の外表
面に圧着し、他方の面倣い部材112は環状囲繞
体01の内面に圧着する。面倣い部材112は、
底板113にあけられた穴113aから流入する
圧力水によつて水平方向に移動するピストン11
4に、取付けられている。115は他のピストン
であり、ケース116内を水平移行するように構
成されている。面倣い部材111,112は計測
プローブ101を囲む如く枠板102に取付けら
れている。
In FIGS. 1 to 7, 101 is a measurement probe to be described later, and the end surface of the measurement probe 101 is fixed to a piston 103 that is housed in a cylindrical portion 102a of a supporting frame plate 102 and moves in the horizontal direction. There is. 104 is a water supply and drainage pipe for moving the piston 103. The frame plate 102 is equipped with a UT (ultrasonic) sensor 105 for detecting the position of the hole, and a UT (ultrasonic) sensor 105 for detecting the position of the hole.
etc.), UT sensors 107 and 108 for measuring the distance and wall thickness between objects with holes, and a fiberscope 109 for remotely observing the measurement site. installed. The frame plate 102 is connected to a support mechanism 110. Reference numerals 111 and 112 are surface tracing members, which are, for example, plate-shaped and which trace narrow gaps in objects with holes. For example, in FIG. 8, one surface tracing member 111 is pressed against the outer surface of the tub-shaped body 02, and the other surface tracing member 112 is pressed against the inner surface of the annular surrounding body 01. The surface copying member 112 is
Piston 11 moves horizontally by pressure water flowing in from hole 113a drilled in bottom plate 113
4 is attached. 115 is another piston, which is configured to move horizontally within the case 116. The surface copying members 111 and 112 are attached to the frame plate 102 so as to surround the measurement probe 101.

次に計測プローブ101を第5図、第7図によ
り説明する。これらの図において、103はピス
トンであり、ピストン103に固定した固定板2
を介して、軸方向移動量測定用磁気式エンコーダ
のロツド6が直角に突設されている。エンコーダ
ロツド6には同じく磁気式エンコーダのヘツド5
が摺動自在に嵌装されている。エンコーダヘツド
5と固定板2との間には常に張力をもたせるため
スプリング7が取付けられている。4は板状のス
トローグ検出部材であり、エンコーダヘツド5の
先端に半径方向に直角に突設されると共に、エン
コーダロツド6に沿ってエンコーダヘツド5と一
緒に軸方向に移動できるようになつている。スト
ローク検出部材4の外径は測定しようとする穴の
径よりも若干大きくしてある。1はスプリングフ
インガーであり、固定板2を介してピストン10
3に直角に突設されている。スプリングフインガ
ー1は通常複数(本実施例では4個)使用され、
エンコーダロツド6を取り囲み且つエンコーダロ
ツド6の軸心を中心とする円周上に配設されてい
る。スプリングフインガー1の自由端は極く軽い
力で半径方向に動けるようになつており、その先
端には穴の内面に接触し易いように外側へ向く突
起部Bが形成されている。3は歪ゲージであり、
各スプリングフインガー1の側面に粘着されてお
り、スプリングフインガー1先端の微細な半径方
向移動に感応するようになつている。本実施例で
は2つのスプリングフインガー1がストローク検
出部材4と交差するので、スプリングフインガー
1の自由な動きを保証するため、ストローク検出
部材4に窓4aを設けてある。
Next, the measurement probe 101 will be explained with reference to FIGS. 5 and 7. In these figures, 103 is a piston, and a fixed plate 2 is fixed to the piston 103.
A rod 6 of a magnetic encoder for measuring axial displacement is protruded at right angles through the rod. The encoder rod 6 also has a magnetic encoder head 5.
is slidably fitted. A spring 7 is attached between the encoder head 5 and the fixed plate 2 to maintain tension at all times. Reference numeral 4 denotes a plate-shaped stroke detection member, which is protruded from the tip of the encoder head 5 at right angles in the radial direction, and is movable in the axial direction along the encoder rod 6 together with the encoder head 5. There is. The outer diameter of the stroke detection member 4 is slightly larger than the diameter of the hole to be measured. 1 is a spring finger, which connects the piston 10 via a fixed plate 2.
3 protrudes at right angles. A plurality of spring fingers 1 (four in this example) are usually used,
It surrounds the encoder rod 6 and is arranged on a circumference centered on the axis of the encoder rod 6. The free end of the spring finger 1 is designed to be able to move in the radial direction with extremely light force, and a protrusion B facing outward is formed at the tip so that it can easily come into contact with the inner surface of the hole. 3 is a strain gauge;
It is attached to the side surface of each spring finger 1 and is sensitive to minute radial movement of the tip of the spring finger 1. In this embodiment, since two spring fingers 1 intersect with the stroke detection member 4, a window 4a is provided in the stroke detection member 4 to ensure free movement of the spring fingers 1.

