JPH0348209B2 - - Google Patents

Info

Publication number
JPH0348209B2
JPH0348209B2 JP56214229A JP21422981A JPH0348209B2 JP H0348209 B2 JPH0348209 B2 JP H0348209B2 JP 56214229 A JP56214229 A JP 56214229A JP 21422981 A JP21422981 A JP 21422981A JP H0348209 B2 JPH0348209 B2 JP H0348209B2
Authority
JP
Japan
Prior art keywords
pressure
polymerization
change
temperature
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56214229A
Other languages
Japanese (ja)
Other versions
JPS58111808A (en
Inventor
Motokane Furuya
Fuminao Watanabe
Morimasa Ogawa
Haruo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP21422981A priority Critical patent/JPS58111808A/en
Publication of JPS58111808A publication Critical patent/JPS58111808A/en
Publication of JPH0348209B2 publication Critical patent/JPH0348209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明はポリオレフインの製造方法及びオレフ
イン重合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyolefin manufacturing method and an olefin polymerization apparatus.

詳しくはチーグラー系触媒、フイリツプス系触
媒等を使用して水素の存在下、溶媒を用いた定圧
重合法によりオレフインを重合するに当り、重合
条件、特に重合反応圧力(気相圧力)を安定化す
ることにより均質なポリオレフインを製造する方
法及びその方法に使用する重合装置に関する。
In detail, when polymerizing olefins by constant pressure polymerization using a solvent in the presence of hydrogen using Ziegler catalysts, Phillips catalysts, etc., the polymerization conditions, especially the polymerization reaction pressure (gas phase pressure), are stabilized. In particular, it relates to a method for producing homogeneous polyolefins and a polymerization apparatus used in the method.

従来、上述したような触媒を用いて、水素の存
在下溶媒重合法によりオレフインを重合するに
は、重合反応器に原料であるオレフイン、分子量
調節剤である水素、及び触媒、さらに溶媒を供給
し、反応温度50〜300℃、反応圧力常圧〜数百
Kg/cm2で回分式或は連続式で行なわれている。
Conventionally, in order to polymerize olefin by a solvent polymerization method in the presence of hydrogen using the catalyst as described above, a polymerization reactor is supplied with olefin as a raw material, hydrogen as a molecular weight regulator, a catalyst, and a solvent. , reaction temperature 50~300℃, reaction pressure normal pressure ~ several hundred
It is carried out batchwise or continuously at kg/ cm2 .

上述のようなオレフインの重合に当ては、重合
温度、重合圧力等の重合条件を一定にしないと得
られるポリオレフインの重合度またはメルトイン
デツクスが変化し、均一な重合度のポリオレフイ
ンが得られないこととなる。
When polymerizing olefins as described above, unless the polymerization conditions such as polymerization temperature and pressure are kept constant, the degree of polymerization or melt index of the resulting polyolefin will change, making it impossible to obtain a polyolefin with a uniform degree of polymerization. becomes.

このため従来の重合反応器においては、重合反
応器に設けたジヤケツトによるジヤケツト冷却
法、重合反応器の内部に除熱媒体を通過させる冷
却コイルを設けたコイル冷却法、重合反応器内の
内容物の一部を抜出し、これを外部冷却装置によ
り冷却して重合反応器に戻す外部冷却法、原料の
オレフイン等を一部蒸発させてその蒸発潜熱で反
応熱を除去する蒸発潜熱冷却法、回収した未反応
オレフインを冷却して再び重合反応器に戻す還流
冷却法等或はこれらの組合せの方法等により重合
反応温度を一定に保つべく制御するようにされて
いる。
For this reason, in conventional polymerization reactors, a jacket cooling method using a jacket provided in the polymerization reactor, a coil cooling method in which a cooling coil is provided for passing a heat removal medium through the interior of the polymerization reactor, and a cooling method in which the contents inside the polymerization reactor are The external cooling method involves extracting a portion of the polymer, cooling it using an external cooling device, and returning it to the polymerization reactor. The polymerization reaction temperature is controlled to be kept constant by a reflux cooling method in which unreacted olefin is cooled and returned to the polymerization reactor, or by a combination of these methods.

また、重合反応圧力については気相圧力を監視
し、気相圧力の変化に応じて、反応圧力を規定す
る供給物質、すなわち、触媒、オレフイン、水
素、溶媒等の供給量を調節することにより制御す
るようにされている。
In addition, the polymerization reaction pressure is controlled by monitoring the gas phase pressure and adjusting the supply amount of the materials that define the reaction pressure, such as catalyst, olefin, hydrogen, and solvent, according to changes in the gas phase pressure. It is made to be.

そして、従来の重合反応器においては、重合反
応温度と重合反応圧力は異なる制御系で制御され
ていた。すなわち、重合反応温度は、例えば重合
反応器に設けられている温度検知器でその変化を
検知し、これを反応温度制御器にて制御信号とし
て冷却水温度制御器等に伝え、冷却水温度の目標
値を変えることによつて重合反応温度を制御する
ようなカスケード制御で行なわれていた。
In conventional polymerization reactors, the polymerization reaction temperature and polymerization reaction pressure are controlled by different control systems. That is, changes in the polymerization reaction temperature are detected, for example, by a temperature sensor installed in the polymerization reactor, and this is transmitted as a control signal by a reaction temperature controller to a cooling water temperature controller, etc., to control the cooling water temperature. Cascade control was used to control the polymerization reaction temperature by changing the target value.

また重合反応圧力は、例えば気相圧力を圧力検
知器で検知し、圧力変動に応じ触媒、オレフイ
ン、水素、溶媒等の供給量を変化させて重合反応
圧力を制御するようなフイードバツク制御により
行なわれていた。
In addition, the polymerization reaction pressure is controlled by feedback control in which, for example, the gas phase pressure is detected with a pressure detector and the supply amount of catalyst, olefin, hydrogen, solvent, etc. is changed in response to pressure fluctuations to control the polymerization reaction pressure. was.

しかしながら、このような従来の制御系を用い
て重合を行なつても、重合条件、特に重合反応圧
力が比較的大きく変動し、目標値圧力に戻るまで
長時間を要することが多く充分に安定した重合を
実施することが困難であつた。
However, even when polymerization is carried out using such a conventional control system, the polymerization conditions, especially the polymerization reaction pressure, fluctuate relatively widely, and it often takes a long time to return to the target value pressure. It was difficult to carry out the polymerization.

すなわち均一な重合度のポリオレフインが安定
して製造されているとは云い難い。
In other words, it is difficult to say that polyolefins with a uniform degree of polymerization are stably produced.

