JPH0348148A - Detection of air/fuel ratio - Google Patents

Detection of air/fuel ratio

Info

Publication number
JPH0348148A
JPH0348148A JP1082983A JP8298389A JPH0348148A JP H0348148 A JPH0348148 A JP H0348148A JP 1082983 A JP1082983 A JP 1082983A JP 8298389 A JP8298389 A JP 8298389A JP H0348148 A JPH0348148 A JP H0348148A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
gas
internal resistance
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082983A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Tetsumasa Yamada
哲正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1082983A priority Critical patent/JPH0348148A/en
Publication of JPH0348148A publication Critical patent/JPH0348148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To easily detect the shift from a theoretical air/fuel ratio by simple and highly durable constitution by exposing a solid electrolyte substrate having an electrode and a gas diffusion limiting means mounted on the surface thereof to gas to be measured and detecting the internal resistance change of the substrate and comparing the detected value with the max. value of internal resistance showing a theoretical air/fuel ratio. CONSTITUTION:Porous electrodes 4, 6 composed of an yttria-zirconia solid solution and platinum, a platinum heater 8 and the porous gas rate limiting layer 12 for limiting gas diffusion covering the electrodes 4, 6 are provided to the single surface of a solid electrolyte substrate composed of a yttria- zirconia solid solution to form an air/fuel ratio sensor 1. When this sensor 1 is exposed to the exhaust gas of a vehicle passing through a catalyst, the internal resistance of the substrate 2 is changed corresponding to an air/fuel ratio and the corresponding output is taken out through the electrodes 4, 6 and compared with the output corresponding to the theoretical air/fuel ratio making internal resistance max. to detect the shift from the theoretical air/fuel ratio. By this method, the shift from the theoretical air/fuel ratio can be easily and certainly detected by simple and highly durable constitution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明1友 燃焼袋! 例えばエンジン等の排ガスのガ
ス成分濃度に基づいて、空燃比を検出する方法に関する
[Detailed Description of the Invention] [Industrial Application Field] A friend of the present invention: Burning bag! For example, the present invention relates to a method of detecting an air-fuel ratio based on the concentration of gas components in exhaust gas from an engine or the like.

[従来の技術] 従来より、例えばエンジン等の排ガスを浄化する目的で
、白金やパラジューム等の三元触媒が使用されている。
[Prior Art] Conventionally, three-way catalysts such as platinum and palladium have been used for the purpose of purifying exhaust gas from engines and the like.

この三元触媒1.t、燃料混合気を理論空燃比の近傍に
制御することにより、排ガス中のCo、HC及びN O
xの間の反応を促進して、各成分の排出量を低く抑える
ことができるものである。そのため1:、通常は三元触
媒の上流側に空燃比センサを配置して空燃比を検出し、
混合気を理論空燃比にフィードバックする制御が行われ
ている。
This three-way catalyst 1. By controlling the fuel mixture near the stoichiometric air-fuel ratio, Co, HC, and N O in the exhaust gas can be reduced.
It is possible to promote the reaction between x and suppress the amount of discharge of each component to a low level. Therefore, 1: Usually, an air-fuel ratio sensor is placed upstream of the three-way catalyst to detect the air-fuel ratio.
Control is performed to feed back the air-fuel mixture to the stoichiometric air-fuel ratio.