次に作用を説明する。まず、枠板102に取付
けられた計測プローブ101を、支持機構110
により、第8図の槽状体02とその環状囲繞体0
1との間隙に挿入する。次いで底板113にあけ
られた穴113aから圧力水を導入し、ピストン
114によつて面倣い部材112を前進させる。
第3図において、ピストン114の左端が他のピ
ストン115の右端に達すると、このピストン1
15が前進し、面倣い部材112が環状囲繞体0
1に圧着する。一方、面倣い部材111は槽状体
02の外表面に圧着した状態で、支持機構110
によつて間隙に挿入される。このとき、近接セン
サ106により、計測工具が槽状体02の外表面
と平行に保持されていることを監視しつづける。
なお、近接センサ106の代りにUTセンサを用
いて平行保持を行つても良い。次いで、支持機構
110を手動や機械的駆動で上下、前後、左右に
動かし、UTセンサ105により、計測プローブ
101の中心を槽状体02の穴03の中心に導
く。次に、計測プローブ101の中心が穴03の
中心と一致し、且つ工具が槽状体と平行に保たれ
た状態で、給排水管104の一方に高圧水を、他
方に低圧水をつないでピストン103を前進させ
る。これに従い、計測プローブ101が槽状体0
2の外表面と直角に水平移行し、後述の如く穴の
計測が行われる。また、必要に応じ、2つのUT
センサ107,108によつて環状囲繞体01及
び槽状体02と工具との距離13、並びにそ
れらの肉厚t1,t2を測定する。なお、両者の間隙
13及びUTセンサ107,108の間
2から求まる。また、必要に応じて計測作業
中、フアイバスコープ109により遠隔目視を行
う。
Next, the effect will be explained. First, the measurement probe 101 attached to the frame plate 102 is
Accordingly, the tubular body 02 and its annular surrounding body 0 in FIG.
Insert it into the gap between 1 and 1. Next, pressure water is introduced through a hole 113a made in the bottom plate 113, and the surface copying member 112 is moved forward by the piston 114.
In FIG. 3, when the left end of piston 114 reaches the right end of another piston 115, this piston 1
15 moves forward, and the surface tracing member 112 moves toward the annular surrounding body 0.
1. Crimp. On the other hand, the surface tracing member 111 is pressed against the outer surface of the tank-like body 02, and the supporting mechanism 110
inserted into the gap by At this time, the proximity sensor 106 continues to monitor whether the measuring tool is held parallel to the outer surface of the tub-shaped body 02.
Note that a UT sensor may be used instead of the proximity sensor 106 to maintain parallelism. Next, the support mechanism 110 is moved up and down, back and forth, and left and right by manual or mechanical driving, and the UT sensor 105 guides the center of the measurement probe 101 to the center of the hole 03 of the tank-like body 02. Next, with the center of the measurement probe 101 aligned with the center of the hole 03 and the tool kept parallel to the tank, connect high pressure water to one side of the water supply and drainage pipe 104 and low pressure water to the other side to connect the piston. Advance 103. Accordingly, the measurement probe 101
2, and the hole is measured as described below. Also, if necessary, two UTs
The distances 1 and 3 between the annular surrounding body 01 and the tubular body 02 and the tool, as well as their wall thicknesses t 1 and t 2 are measured by the sensors 107 and 108 . Note that the gap between the two is determined from 1 and 3 and the gap 2 between the UT sensors 107 and 108. In addition, remote visual observation is performed using a fiberscope 109 during the measurement work, if necessary.