本発明者等は上述のような従来のポリオレフイ
ンの製造方法の欠点を解消し、重合度の均一な優
れたポリオレフインを連続的に安定して製造する
方法を提供するべく鋭意検討を行なつた結果、従
来の重合反応圧力制御方式に問題点を見出し、こ
れを特殊の制御方式とすることにより問題を解決
し、本発明を完成した。
The inventors of the present invention have conducted extensive studies in order to eliminate the drawbacks of the conventional polyolefin manufacturing methods described above and to provide a method for continuously and stably manufacturing excellent polyolefins with a uniform degree of polymerization. discovered problems with the conventional polymerization reaction pressure control system, solved the problems by using a special control system, and completed the present invention.

すなわち、本発明の要旨は、触媒、溶媒および
水素の存在下にオレフインを連続的に製造するに
あたり、液相の温度変化を検出し、該温度変化に
基づくその後の気相の圧力変化を予測し、予測さ
れた該圧力変化を変更することを特徴とするポリ
オレフインの製造法及びその方法に使用する重合
装置に存するものである。
That is, the gist of the present invention is to detect temperature changes in the liquid phase and predict subsequent pressure changes in the gas phase based on the temperature changes when continuously producing olefin in the presence of a catalyst, a solvent, and hydrogen. , a polyolefin manufacturing method characterized by changing the predicted pressure change, and a polymerization apparatus used in the method.

以下本発明の方法の一例につき図面を用いて更
に詳細に説明する。
An example of the method of the present invention will be explained in more detail below with reference to the drawings.

第1図は本発明の方法に適用する制御装置系の
一例のブロツク図、第2図イ,ロ,ハ,ニは従来
の方法により重合反応温度と気相圧力とを別々の
制御系で制御した場合の重合反応温度イ、冷却水
温度ロ、気相圧力ハ、及び触媒供給量ニの変化の
一例を概念的に示すグラフ、第3図イ,ロ,ハ,
ニ,ホ、は本発明の方法により重合反応温度と気
相圧力とを連動した制御系で制御した場合の重合
反応温度イ冷却水温度ロ、気相圧力ハ、触媒供給
量ニ、気相圧力ホの変化の一例を概念的に示すグ
ラフである。
Figure 1 is a block diagram of an example of a control device system applied to the method of the present invention, and Figure 2 A, B, C, and D are for controlling the polymerization reaction temperature and gas phase pressure using separate control systems using conventional methods. Figure 3 is a graph conceptually showing an example of changes in polymerization reaction temperature (a), cooling water temperature (b), gas phase pressure (c), and catalyst supply amount (d) when
D, E, and E are the polymerization reaction temperature when the polymerization reaction temperature and gas phase pressure are controlled by a control system linked to each other according to the method of the present invention, cooling water temperature B, gas phase pressure C, catalyst supply amount D, and gas phase pressure. It is a graph conceptually showing an example of a change in E.

図中1は重合反応器、1aは液相部、1bは気
相部、1cは撹拌機、1dはジヤケツト、2は触
媒供給ライン、2aは触媒供給ポンプ、3はオレ
フイン供給ライン、4は水素供給ライン、5は溶
媒供給ライン、6はポリオレフイン抜出ライン、
7は冷却水供給ライン、7aは冷却水供給弁、8
は冷却水排出ライン、9は冷却水循環ライン、1
0は反応温度変化検知装置、11は冷却水温度制
御器、12は圧力検出器、13は気相圧力目標値
設定器、14は触媒導入量調節器、15は反応圧
力変化検出装置、16はフイード・フオワード制
御器、17は反応温度目標値設定器をそれぞれ示
す。
In the figure, 1 is a polymerization reactor, 1a is a liquid phase part, 1b is a gas phase part, 1c is a stirrer, 1d is a jacket, 2 is a catalyst supply line, 2a is a catalyst supply pump, 3 is an olefin supply line, and 4 is hydrogen Supply line, 5 is a solvent supply line, 6 is a polyolefin extraction line,
7 is a cooling water supply line, 7a is a cooling water supply valve, 8
is the cooling water discharge line, 9 is the cooling water circulation line, 1
0 is a reaction temperature change detection device, 11 is a cooling water temperature controller, 12 is a pressure detector, 13 is a gas phase pressure target value setting device, 14 is a catalyst introduction amount regulator, 15 is a reaction pressure change detection device, and 16 is a A feed forward controller and 17 each represent a reaction temperature target value setting device.

重合反応器1は代表的な溶媒スラリー重合法を
例示してあり、重合反応器1の外側には冷却水を
用いるジヤケツト1dが設けられ、これにより液
相の温度を制御し、気相圧力は触媒の供給量を変
えることにより制御する方式の場合を用いて説明
するが、本発明はこれに制約されるものではな
い。
The polymerization reactor 1 exemplifies a typical solvent slurry polymerization method, and a jacket 1d using cooling water is provided on the outside of the polymerization reactor 1, which controls the temperature of the liquid phase and the pressure of the gas phase. Although a case will be described using a method of controlling by changing the amount of catalyst supplied, the present invention is not limited to this.

第1図に示すように重合反応器1には触媒供給
ライン2、オレフイン供給ライン3、水素供給ラ
イン4、溶媒供給ライン5が接続されており、触
媒、オレフイン、水素、溶媒等が製造すべきポリ
オレフインに応じ所定量連続的に供給されてい
る。重合反応器1の内部には上記供給物質によ
り、液相部1a及び気相部1bが形成され撹拌機
1cにより撹拌されつつオレフインの重合が行な
われる。製造されたポリオレフインはポリオレフ
イン抜出ライン6から連続的に抜出される。
As shown in Fig. 1, a catalyst supply line 2, an olefin supply line 3, a hydrogen supply line 4, and a solvent supply line 5 are connected to a polymerization reactor 1, and catalysts, olefins, hydrogen, solvents, etc. are to be produced. A predetermined amount is continuously supplied depending on the polyolefin. Inside the polymerization reactor 1, a liquid phase portion 1a and a gas phase portion 1b are formed by the above-mentioned feed materials, and the olefin is polymerized while being stirred by a stirrer 1c. The produced polyolefin is continuously extracted from a polyolefin extraction line 6.