この三元触媒1友 長期間使用しているうちに性能が低
下することがあるので、近年でi、tその性能の低下を
検出するためI:、三元触媒の下流側にも、上述したフ
ィードバック制御に使用するセンサと同様な空燃比セン
サを取り付けた装置が提案されている。この装置1友 
 三元触媒が劣化すると、上記各成分間の反応が低下す
るので、三元触媒の下流側の酸素分圧(以下排ガスの空
燃比と称す)が理論空燃比に対応する値(以下排ガスの
理論空燃比と称す)からずれることを利用したものであ
り、三元触媒の下流側の空燃比センサの出力が所定値以
上になった時、即ち排ガスの空燃比が理論空燃比から大
きくずれた場合に三元触媒が劣化したと判定している(
実開昭63−83415号公報参照)。
The performance of this three-way catalyst may deteriorate after long-term use, so in recent years, in order to detect the decline in performance, the downstream side of the three-way catalyst has also been A device equipped with an air-fuel ratio sensor similar to the sensor used for feedback control has been proposed. This device is a friend
When the three-way catalyst deteriorates, the reaction between the above components decreases, so the oxygen partial pressure downstream of the three-way catalyst (hereinafter referred to as the exhaust gas air-fuel ratio) changes to a value corresponding to the stoichiometric air-fuel ratio (hereinafter referred to as the exhaust gas theoretical air-fuel ratio). When the output of the air-fuel ratio sensor on the downstream side of the three-way catalyst exceeds a predetermined value, that is, when the air-fuel ratio of exhaust gas deviates significantly from the stoichiometric air-fuel ratio. It was determined that the three-way catalyst had deteriorated (
(Refer to Utility Model Application Publication No. 1983-83415).

[発明が解決しようとする課題] しかしなから、上記フィードバック制御に使用される空
燃比センサ陳 通常、排ガスの空燃比をノツチ及びリー
ンの全領域にわたって精密に検出するものなので、酸素
濃淡電池素子や酸素ポンプ素子、更にガス導入孔及びガ
ス拡散室等の複雑な構成を必要とし、必ずしも耐久性に
優れているとは言えなかった また部品点数も多く、製
造方法も複雑で故障が生ずる原因となることがあり、経
済的にもコストの上昇という問題が生じていた本発明1
.t、従来の空燃比センサを用いることなく、簡単な構
成で空燃比の理論空燃比からのずれを容易に見いだすこ
とができる検出方法を提供することを目的とする。
[Problems to be Solved by the Invention] However, since the air-fuel ratio sensor used for the above-mentioned feedback control usually precisely detects the air-fuel ratio of exhaust gas over the entire range of notch and lean, oxygen concentration battery elements and It requires a complicated configuration such as an oxygen pump element, a gas introduction hole, and a gas diffusion chamber, so it cannot necessarily be said to have excellent durability.It also has a large number of parts and a complicated manufacturing method, which can lead to failures. According to the present invention 1, there was an economical problem of increased costs.
.. It is an object of the present invention to provide a detection method that can easily detect deviations of the air-fuel ratio from the stoichiometric air-fuel ratio with a simple configuration without using a conventional air-fuel ratio sensor.

[課題を解決するための手段] かかる課題を解決するための本発明1よ一対の電極を備
えた固体電解質基板の電気的特性の変化を利用して、測
定ガスのガス成分濃度から空燃比を検出する方法であっ
て、 上記両電極と両電極間の固体電解質基板とを覆ってガス
拡散を制限するガス拡散制限手段を設け、該ガス拡散制
限手段とともに上記両電極及び固体電解質基板を測定ガ
スに曝し、上記ガス成分濃度に応じた固体電解質基板の
内部抵抗の変化を上記両電極間の出力として取り出し、
該出力と理論空燃比を示す内部抵抗の極大値に対応した
出力とを比較することにより、上記空燃比の理論空燃比
からのずれを検出することを要旨とする。
[Means for Solving the Problems] In accordance with the first invention to solve the problems, the air-fuel ratio can be determined from the gas component concentration of the measurement gas by utilizing changes in the electrical characteristics of a solid electrolyte substrate equipped with a pair of electrodes. A method for detecting, comprising: providing a gas diffusion limiting means for limiting gas diffusion by covering both the electrodes and a solid electrolyte substrate between the two electrodes; and extract the change in internal resistance of the solid electrolyte substrate according to the concentration of the gas component as an output between the two electrodes,
The gist is to detect the deviation of the air-fuel ratio from the stoichiometric air-fuel ratio by comparing the output with an output corresponding to the maximum value of internal resistance indicating the stoichiometric air-fuel ratio.