計測プローブ101の作用を第5図及び第6図
により説明する。今第6図において、槽状体02
に、外表面に向つて拡がるテーパ部を有する穴0
3があけられていたとする。計測プローブ101
が穴03に向つて徐々に近づくと、ストローク検
出部材4の先端が穴03の外表面a点に接触す
る。そのままプローブ101が前進すると、スト
ローク検出部材4とエンコーダヘツド5とが一体
になつてスプリング7に抗して後退し、一方スプ
リングフインガーの外端部Bが穴03のテーパ部
の点bに接触する。更に前進すると、スプリング
フインガー1の外端部Bはテーパ部の穴径に沿つ
て直穴部の点cに達し、次いで内側表面d点へと
移行する。
The operation of the measurement probe 101 will be explained with reference to FIGS. 5 and 6. Now in FIG. 6, the tubular body 02
The hole 0 has a tapered portion that widens toward the outer surface.
Assume that 3 is open. Measurement probe 101
gradually approaches the hole 03, the tip of the stroke detection member 4 comes into contact with a point a on the outer surface of the hole 03. When the probe 101 continues to move forward, the stroke detection member 4 and the encoder head 5 move back together against the spring 7, while the outer end B of the spring finger contacts the point b of the tapered part of the hole 03. do. Further advancing, the outer end B of the spring finger 1 reaches point c of the straight hole along the hole diameter of the tapered portion and then transitions to point d on the inner surface.

スプリングフインガー1の配設寸法は予め知れ
ているから、スプリングフインガー1の外端部B
がb点に達してからの半径方向の移動量が知れれ
ば、穴03の位置及び内面形状・寸法が判る。こ
こで、スプリングフインガー1の外端部Bの移動
量は歪ゲージ3によつて正確に測定される。ま
た、ストローク検出部材4が穴03の外表面a点
に接触するとエンコーダロツド6がスプリング7
に抗して穴03の軸方向に前進することにより、
スプリングフインガー1の外端部Bが穴03の軸
方向へ移動した量が正確に測定される。更に、計
測工具を穴03の外表面に平行に、またプローブ
101の中心を穴03の中心に一致させた状態で
当該プローブ101を穴03の中に挿入するの
で、穴03の位置が正確にわかる。かくして、歪
ゲージ3とエンコーダの読みから、穴03のb,
c,d各点の半径方向及び軸方向の正確位置が求
まる。また、c点とb点の延長からa点の位置が
求まる。即ち、穴03の位置及び立体的形状が求
まる。
Since the arrangement dimensions of the spring finger 1 are known in advance, the outer end B of the spring finger 1
If the amount of movement in the radial direction after reaching point b is known, the position and inner surface shape and dimensions of the hole 03 can be known. Here, the amount of movement of the outer end B of the spring finger 1 is accurately measured by the strain gauge 3. Furthermore, when the stroke detection member 4 comes into contact with the point a on the outer surface of the hole 03, the encoder rod 6 moves to the spring 7.
By moving forward in the axial direction of hole 03 against
The amount by which the outer end B of the spring finger 1 moves in the axial direction of the hole 03 is accurately measured. Furthermore, since the probe 101 is inserted into the hole 03 with the measuring tool parallel to the outer surface of the hole 03 and the center of the probe 101 aligned with the center of the hole 03, the position of the hole 03 can be accurately determined. Recognize. Thus, from the strain gauge 3 and encoder readings, b of hole 03,
The exact position of each point c and d in the radial and axial directions is determined. Furthermore, the position of point a can be found from the extension of point c and point b. That is, the position and three-dimensional shape of the hole 03 are determined.

なお、以上は穴の測定についての説明である
が、凹凸などの起伏の測定にも同様に適用するこ
とができる。
Note that although the above description is about measuring holes, it can be similarly applied to measuring undulations such as unevenness.