このような連続法によりポリオレフインを製造
する場合、重合反応器1内の重合反応温度、及び
重合反応圧力は均一なポリオレフインを製造する
上で極めて重要な要素であることは周知である。
このため、従来より重合反応器1に冷却ジヤケツ
ト1d等を設ける一方、重合反応温度を監視し重
合温度が変化した場合冷却ジヤケツト1d内の冷
却媒体温度を変化させ、重合反応温度を補償する
ことや、気相圧力を監視し、気相圧力が変化した
場合触媒等の供給物質の供給量を変化させ、重合
反応圧力を補償すること等が行なわれている。
When producing polyolefin by such a continuous method, it is well known that the polymerization reaction temperature and polymerization reaction pressure in the polymerization reactor 1 are extremely important factors in producing a uniform polyolefin.
For this reason, while a cooling jacket 1d or the like is conventionally provided in the polymerization reactor 1, the polymerization reaction temperature is monitored and when the polymerization temperature changes, the temperature of the cooling medium in the cooling jacket 1d is changed to compensate for the polymerization reaction temperature. , the gas phase pressure is monitored, and when the gas phase pressure changes, the amount of feed material such as a catalyst is changed to compensate for the polymerization reaction pressure.

重合反応温度や、気相圧力等が変化する原因
は、種々考えられるが、総括として外乱と呼ばれ
ている。
There are various possible causes for changes in the polymerization reaction temperature, gas phase pressure, etc., but they are collectively referred to as disturbances.

外乱としては例えば原料オレフイン中の触媒毒
成分(例えば水)の量変化、触媒濃度の変動、触
媒のロツト変更時の触媒活性変化、助触媒の変動
による触媒活性変化、その他不確定な外乱があ
る。
Examples of disturbances include changes in the amount of catalyst poison components (e.g., water) in the raw material olefin, changes in catalyst concentration, changes in catalyst activity when catalyst lots are changed, changes in catalyst activity due to changes in co-catalyst, and other uncertain disturbances. .

上述のような外乱があると重合条件の主条件で
ある重合反応温度、重合反応圧力が変化するが、
本発明者等の検討によればこの外乱による重合条
件の変動には一定の規則性が有ることが見出され
た。
When there is a disturbance as mentioned above, the main conditions of polymerization conditions, such as polymerization reaction temperature and polymerization reaction pressure, change.
According to studies conducted by the present inventors, it has been found that there is a certain regularity in the variation of polymerization conditions due to this disturbance.

その規則性とは重合中に外乱が加わると、重合
反応温度は敏感に変化するが重合反応圧力は重合
反応温度変化に比べ時間的にかなり遅れて変化が
現われることである。
The regularity is that when a disturbance is applied during polymerization, the polymerization reaction temperature changes sensitively, but the change in the polymerization reaction pressure appears much later in time than the change in the polymerization reaction temperature.

例えば従来の方法について述べれば第2図にお
いて、Aの時点で何らかの外乱があり、重合反応
系の状態が変化した場合、第2図イに示すように
重合反応温度は即座に変化を起し、この温度変化
は直ちに温度検知器で検知され、冷却ジヤケツト
に導入する冷却水の温度が第2図ロに示すように
変えられ、これにより重合温度が補償され、重合
温度はすみやかに元の温度にもどる。従つて、事
実上精確に定温反応が実施されたこととなり重合
反応にいささかのトラブルも生じないかのように
みえる。
For example, regarding the conventional method, if there is some kind of disturbance at point A in Figure 2 and the state of the polymerization reaction system changes, the polymerization reaction temperature will immediately change as shown in Figure 2 A. This temperature change is immediately detected by a temperature detector, and the temperature of the cooling water introduced into the cooling jacket is changed as shown in Figure 2 (b), thereby compensating the polymerization temperature, and the polymerization temperature quickly returns to its original temperature. Return. Therefore, it appears that the isothermal reaction was carried out accurately and that no trouble occurred in the polymerization reaction.

しかしながらこのような場合、ある時間後に気
相圧力の変化が起るのである。すなわち気相圧力
は外乱が起つた時点Aでは変化を示さず、第2図
ハに示すように相当の時間を経た後、すなわち時
点B以降に変化が現われるのである。
However, in such cases, a change in gas phase pressure occurs after a certain time. That is, the gas phase pressure does not show any change at time A when the disturbance occurs, but changes appear after a considerable amount of time, ie, after time B, as shown in FIG. 2C.

圧力変化幅がある一定値となつた時点(P点)
において気相圧力に変化があつたと検知され、そ
の時点で圧力変化を補償するために、たとえば第
2図ニに示すように触媒供給量を増加する処理が
とられる。触媒供給量を変化させたことにより、
相当の時間遅れを伴ない最終的にはCの時点で気
相圧力変化は完全に補償される。
The point at which the pressure change width reaches a certain value (point P)
It is detected that there has been a change in the gas phase pressure, and at that point, in order to compensate for the pressure change, a process is taken to increase the amount of catalyst supplied, as shown in FIG. 2D, for example. By changing the catalyst supply amount,
Eventually, at point C, the gas phase pressure change is completely compensated with a considerable time delay.

このように従来法においては事実上の定温反応
は実現されるが、気相圧力が定圧値を大きくはず
れた期間、すなわちB→C間においてポリマー品
質が変化するのである。
In this way, in the conventional method, a de facto constant-temperature reaction is realized, but the quality of the polymer changes during the period when the gas phase pressure deviates significantly from the constant pressure value, that is, from B to C.

このような現象は、例えば、外乱により重合条
件が重合の抑制される方向に変化すると、溶媒中
での重合が予定通りには進まなくなり液相温度は
直ぐに低下するが、液相部で過剰になつたオレフ
インが気相部に移行し、新たな気液平衡に達する
までの容量遅れがあること、及び計器の検出限界
に比べて液相温度変化は充分大きく変化するが、
気相圧力はあまり大きく変化しないので検出遅れ
が生じる。
For example, when the polymerization conditions change in a direction that inhibits polymerization due to a disturbance, the polymerization in the solvent will not proceed as planned and the liquidus temperature will immediately drop, but if the polymerization is Although there is a capacity delay until the exhausted olefin moves to the gas phase and a new vapor-liquid equilibrium is reached, and the liquid phase temperature change is sufficiently large compared to the detection limit of the instrument,
Since the gas phase pressure does not change significantly, a detection delay occurs.

この両者の遅れが複合され、液相温度変化と気
相圧力変化は大略20〜30分程度の差を持つて検出
されているものと推定された。
It was estimated that due to the combination of these two delays, the liquid phase temperature change and gas phase pressure change were detected with a difference of about 20 to 30 minutes.