ここで上記空燃比(表 通常使用される様に混合気中の
燃料と空気との割合を示すが、例えば燃焼後の酸素分圧
にも対応していると考えられるので、特に本発明で1友
 混合気を燃焼させた後の酸素分圧も、測定ガスの空燃
比として表現する。尚、理論空燃比の混合気を燃焼させ
た場合も、その酸素分圧を示す表現として、同様に排ガ
スの理論空燃比として表現する。
Here, the above air-fuel ratio (table) shows the ratio of fuel and air in the air-fuel mixture as is usually used, but it is thought that it also corresponds to the oxygen partial pressure after combustion, so especially in the present invention, Friend: The oxygen partial pressure after the mixture is combusted is also expressed as the air-fuel ratio of the measured gas.In addition, when the mixture at the stoichiometric air-fuel ratio is combusted, the oxygen partial pressure can also be expressed as the exhaust gas. Expressed as the stoichiometric air-fuel ratio.

上記ガス拡散制限手段として、例えば両電極及び両電極
の近傍の固体電解質基板を覆う多孔質のガス律速層を用
いることができる。また、ガス律速を行うため1:、両
電極の近傍に配量されて間隙と形成する板材等を使用す
ることができる。
As the gas diffusion limiting means, for example, a porous gas regulating layer that covers both electrodes and the solid electrolyte substrate in the vicinity of both electrodes can be used. Furthermore, in order to control the gas rate, a plate material or the like can be used which is placed near both electrodes to form a gap.

固体電解質基板の材料として1.t、イツトリア−ジル
コニア固溶体 カルシア−ジルコニア固溶体が知られて
おり、更に二酸化セリウム 二酸化トリウム 二酸化ハ
フニウムの各固溶体、ペロブスカイト型固溶体、3価金
属酸化物固溶体等が使用できる。
As materials for solid electrolyte substrates: 1. t. Itria-Zirconia Solid Solution Calcia-zirconia solid solutions are known, and solid solutions of cerium dioxide, thorium dioxide, and hafnium dioxide, perovskite solid solutions, and trivalent metal oxide solid solutions can also be used.

多孔質電極の材料として(上 白色 ロジウム等を用い
ることができる。
As a material for the porous electrode (white rhodium, etc.) can be used.

[作用■ 本発明の空燃比検出方法1上 従来のように固体電解質
の起電力を利用したものではなく、固体電解質の内部抵
抗が、周囲のガス濃度に応じて特異な振舞いを示すとい
う知見に基づいて空燃比を検出するものである。即ち、
固体電解質(友 異なる酸素分圧の雰囲気に接すると、
その酸素分圧を均一化するように酸素イオンが移動する
が、この酸素イオンの存在が固体電解質の内部抵抗に変
化を与え、特に理論空燃比に対応する酸素分圧の雰囲気
下で1上 内部抵抗が極大となるという性質を利用する
[Function ■ Air-fuel ratio detection method of the present invention 1. This method is not based on the electromotive force of a solid electrolyte as in the past, but is based on the knowledge that the internal resistance of a solid electrolyte exhibits peculiar behavior depending on the surrounding gas concentration. The air-fuel ratio is detected based on the That is,
Solid electrolyte (friend) When exposed to atmospheres with different oxygen partial pressures,
Oxygen ions move to equalize the oxygen partial pressure, but the presence of these oxygen ions changes the internal resistance of the solid electrolyte, especially in an atmosphere with an oxygen partial pressure corresponding to the stoichiometric air-fuel ratio. Take advantage of the property of maximum resistance.

従って、例えば固体電解質基板上に形成した一対の電極
に分圧抵抗を介して定電圧を印加し、この分圧抵抗に生
ずる出力電圧V o u tを測定すると、第1図に示
すように理論空燃比点(空気過剰率λ=1)で、出力電
圧v6゜、の極小イ直 即ち内部−抵抗の極大値を示す
ピークが出現する。これ(よ 次の理由による。
Therefore, for example, if a constant voltage is applied to a pair of electrodes formed on a solid electrolyte substrate via a voltage dividing resistor and the output voltage V out generated across this voltage dividing resistor is measured, the theoretical At the air-fuel ratio point (excess air ratio λ=1), a peak indicating the minimum value of the output voltage v6°, that is, the maximum value of the internal resistance, appears. This is due to the following reasons.