<考案の効果> 本考案によれば、略平行に配設された2つの板
状体間の狭い空間に挿入されて該板状体にあけら
れている穴の位置・径を測定する場合、計測工具
が板状体に平行で且つ計測プローブの中心が穴の
中心に一致した状態で計測プローブを穴に挿入す
ることができるので、穴の形状、寸法、位置が正
確に測定できる。本考案の計測工具は単に穴の測
定のみならず、狭隘で接近できないような個所に
ある穴、その他凹凸起伏のある物体を対象とした
加工具などの案内装置にも応用できる。
<Effects of the invention> According to the invention, when inserting into a narrow space between two plate-like bodies disposed approximately in parallel to measure the position and diameter of a hole drilled in the plate-like bodies, Since the measurement probe can be inserted into the hole with the measurement tool parallel to the plate and the center of the measurement probe aligned with the center of the hole, the shape, size, and position of the hole can be accurately measured. The measuring tool of the present invention can be applied not only to simply measuring holes, but also to guiding devices such as processing tools that target holes in narrow and inaccessible locations and other uneven objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本考案の一実施例に係り、第
1図は工具全体の第2図中C−C矢視断面図、第
2図は第1図のD矢視図、第3図は第2図のE−
E矢視断面図、第4図は第2図のF−F矢視断面
図、第5図は計測プローブの断面図、第6図は被
測対象の穴の一例を示す断面図、第7図は第5図
のA矢視図、第8図は遠隔測定を要する穴を有す
る物体例の断面図である。 図面中、01は環状囲繞体、02は槽状体(被
測物体)、03は穴、1はスプリングフインガ、
2は固定部材、3は歪ゲージ、4はストローク検
出部材、5は磁気式エンコーダヘツド、6は磁気
式エンコーダロツド、7はスプリング、Bは外端
部、101は計測プローブ、102は枠板、10
3,114,115はピストン、104は給排水
管、105,107,108はUTセンサ、10
6は近接センサ、109はフアイバスコープ、1
10は支持機構、111,112は面倣い部材、
113は底板、116はケースである。
1 to 8 relate to one embodiment of the present invention, in which FIG. 1 is a sectional view of the entire tool taken along the line C-C in FIG. 2, and FIG. Figure 3 shows E- in Figure 2.
4 is a sectional view taken along the line F-F in FIG. 2, FIG. 5 is a sectional view of the measurement probe, FIG. 6 is a sectional view showing an example of a hole in the object to be measured, and FIG. The figure is a view in the direction of arrow A in FIG. 5, and FIG. 8 is a cross-sectional view of an example of an object having a hole requiring remote measurement. In the drawing, 01 is an annular surrounding body, 02 is a tank-like body (object to be measured), 03 is a hole, 1 is a spring finger,
2 is a fixed member, 3 is a strain gauge, 4 is a stroke detection member, 5 is a magnetic encoder head, 6 is a magnetic encoder rod, 7 is a spring, B is an outer end, 101 is a measurement probe, 102 is a frame plate , 10
3, 114, 115 are pistons, 104 are water supply and drainage pipes, 105, 107, 108 are UT sensors, 10
6 is a proximity sensor, 109 is a fiberscope, 1
10 is a support mechanism, 111 and 112 are surface copying members,
113 is a bottom plate, and 116 is a case.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 囲繞体と協働してせまい隙間を画成する構造物
の穴の形状を計測するものにおいて、該隙間に挿
入される支持用の枠板と、該枠板の中心部に設け
られ該構造物に対向する面に対して直交方向に移
動する計測プローブと、該計測プローブを囲んで
枠板に分布した配設され前記囲繞体に向かつて伸
出自在な複数の面倣い部材と、該枠板に配設さ
れ、該枠板と該構造物との距離を検出する複数の
センサと、該枠板に該計測プローブに接近して設
けられ、該穴の存在を検出するセンサとを具備
し、前記計測プローブは、該枠板に設けられ、枠
板の面に直交方向に移動する移動装置と、移動装
置の移動量を検出するセンサと、移動装置の移動
方向に直交する面内の円周上において移動装置に
複数設けられ、被測物体の穴の内面に先端が係合
して穴の中心方向に変位するスプリングフインガ
と、各スプリングフインガの変位量を検出するセ
ンサとからなり、移動量及び変位量の検出信号を
該穴の内面形状及び位置の情報として出力するこ
と、を特徴とする穴の計測工具。
A device for measuring the shape of a hole in a structure that cooperates with an enclosing body to define a narrow gap, which includes a supporting frame plate inserted into the gap, and a support frame plate provided at the center of the frame plate to define a narrow gap. a measurement probe that moves in a direction orthogonal to a surface facing the surface; a plurality of surface tracing members that are distributed on a frame plate surrounding the measurement probe and are extendable toward the surrounding body; and the frame plate. a plurality of sensors disposed on the frame plate to detect the distance between the frame plate and the structure; and a sensor disposed on the frame plate close to the measurement probe to detect the presence of the hole; The measurement probe includes a moving device that is provided on the frame plate and moves in a direction perpendicular to the plane of the frame plate, a sensor that detects the amount of movement of the moving device, and a circumference in a plane perpendicular to the moving direction of the moving device. The moving device is provided with a plurality of spring fingers whose tips engage the inner surface of the hole of the object to be measured and are displaced toward the center of the hole, and a sensor that detects the amount of displacement of each spring finger. A hole measuring tool characterized by outputting detection signals of movement amount and displacement amount as information on the inner surface shape and position of the hole.
JP18091584U 1984-11-30 1984-11-30 Expired JPH0348487Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18091584U JPH0348487Y2 (en) 1984-11-30 1984-11-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18091584U JPH0348487Y2 (en) 1984-11-30 1984-11-30