従つて従来の制御方法を用いて、液相部の温度
と気相部の圧力を夫々検出し、液相部の温度を冷
却ジヤケツト等の温度を変えることにより調節
し、気相部の圧力を触媒等の供給量を変えること
により調節する場合、前述した遅れがあるため重
合条件が安定化するまでには長時間を要し、また
液相部の温度変化、及び気相部の圧力変化もかな
り大きな変動幅で変化することとなつていた。
Therefore, using a conventional control method, the temperature of the liquid phase and the pressure of the gas phase are detected respectively, the temperature of the liquid phase is adjusted by changing the temperature of the cooling jacket, etc., and the pressure of the gas phase is adjusted. When adjusting by changing the supply amount of catalyst, etc., it takes a long time for the polymerization conditions to stabilize due to the delay described above, and it also causes changes in temperature in the liquid phase and pressure in the gas phase. It was expected to change over a fairly wide range of fluctuations.

本発明者等は種々の研究を重ね、上述したよう
な重合反応温度変化と気相圧力変化との間の因果
関係につき更に検討した結果、重合反応温度の変
化時期(開始の時点及び変化の期間)及び変化量
と気相圧力の変化時期及び変化量には一定の関係
があり、重合反応温度の変化時期及び量から気相
圧力の変化時期及び量がかなり正確に予測し得る
ことを見出した。
The present inventors have conducted various studies and further investigated the causal relationship between the above-mentioned changes in polymerization reaction temperature and changes in gas phase pressure. ) and the amount of change, and the timing and amount of change in gas phase pressure have a certain relationship, and it was found that the timing and amount of change in gas phase pressure can be predicted fairly accurately from the time and amount of change in polymerization reaction temperature. .

重合反応温度の変化時期及び量と気相圧力の変
化時期及び量との関係は、例えば次のような近似
式によつて表わされる。
The relationship between the timing and amount of change in the polymerization reaction temperature and the timing and amount of change in gas phase pressure is expressed, for example, by the following approximate equation.

ΔPπ(S)/ΔT2(S)e-STd1KP1/1+STp1
……(a) 式中 ΔPπ(S):気相圧力の変化(Kg/cm2) ΔT2(S):液相温度(冷却水温度)の変化(℃) Tp1:時定数(hr) Td1:むだ時間(hr) Kp1:ゲイン(Kg/cm2/〓) S:ラブラスオペレータ をそれぞれ示す。
ΔPπ(S)/ΔT 2 (S)e -STd1 KP 1 /1+STp1
...(a) In the formula, ΔPπ (S): Change in gas phase pressure (Kg/cm 2 ) ΔT 2 (S): Change in liquid phase temperature (cooling water temperature) (℃) Tp1: Time constant (hr) Td1 : Dead time (hr) Kp1: Gain (Kg/cm 2 /〓) S: Indicates the Labrus operator.

上記近似式は一次遅れな近似式であるが近似式
としては、これのほか二次遅れの近似式、三次遅
れの近似式等任意の近似式を採用することがで
き、二次や三次遅れ近似式を採用すれば、より実
際の気相圧力変化に近い予測値が得られるが、実
際上は一次遅れの近似式による予測値で充分な精
度が得られ、また演算器等での取扱いも容易なこ
とからこれを採用するのが良い。
The above approximation formula is a first-order lag approximation formula, but any other approximation formula can be adopted, such as a second-order lag approximation formula, a third-order lag approximation formula, etc. If a formula is used, a predicted value that is closer to the actual gas phase pressure change can be obtained, but in reality, a predicted value using a first-order lag approximation formula provides sufficient accuracy and is easy to handle with a calculator, etc. Therefore, it is good to adopt this.

本発明においては上記のようにして予測した気
相圧力変化に基づき、この気相圧力変化が現実に
起る前に、予測された気相圧力変化が打消すよう
に重合条件を操作するものである。
In the present invention, based on the gas phase pressure change predicted as described above, the polymerization conditions are manipulated so as to cancel out the predicted gas phase pressure change before this gas phase pressure change actually occurs. be.

定温、定圧の連続重合反応を実施する場合、微
妙な重合反応温度変化は遅滞なく冷却水温度の変
化となつて、かつ拡大された形で検出されるので
(ただし温度変化の符号は反対)重合反応温度の
変化を直接検知するよりも冷却水温度変化によつ
て間接的に検知するのが便利である。
When carrying out a continuous polymerization reaction at constant temperature and constant pressure, subtle changes in the polymerization reaction temperature become changes in the cooling water temperature without delay, and are detected in an enlarged form (however, the sign of the temperature change is opposite). Rather than directly detecting changes in reaction temperature, it is more convenient to indirectly detect changes in cooling water temperature.

第3図を用いて本発明方法を説明するに、外乱
により第3図イのように重合反応温度が変化する
と冷却水温度は実際上第3図ロのように変化す
る。この冷却水温度は通常適宜の時間(通常2〜
3分)ごとに検知されており、検知温度は前の検
知温度と比較され、その差(絶対量や勾配)があ
る一定の値以上となつた場合外乱があつたものと
検知されるようにされている。
The method of the present invention will be explained with reference to FIG. 3. When the polymerization reaction temperature changes due to a disturbance as shown in FIG. 3A, the cooling water temperature actually changes as shown in FIG. 3B. This cooling water temperature is usually maintained for an appropriate period of time (usually 2~
The detected temperature is compared with the previous detected temperature, and if the difference (absolute amount or slope) exceeds a certain value, it is detected that a disturbance has occurred. has been done.

いま、第3図ロの点Qで外乱があつたことが検
知されたとする。
Suppose now that a disturbance is detected at point Q in FIG. 3B.

第1図に示した装置図に従つて具体的に説明す
れば、反応温度変化検知装置10に設けられた温
度検知器で重合反応温度を検出し、該検知装置1
0に設けられた反応温度減算器により反応温度目
標値設定器17に予め設定してある目標値と比較
してその偏差を求め、冷却水温度制御器11に出
力信号を発し、その出力信号により冷却水温度制
御器11が作動し、適切な冷却水温度目標値を選
定する。
Specifically, according to the apparatus diagram shown in FIG.
The reaction temperature subtracter provided at 0 is compared with the target value preset in the reaction temperature target value setting device 17 to find the deviation, and an output signal is issued to the cooling water temperature controller 11. The cooling water temperature controller 11 is activated and selects an appropriate cooling water temperature target value.

一方、冷却水温度制御器11は反応温度変化検
知装置10からの信号により冷却水温度目標値が
変えられると、その差異を補償するように出力信
号を発し、その出力信号により冷却水供給弁7a
が開閉され冷却水供給量が調節される。
On the other hand, when the cooling water temperature target value is changed by the signal from the reaction temperature change detection device 10, the cooling water temperature controller 11 issues an output signal to compensate for the difference, and the output signal causes the cooling water supply valve 7a to
is opened and closed to adjust the amount of cooling water supplied.