空瑯比のリーン側で【よ 過剰空気が存在するために固
体電解質基板に流れる酸素イオンの確保が容易であり、
従って固体電解質基板の内部抵抗が小さくなるからと考
えられる。
On the lean side of the air-to-air ratio, it is easy to secure oxygen ions flowing to the solid electrolyte substrate due to the presence of excess air.
This is considered to be because the internal resistance of the solid electrolyte substrate is therefore reduced.

一方、 リッチ側でに11.、例え+1CO+1/20
2− CO2 H2+1/202−H,0 等の右辺への反応が完了し得ない状態のガスの存在によ
り、酸素イオンを固体電解質基板に取り込むことができ
るので、内部抵抗が小さくなるからと考えられる。
On the other hand, on the rich side, 11. , analogy +1CO+1/20
This is thought to be because the presence of a gas in a state where the reaction to the right side cannot be completed, such as 2-CO2 H2+1/202-H,0, allows oxygen ions to be taken into the solid electrolyte substrate, reducing the internal resistance. .

ところが、λ=1で1友 上記式の右辺への完全な反応
後のCO2或はH2Oしか存在しないため、酸素イオン
を取り込むためにl、1.100%反応完了ガスを解離
させなければならない、その結果、固体電解質内の酸素
イオンがわずかになるので内部抵抗が大きくなると考え
られる。
However, when λ = 1, only CO2 or H2O exists after complete reaction on the right side of the above equation, so in order to incorporate oxygen ions, l, 1.100% reaction completed gas must be dissociated. As a result, the number of oxygen ions in the solid electrolyte becomes small, which is thought to increase the internal resistance.

この様な理由によって、λ=1の理論空燃比点において
内部抵抗が最も大きくなると考えられる。
For these reasons, it is thought that the internal resistance is greatest at the stoichiometric air-fuel ratio point of λ=1.

従って、この内部抵抗の変化を、例えば上述した出力電
圧V oujや電流量Qの出力の変化として捉え、内部
抵抗の極大値に対応する出力値と比較することにより、
測定された空燃比の理論空燃比からのずれを検出するこ
とが可能となる。
Therefore, by considering this change in internal resistance as, for example, a change in the output voltage V ouj or current amount Q mentioned above, and comparing it with the output value corresponding to the maximum value of the internal resistance,
It becomes possible to detect the deviation of the measured air-fuel ratio from the stoichiometric air-fuel ratio.

[実施例] 以下本発明の一実施例を図面に従って説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第2図は本実施例の空燃比の検出に使用される検出装置
(以下単に空燃比センサと称す)1の概略構成図を示し
、第3図はそのIII −II+断面図を示している。
FIG. 2 shows a schematic configuration diagram of a detection device (hereinafter simply referred to as an air-fuel ratio sensor) 1 used for detecting the air-fuel ratio of this embodiment, and FIG. 3 shows its III-II+ sectional view.

両図に示す様に、空燃比センサ1(飄 主としてイツト
リア−ジルコニア固溶体からなる固体電解質基板2の片
側1:、イツトリア−ジルコニア固溶体及び白金からな
る多孔質電極4.6を備え、その周囲には口字状の白金
のヒータ8が配置されている。上記多孔質電極4,6の
うち、一方は抵抗R1を介して定電圧電源Elのマイナ
ス極に接続さ札 他方はヒータ8を介してプラス極に接
続されている。また直1妾に測定ガスと接する窓部10
、即ち上記両釜孔質電極4.6及び両釜孔質電極4゜6
間の固定電解質基板2の表面に1表 多孔質のガス律速
層12が形成されている。更にこの窓部10以外の部分
に1よ アルミナからなる緻密な遮蔽層13.14が積
層されている。
As shown in both figures, an air-fuel ratio sensor 1 (one side 1 of a solid electrolyte substrate 2 mainly made of an yttria-zirconia solid solution) is provided with a porous electrode 4.6 made of an yttria-zirconia solid solution and platinum; A square-shaped platinum heater 8 is arranged.One of the porous electrodes 4 and 6 is connected to the negative terminal of the constant voltage power supply El through the resistor R1, and the other is connected to the positive terminal through the heater 8. The window 10 in contact with the measurement gas is directly connected to the electrode.
, that is, the above-mentioned both pot porous electrodes 4.6 and both pot porous electrodes 4.6
A porous gas rate controlling layer 12 is formed on the surface of the fixed electrolyte substrate 2 between the two. Further, dense shielding layers 13 and 14 made of alumina are laminated on parts other than the window portion 10.