Publications (2)

Publication Number Publication Date
JPS6196303U JPS6196303U (en) 1986-06-20
JPH0348487Y2 true JPH0348487Y2 (en) 1991-10-16

Family

ID=30738474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18091584U Expired JPH0348487Y2 (en) 1984-11-30 1984-11-30

Country Status (1)

Country Link
JP (1) JPH0348487Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420406A (en) * 1987-07-15 1989-01-24 Nippon Metal Ind Automatic plate thickness measuring instrument for hot-rolled steel sheet

Also Published As

Publication number Publication date
JPS6196303U (en) 1986-06-20

Similar Documents

Publication Publication Date Title
US8327556B2 (en) Hydraulic micrometer system for remote measurement of inside diameter of pipes
CN100410619C (en) Roughness measuring device with measurement standard
CN109238345A (en) A kind of full-scale aluminium drill pipe detection method and system
US5511429A (en) Method and system for measuring three-dimensional displacement
CN109186434B (en) Non-contact sub-nanometer sensing method and device based on three-dimensional quantum tunneling
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
JPH0348487Y2 (en)
JP6596227B2 (en) Inspection apparatus and inspection method
CN111664771A (en) Device for detecting inner hole of pipe part and detection method thereof
CN102230787B (en) Device for measuring depth of through hole
CN217358530U (en) Pipeline axis parallel line positioning device and section positioning device
CN209214567U (en) A kind of special-shaped slot dimension measuring device
CN110231001B (en) Optical aperture detection device
CN210603027U (en) Plug gauge for measuring step hole precision
CN109211079B (en) Quantum tunneling and spherical scattering field composite principle sensing method and device
CN207215170U (en) A kind of full-scale aluminium drill pipe detecting system
CN202024739U (en) Through hole depth measuring device
JP2741326B2 (en) Screw standoff measurement method
CN109238192B (en) Special-shaped groove size measuring device
RU2381440C1 (en) Caliper
JP2819472B2 (en) Method and apparatus for measuring pipe wall shape of buried pipe
EP2159534A1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
CN110645877A (en) Internal thread pitch diameter detection device
JP2981585B2 (en) Discontinuous surface displacement measurement method and discontinuous surface displacement meter
JPH0827183B2 (en) Three-dimensional coordinate automatic measuring device