ジヤケツト1dに入る冷却水温度は冷却水循環
ライン9を循環する冷却水循環量と冷却水供給ラ
イン7から供給される冷却水供給量との割合によ
り決定される。
The temperature of the cooling water entering the jacket 1d is determined by the ratio between the amount of cooling water circulating through the cooling water circulation line 9 and the amount of cooling water supplied from the cooling water supply line 7.

冷却水温度は上述のごとく変えられるが、この
冷却水温度変化は前記したように適宜の時間ごと
に冷却水温度制御器が検知しており、外乱の有無
をチエツクしている。
The cooling water temperature can be changed as described above, and the cooling water temperature controller detects the change in the cooling water temperature at appropriate intervals as described above, and checks for the presence or absence of disturbance.

たとえば、第3図ロのQ点において、冷却水温
度変化が所定値を超えた実質的な外乱として検知
されたとする。外乱が検知されるとその冷却水温
度の変化量から直ちに圧力変化演算器16Aによ
り気相圧力変化が起こる時期及び変化量が前記関
係式から計算される。その計算により圧力変化は
第3図ハの実線のごとく近似的に予測される。
For example, suppose that a change in the cooling water temperature is detected as a substantial disturbance exceeding a predetermined value at point Q in FIG. 3B. When a disturbance is detected, the pressure change calculator 16A immediately calculates the timing and amount of change in gas phase pressure based on the amount of change in the cooling water temperature using the above relational expression. Through this calculation, the pressure change can be approximately predicted as shown by the solid line in FIG. 3C.

気相圧力に変化が起れば定圧重合の条件が変わ
り、均一なポリオレフインは得られなくなるので
この気相圧力変化が現実的に発生することを阻止
するか、少なくとも変化幅を可及的に小さくしな
ければならない。
If a change in gas phase pressure occurs, the conditions for constant pressure polymerization will change, making it impossible to obtain a uniform polyolefin. Therefore, it is necessary to prevent this gas phase pressure change from actually occurring, or at least reduce the range of change as much as possible. Must.

従来行なわれていたように圧力検出器12で気
相圧力変化を監視し、気相圧力変化が外乱として
検出された時点(第2図ハまたは第3図ハのP点
で第2図ニ{第3図ニの破線に相当}に示すごと
くに触媒供給量を変化させるような方法では、触
媒供給量を変化させてから実際に気相圧力を補償
し始めるまでに外乱があつた場合と同じように応
答遅れがあるので気相圧力は第2図ハに示すよう
に大きく変化してしまうことになる。
As conventionally done, the pressure detector 12 monitors the gas phase pressure change, and when the gas phase pressure change is detected as a disturbance (at point P in FIG. 2 C or 3 C, In the method of changing the catalyst supply amount as shown in the dashed line in Figure 3 (D), the result is the same as when a disturbance occurs between the time the catalyst supply amount is changed and the time when the gas phase pressure actually starts to be compensated. Since there is a response delay, the gas phase pressure changes greatly as shown in FIG. 2C.

本発明においては、このような大きな気相圧力
変化が起きないようにする。すなわち、重合条件
を変更する操作時期を時点Pまで待つのではな
く、時点Qにおいて、前記した予測圧力変化(第
3図ハの実線の値)と逆の変化(第3図ハの一点
鎖線の値)を起すごとく重合条件を早期に変化さ
せるのである。
In the present invention, such large gas phase pressure changes are prevented from occurring. That is, instead of waiting until time P to change the polymerization conditions, at time Q, we change the predicted pressure change (the value shown by the solid line in Figure 3C) and the opposite change (the value shown by the dashed line in Figure 3C). The polymerization conditions are changed at an early stage in order to increase the

例えば第3図ハの実線のごとく気相圧力が変化
することが近似的に予測された場合、重合条件を
操作し、気相圧力をあたかも第3図ハの一点鎖線
のごとく変化させるように導入量調節演算器16
Bで演算し、触媒導入量調節器14を作動させ重
合条件を変えるのである。
For example, if it is predicted that the gas phase pressure will change approximately as shown by the solid line in Figure 3C, the polymerization conditions may be manipulated to change the gas phase pressure as shown by the dashed line in Figure 3C. Amount adjustment calculator 16
The calculation is performed in B, and the catalyst introduction amount regulator 14 is operated to change the polymerization conditions.

これは例えば触媒供給ポンプ2aのストローク
を変化させ第3図ニに実線で示すように触媒供給
量を操作することによつて行なわれる。
This is done, for example, by varying the stroke of the catalyst supply pump 2a and manipulating the catalyst supply amount as shown by the solid line in FIG. 3D.

上記操作は触媒供給量を変えることに限られ
ず、オレフイン、水素、溶媒等の他の供給物質を
変えても良いが、これらの供給物質を変化させる
と得られるポリオレフインの製造量が変動した
り、オレフインと水素の割合が重合条件の重要な
要件であるためコントロールが難かしい等の問題
が生起するので、通常は触媒の供給量を変える方
法が採用される。
The above operation is not limited to changing the amount of catalyst supplied, and other feed materials such as olefin, hydrogen, and solvent may also be changed; however, changing these feed materials may change the amount of polyolefin produced, or Since the ratio of olefin and hydrogen is an important requirement for polymerization conditions, problems arise such as difficulty in controlling it, so a method of varying the amount of catalyst supplied is usually adopted.

触媒の供給量を第3図ニの実線のように変化さ
せると外乱による気相圧力変化は触媒の供給量変
化による気相圧力変化に打ち消され、実際上は第
3図ホに示すように圧力変化はほとんど現われな
い。実際の気相圧力変化と近似的によつて予測し
た気相圧力変化との間には多少の相違があるので
極く小幅の圧力変化が表われるにすぎない。第2
図ハと第3図ホを比較すると明らかなように、本
発明は気相圧力変化の幅が小さいのみならず、変
化する期間がB→CからB→Dに大きく短縮され
ることも特徴である。触媒供給の変化量は前記し
た気相圧力変化の予測に用いた近似式と同様の近
似式を用いて導入量調節演算器で演算することに
よつて得る。
When the catalyst supply rate is changed as shown by the solid line in Figure 3D, the gas phase pressure change due to disturbance is canceled by the gas phase pressure change due to the catalyst supply rate change, and in reality the pressure changes as shown in Figure 3E. There are almost no changes. Since there is some difference between the actual gas phase pressure change and the approximately predicted gas phase pressure change, only a very small pressure change appears. Second
As is clear from a comparison between Figure C and Figure 3 E, the present invention is characterized by not only a small width of gas phase pressure change, but also a greatly shortened period of change from B→C to B→D. be. The amount of change in catalyst supply is obtained by calculation by the introduction amount adjustment calculator using an approximation formula similar to the approximation formula used to predict the gas phase pressure change described above.