次に、上記空燃比センサ1の製造手順を第4図に基づい
て説明する。
Next, the manufacturing procedure of the air-fuel ratio sensor 1 will be explained based on FIG. 4.

まず、固体電解質基板2となるシート20を、焼結助剤
としてシリカを約2.5重量%添加したイツトリア−ジ
ルコニア系の粉末にPVB系のバインダと有機溶剤とを
用い、 ドクターブレード法により製造する。
First, the sheet 20 that will become the solid electrolyte substrate 2 is manufactured by the doctor blade method using ytria-zirconia powder to which about 2.5% by weight of silica is added as a sintering aid, a PVB binder, and an organic solvent. do.

そして、上記シート20上1:、窓部10を除いて、遮
蔽層13となる薄く緻密なアルミナコート層22を形成
する。
Then, a thin and dense alumina coat layer 22 that will become the shielding layer 13 is formed on the sheet 20 except for the window portion 10 .

続いてそのアルミナコート層22上及び窓部10に、多
孔質電極4,6を形成するため、共素地16″IL量%
と、比表面積10m2/g以下(例えば4〜6 m’/
 g )の白金粉末とを、セルロース系或はPVB系の
バインダ、及びブチルカルピトールの様な溶剤を用いて
ペースト化し、このペーストをスクリーンによって印刷
する。また、それとともに白金からなるヒータ8も印刷
する。
Subsequently, in order to form the porous electrodes 4 and 6 on the alumina coat layer 22 and the window portion 10, the co-base material 16″IL amount%
and a specific surface area of 10 m2/g or less (for example, 4 to 6 m'/g)
g) Platinum powder is made into a paste using a cellulose-based or PVB-based binder and a solvent such as butylcarpitol, and this paste is printed by a screen. At the same time, a heater 8 made of platinum is also printed.

次1:、窓部10及び接続部24を除いて、上記積層し
た各部材の表面を、遮蔽層14となる緻密なアルミナコ
ート層26で覆う、また多孔質のガス律速層12を形成
するために、窓部10にバインダを含有したアルミナペ
ースト28を充填する。
Next 1: To cover the surface of each of the laminated members, except for the window portion 10 and the connection portion 24, with a dense alumina coat layer 26 that will become the shielding layer 14, and to form the porous gas rate controlling layer 12. Next, the window portion 10 is filled with alumina paste 28 containing a binder.

そして、この積層した状態で、約1500℃で1時間通
常の焼成を行う。その後、図示しないリード線等の接続
を行って空燃比センサ1を完成する。
Then, in this laminated state, normal firing is performed at about 1500° C. for 1 hour. Thereafter, lead wires (not shown) and the like are connected to complete the air-fuel ratio sensor 1.

次1:、この空燃比センサ1を用いた実施但 即ち三元
触媒の下流側の酸素分圧(排ガスの空燃比)の変動を検
出して、三元触媒の劣化を判定する方法について、第5
図及び第6図に基づいて説明する。
Next 1: Implementation using this air-fuel ratio sensor 1 However, the method for determining the deterioration of the three-way catalyst by detecting fluctuations in the oxygen partial pressure (air-fuel ratio of exhaust gas) on the downstream side of the three-way catalyst will be described below. 5
This will be explained based on the diagram and FIG.