すなわち、たとえば次式(b) ΔPπ(S)/ΔC(S)e-STd2KP2/1+STP2
……(b) 式中 ΔPπ(S):気相圧力変化(Kg/cm2) ΔC(S):触媒供給量変化(Kg−CAT/hr) TP2:時定数(hr) Td2:むだ時間(hr) KP2:ゲイン(Kg/cm2/Kg−CAT/hr) S:ラブラスオペレータ をそれぞれ示す。
That is, for example, the following formula (b) ΔPπ(S)/ΔC(S)e -STd2 KP 2 /1+STP 2
...(b) In the formula, ΔPπ(S): Change in gas phase pressure (Kg/cm 2 ) ΔC(S): Change in catalyst supply amount (Kg-CAT/hr) TP 2 : Time constant (hr) Td 2 : Waste Time (hr) KP 2 : Gain (Kg/cm 2 /Kg-CAT/hr) S: Indicates Labrus operator.

によつて得れば良い。You can get it by.

但し、触媒供給量等を変化させる時期としては
冷却水温度変化を検知した後直ちに、すなわち第
3図ニのQの時点で行なうのが良い。
However, it is preferable to change the catalyst supply amount etc. immediately after detecting a change in the cooling water temperature, that is, at the time Q in FIG. 3D.

装置に従つて具体的に説明すれば、反応温度変
化検知装置10が冷却水温度変化、すなわち外乱
を検知すると、冷却媒体温度制御器11からフイ
ード・フオワード制御器16に前記冷却水温度変
化の変化量に応じた信号が発せられる。
To explain specifically according to the device, when the reaction temperature change detection device 10 detects a change in cooling water temperature, that is, a disturbance, the cooling medium temperature controller 11 sends a signal to the feed forward controller 16 to detect the change in the cooling water temperature. A signal is emitted depending on the amount.

フイード・フオワード制御器16には、この信
号の大きさによつて重合反応器の気相部の圧力変
化を前記式(a)によつて予測する圧力変化演算器1
6Aが設けられており、この圧力電化演算器によ
つて気相部の圧力変化の時期及び変化量を予測す
る。
The feed/forward controller 16 includes a pressure change calculator 1 that predicts the pressure change in the gas phase of the polymerization reactor based on the magnitude of this signal using the above equation (a).
6A is provided, and this pressure electrification calculator predicts the timing and amount of change in pressure in the gas phase portion.

またフイード・フオワード制御器16には前記
で予測された気相圧力変化を打消すように触媒等
の供給物質の導入量を調節する時期及びその量を
前記式(b)により演算、決定する導入量調節演算器
16Bが設けられており、この演算結果を出力と
して発するようにされている。
In addition, the feed forward controller 16 is provided with an input device that calculates and determines the timing and amount of the introduced material such as a catalyst so as to cancel out the gas phase pressure change predicted above using the equation (b). A quantity adjustment calculator 16B is provided, and the result of this calculation is outputted.

上記、導入量調節演算器16Bからの出力信号
は触媒(供給物質)導入量調節器14に送られ、
該調節器が触媒等の重合反応器1への導入量を調
節する。
The output signal from the introduction amount adjustment calculator 16B is sent to the catalyst (supply material) introduction amount regulator 14,
The regulator controls the amount of catalyst etc. introduced into the polymerization reactor 1.

このようにして、気相圧力変化は打ち消され、
安定した重合が行なわれる。
In this way, gas phase pressure changes are canceled out and
Stable polymerization takes place.

本発明による重合反応圧力の制御は上述した通
り、重合反応温度変化(冷却水温度変化)を検知
することにより続いて起こる気相圧力変化を予測
し、この予測値に従つて、この予測気相圧力変化
を打ち消すように重合条件(触媒供給量等)を変
えるものであるが、重合反応圧力をこの方法のみ
で調節することは、大変精密な制御系が必要であ
ること、かえつて気相圧力が安定せず、一定幅を
もつて気相圧力が繰り返し変化するような場合が
あること等の理由により、気相圧力を検知し、重
合条件をこの気相圧力変化に応じて変化させるフ
イード・バツク制御を並行して行なうのが良い。
As described above, the control of the polymerization reaction pressure according to the present invention predicts the subsequent gas phase pressure change by detecting the polymerization reaction temperature change (cooling water temperature change), and according to this predicted value, the predicted gas phase pressure is This method changes the polymerization conditions (catalyst supply amount, etc.) to cancel out pressure changes, but adjusting the polymerization reaction pressure only with this method requires a very precise control system, and on the contrary, it increases the gas phase pressure. For some reasons, such as the fact that the gas phase pressure is not stable and the gas phase pressure changes repeatedly over a certain range, we have developed a feed system that detects the gas phase pressure and changes the polymerization conditions according to the changes in the gas phase pressure. It is better to perform back control in parallel.

フイード・バツク制御は第1図に示すように圧
力検知器12で気相圧力変化を検知し、気相圧力
目標値設定器13で予め設定してある気相圧力目
標値と前記検知値との偏差を反応圧力減算器によ
り求め、該偏差の大きさに応じて反応圧力変化検
出装置15から出力信号を発し、該出力信号を受
け供給物質導入量調節器14が作動されることに
より重合条件を変更するものである。
As shown in FIG. 1, in the feed back control, a pressure detector 12 detects a gas phase pressure change, and a gas phase pressure target value setter 13 sets a gas phase pressure target value in advance and the detected value. The deviation is determined by a reaction pressure subtractor, and an output signal is generated from the reaction pressure change detection device 15 according to the magnitude of the deviation. Upon receiving the output signal, the supply material introduction amount regulator 14 is operated to adjust the polymerization conditions. It is subject to change.

このようにフイード・フオワード制御器16と
反応圧力変化検出装置15は並設されていること
が望ましく、この両者の作動のタイミングとして
は、フイード・フオワード制御器16が外乱によ
り一度作動した後はフイード・フオワード制御器
16は数十分〜数時間の間は作動しないように
し、フイード・バツク制御する反応圧力変化検出
装置15は常時作動させておくようにすれば良
い。
In this way, it is desirable that the feed/forward controller 16 and the reaction pressure change detection device 15 are installed in parallel, and the timing of the operation of both is such that once the feed/forward controller 16 is activated due to a disturbance, the feed/forward controller 16 is activated due to a disturbance. - The forward controller 16 may be set not to operate for several tens of minutes to several hours, and the reaction pressure change detection device 15 for feedback control may be kept operating at all times.

本発明によればポリエチレン、ポリプロピレン
等のポリオレフイン等を定圧下の連続重合法によ
り製造するに当り、重合条件の気相圧力変化を極
めて小さくすることができ、且つ変化後の回復時
間も極めて短かくすることができるので、均一な
ポリオレフインを極めて安定して製造ができるこ
ととなり、合わせて自動化による省力化が行ない
得る等、実用上極めて有用なものである。
According to the present invention, when producing polyolefins such as polyethylene and polypropylene by a continuous polymerization method under constant pressure, the change in gas phase pressure of the polymerization conditions can be made extremely small, and the recovery time after the change is also extremely short. As a result, uniform polyolefin can be produced extremely stably, and labor can be saved through automation, which is extremely useful in practice.

なお、本発明の方法及び装置は第1図に示した
ような重合反応器の外側に冷却ジヤケツトを設け
たような装置に限られず、重合反応器の内部に冷
却コイルを設けたものや、外部冷却法、蒸発潜熱
冷却法、還流冷却法等の重合反応方法及び装置に
も適用し得るものである。
Note that the method and apparatus of the present invention are not limited to the apparatus shown in FIG. 1, in which a cooling jacket is provided outside the polymerization reactor, but also those in which a cooling jacket is provided inside the polymerization reactor, and those in which a cooling jacket is provided outside the polymerization reactor. It can also be applied to polymerization reaction methods and apparatuses such as the cooling method, the latent heat of vaporization cooling method, and the reflux cooling method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に適用する制御装置系の
一例のブロツク図、第2図イ,ロ,ハ,ニは従来
の方法により重合反応温度と気相圧力とを別々の
制御系で制御した場合の重合反応温度イ、冷却水
温度ロ、気相圧力ハ及び触媒供給量ニの変化の一
例を経時的に示すグラフ、第3図イ,ロ,ハ,
ニ,ホは本発明の方法により重合反応温度と気相
圧力とを連動した制御系で制御した場合の重合反
応温度イ、冷却水温度ロ、気相圧力ハ、触媒供給
量ニ及び気相圧力ホの一例を経時的に示すグラフ
である。 図中1は重合反応器、1aは液相部、1bは気
相部、1cは撹拌機、1dはジヤケツト、2は触
媒供給ライン、2aは触媒供給ポンプ、3はオレ
フイン供給ライン、4は水素供給ライン、5は溶
媒供給ライン、6はポリオレフイン抜出ライン、
7は冷却水供給ライン、7aは冷却水供給弁、1
0は反応温度変化検知装置、11は冷却水温度制
御器、12は圧力検出器、13は気相圧力目標値
設定器、14は触媒導入量調節器、15は反応圧
力変化検出装置、16はフイード・フオワード制
御器、17は反応温度目標値設定器をそれぞれ示
す。
Figure 1 is a block diagram of an example of a control device system applied to the method of the present invention, and Figure 2 A, B, C, and D are for controlling the polymerization reaction temperature and gas phase pressure using separate control systems using conventional methods. Figure 3 is a graph showing an example of changes in polymerization reaction temperature (a), cooling water temperature (b), gas phase pressure (c), and catalyst supply amount (d) over time when
D and E are polymerization reaction temperature A, cooling water temperature B, gas phase pressure C, catalyst supply amount D, and gas phase pressure when the polymerization reaction temperature and gas phase pressure are controlled by a control system linked to each other according to the method of the present invention. It is a graph showing an example of e over time. In the figure, 1 is a polymerization reactor, 1a is a liquid phase part, 1b is a gas phase part, 1c is a stirrer, 1d is a jacket, 2 is a catalyst supply line, 2a is a catalyst supply pump, 3 is an olefin supply line, and 4 is hydrogen Supply line, 5 is a solvent supply line, 6 is a polyolefin extraction line,
7 is a cooling water supply line, 7a is a cooling water supply valve, 1
0 is a reaction temperature change detection device, 11 is a cooling water temperature controller, 12 is a pressure detector, 13 is a gas phase pressure target value setting device, 14 is a catalyst introduction amount regulator, 15 is a reaction pressure change detection device, and 16 is a A feed forward controller and 17 each represent a reaction temperature target value setting device.

Claims (1)

【特許請求の範囲】 1 触媒、溶媒および水素の存在下にオレフイン
を定圧重合してポリオレフインを連続的に製造す
るにあたり、液相の温度変化を検出し、該温度変
化のみに基づきその後の気相の圧力変化を予測
し、予測された該圧力変化の少なくとも一部を打
ち消すように重合条件を変更することを特徴とす
るポリオレフインの製造方法。 2 重合条件の変更を、液相の温度変化の検出後
直ちに実施することを特徴とする特許請求の範囲
第1項に記載の方法。 3 予測された圧力変化の全部を打ち消すように
重合条件を変更することを特徴とする特許請求の
範囲第1項又は第2項に記載の方法。 4 変更する重合条件が触媒供給量であることを
特徴とする特許請求の範囲第1項乃至第3項のい
ずれか一項に記載の方法。 5 変更する重合条件がオレフイン供給量及び水
素供給量であることを特徴とする特許請求の範囲
第1項乃至第3項のいずれか一項に記載の方法。 6 変更する重合条件が溶媒供給量であることを
特徴とする特許請求の範囲第1項乃至第3項のい
ずれか一項に記載の方法。 7 オレフイン、触媒、溶媒および水素等の供給
物質の導入部、重合反応器、ポリオレフインの導
出部並びに冷却装置を有するオレフイン重合装置
において、重合反応器の液相部の温度を検知する
温度検知器、反応温度目標値設定器、前記温度検
知器で検知した温度と反応温度目標値との偏差を
求める反応温度減算器とからなる反応温度変化検
知装置を備え、該反応温度変化検知装置の出力に
基づき所定時間後の重合反応器の気相部の圧力変
化を予測する圧力変化演算器、該圧力変化演算器
の出力から予測された圧力変化を打消すように供
給物質の導入量を調節する時期及びその量を決定
する導入量調節演算器、該導入量調節演算器から
の出力を受けて作動する供給物質導入量調節器を
備えてなるオレフイン重合装置。 8 反応温度変化検知装置の出力信号を受けて作
動する冷却媒体温度制御器、該制御器からの出力
信号を受けて作動する冷却装置が設けられてお
り、圧力変化演算器は反応温度変化検知装置から
の信号を冷却媒体温度制御器を介して間接的に受
けることを特徴とする特許請求の範囲第7項に記
載の重合装置。 9 重合反応器の気相部の圧力を検知する圧力検
出器、反応圧力目標値設定器および前記圧力検知
器で検知した圧力と反応圧力目標値との偏差を求
める反応圧力減算器とからなる反応圧力変化検知
装置を、該圧力変化検知装置からの出力が供給物
質導入量調節器に入力されるように接続してなる
特許請求の範囲第7項又は第8項に記載の重合装
置。
[Claims] 1. When polyolefin is continuously produced by constant pressure polymerization of olefin in the presence of a catalyst, a solvent, and hydrogen, a temperature change in the liquid phase is detected, and the subsequent gas phase is determined based only on the temperature change. 1. A method for producing a polyolefin, which comprises predicting a pressure change and changing polymerization conditions so as to cancel at least a part of the predicted pressure change. 2. The method according to claim 1, wherein the polymerization conditions are changed immediately after detecting a change in temperature of the liquid phase. 3. The method according to claim 1 or 2, characterized in that the polymerization conditions are changed so as to cancel out the entire predicted pressure change. 4. The method according to any one of claims 1 to 3, wherein the polymerization condition to be changed is the amount of catalyst supplied. 5. The method according to any one of claims 1 to 3, wherein the polymerization conditions to be changed are the amount of olefin supplied and the amount of hydrogen supplied. 6. The method according to any one of claims 1 to 3, wherein the polymerization condition to be changed is the amount of solvent supplied. 7. In an olefin polymerization apparatus having an introduction section for feed materials such as olefin, catalyst, solvent, and hydrogen, a polymerization reactor, a polyolefin outlet section, and a cooling device, a temperature sensor for detecting the temperature of the liquid phase of the polymerization reactor; A reaction temperature change detection device comprising a reaction temperature target value setting device and a reaction temperature subtracter for calculating the deviation between the temperature detected by the temperature detector and the reaction temperature target value, and based on the output of the reaction temperature change detection device. A pressure change calculator that predicts the pressure change in the gas phase portion of the polymerization reactor after a predetermined period of time, a timing for adjusting the amount of the feed substance to be introduced so as to cancel out the pressure change predicted from the output of the pressure change calculator, and An olefin polymerization apparatus comprising an introduction amount adjustment calculator for determining the amount of the introduced material, and a feed substance introduction amount adjustment device that operates in response to an output from the introduction amount adjustment calculator. 8. A cooling medium temperature controller that operates in response to an output signal from the reaction temperature change detection device, a cooling device that operates in response to an output signal from the controller, and a pressure change calculator that operates in response to an output signal from the reaction temperature change detection device. 8. The polymerization apparatus according to claim 7, wherein the signal from the polymerization apparatus is indirectly received via a cooling medium temperature controller. 9 A reaction consisting of a pressure detector that detects the pressure in the gas phase of the polymerization reactor, a reaction pressure target value setting device, and a reaction pressure subtractor that calculates the deviation between the pressure detected by the pressure detector and the reaction pressure target value. 9. The polymerization apparatus according to claim 7 or 8, wherein a pressure change detection device is connected such that an output from the pressure change detection device is inputted to a feed substance introduction amount regulator.
JP21422981A 1981-12-25 1981-12-25 Method and apparatus for production of polyolefin Granted JPS58111808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21422981A JPS58111808A (en) 1981-12-25 1981-12-25 Method and apparatus for production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21422981A JPS58111808A (en) 1981-12-25 1981-12-25 Method and apparatus for production of polyolefin

Publications (2)

Publication Number Publication Date
JPS58111808A JPS58111808A (en) 1983-07-04
JPH0348209B2 true JPH0348209B2 (en) 1991-07-23

Family

ID=16652324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21422981A Granted JPS58111808A (en) 1981-12-25 1981-12-25 Method and apparatus for production of polyolefin

Country Status (1)

Country Link
JP (1) JPS58111808A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564222A1 (en) * 2004-02-13 2005-08-17 Total Petrochemicals Research Feluy Polyolefin production using high olefin concentration
CN103846071B (en) * 2014-03-13 2016-01-20 安徽天意环保科技有限公司 Autocontrol method in a kind of epoxy plasticizer production and device
CN104587932B (en) * 2015-01-28 2016-06-08 浙江华亿工程设计有限公司 A kind of dropwise reaction explosion-resisting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168904A (en) * 1981-04-10 1982-10-18 Mitsui Toatsu Chem Inc Production of polyolefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168904A (en) * 1981-04-10 1982-10-18 Mitsui Toatsu Chem Inc Production of polyolefin

Also Published As

Publication number Publication date
JPS58111808A (en) 1983-07-04

Similar Documents

Publication Publication Date Title
US6723805B2 (en) Process for the controlled production of polyethylene and its copolymers
US6144897A (en) Control method for processes of synthesis of chemical products
US4668473A (en) Control system for ethylene polymerization reactor
US6263355B1 (en) Non-linear model predictive control method for controlling a gas-phase reactor including a rapid noise filter and method therefor
Richards et al. Measurement and control of polymerization reactors
US4956426A (en) Process for controlled polymerization of stereospecific alpha-olefins having preselected isotacticity
US3998995A (en) Polymerization method and apparatus
US4888704A (en) Advanced control strategies for melt flow rate and reactor concentration in the polypropylene slurry process
US20130231446A1 (en) Dynamic Pressure Control in Double Loop Reactor
EP0124333B1 (en) Apparatus for controlling polymerisation reactors
JPH0348209B2 (en)
JPH07165820A (en) Method and equipment for controlling start-up of polyolefin polymerization reactor
US3275809A (en) Measurement and control of polymerization reactions
KR100586728B1 (en) Method of estimating product polymer properties
EP0318609B1 (en) Polypropylene impact copolymer reactor control system
US3558045A (en) Control system for chemical reactions
Jutan et al. Multivariable computer control of a butane hydrogenolysis reactor: Part III. On‐line linear quadratic stochastic control studies
JP3189333B2 (en) Method for producing polyolefin
JP3189332B2 (en) Polymerization reaction operation support equipment for polyolefin production
US4316255A (en) Fractional distillation process control
JP3189339B2 (en) Polymerization reaction operation support equipment for polyolefin production
JPH05163304A (en) Production of polyolefin
JPH0314842B2 (en)
JPH07126303A (en) Decision of disorder in polyolefin production process and operation support device wherein it is used
JPH05178907A (en) Device for supporting operation of polymerization for producing polyolefin