第5図に示すよう1ミ 本実施例の空燃比センサ1(表
 内燃機関30の排ガスが導入される三元触媒コンバー
タ32の下流側に配置さ札 一方、その上流側には全領
域空燃比センサ34が配置されている。そして、この全
領域空燃比センサ34によって、内燃機関30から排出
された直後の排ガスの空燃比が検出さ札 そのセンサ3
4の出力に基づいて空燃比がフィードバック制御される
As shown in FIG. A sensor 34 is arranged.The full-range air-fuel ratio sensor 34 detects the air-fuel ratio of exhaust gas immediately after being discharged from the internal combustion engine 30.
Based on the output of No. 4, the air-fuel ratio is feedback-controlled.

このフィードバック制御によって、三元触媒コンバータ
32に送られる排ガスの空燃比1上 第6図(A)に示
すよう1:、理論空燃比を中心にして脈動する。
This feedback control causes the air-fuel ratio of the exhaust gas sent to the three-way catalytic converter 32 to pulsate around the stoichiometric air-fuel ratio of 1 to 1, as shown in FIG. 6(A).

三元触媒コンバータ32に送られた排ガス1よソノ内部
で排ガス中(7) CO,HC,N oX、  02が
相互に反応する。それによって、第6図(B)に示すよ
う1:、三元触媒コンバータ32の下流側の空燃比1上
 はぼ理論空燃比と等しくなる。
Inside the exhaust gas 1 sent to the three-way catalytic converter 32, CO, HC, NOX, and 02 in the exhaust gas (7) react with each other. As a result, as shown in FIG. 6(B), the air-fuel ratio on the downstream side of the three-way catalytic converter 32 becomes approximately equal to the stoichiometric air-fuel ratio.

ところが、三元触媒36が劣化している場合に(よ 三
元触媒36による排ガスの浄化が進まず、第6図(C)
に示すよう1:、三元触媒36の下流側の空燃比(上 
理論空燃比を中心に大きく脈動してしまう。
However, if the three-way catalyst 36 has deteriorated, the purification of the exhaust gas by the three-way catalyst 36 does not progress, and the problem shown in Fig. 6 (C) occurs.
As shown in 1:, the air-fuel ratio on the downstream side of the three-way catalyst 36 (upper
It pulsates greatly around the stoichiometric air-fuel ratio.

その結果、三元触媒コンバータ32の下流側に配置され
ている空燃比センサ1の固体電解質基板2の内部抵抗も
変化するので、その出力電圧v0゜、(友  第6図(
D)に示すよう1:、三元触媒コンバータ32から排出
された排ガスの空燃比の脈動に対応して大きく脈動する
。つまり、排ガスの空燃比が理論空燃比の場合に1上 
空燃比センサ]の出力電圧V 6 u tは最小となり
、それよりずれると出力電圧V ouLは増加する。
As a result, the internal resistance of the solid electrolyte substrate 2 of the air-fuel ratio sensor 1 disposed downstream of the three-way catalytic converter 32 also changes, so that its output voltage v0° (Fig. 6)
As shown in D), 1: pulsates greatly in response to pulsations in the air-fuel ratio of the exhaust gas discharged from the three-way catalytic converter 32. In other words, when the air-fuel ratio of exhaust gas is the stoichiometric air-fuel ratio,
The output voltage V 6 u t of the air-fuel ratio sensor is the minimum, and if it deviates from that value, the output voltage V ouL increases.

従って、この脈動する空燃比センサ1の出力電圧V。u
tを用いることによって、三元触媒36の劣化を検出す
ることが可能となる。即ち、排ガスの空燃比が理論空燃
比からリッチ或はリーンのどちらにずれた場合でも、出
力電圧V outは大きくなるので、出力電圧v0□が
適切な閾値V、を越えるか否かを判定することにより、
三元触媒36の劣化を検出することができる。
Therefore, the output voltage V of the air-fuel ratio sensor 1 pulsates. u
By using t, it becomes possible to detect deterioration of the three-way catalyst 36. That is, even if the air-fuel ratio of exhaust gas deviates from the stoichiometric air-fuel ratio to rich or lean, the output voltage V out will increase, so it is determined whether the output voltage v0□ exceeds the appropriate threshold value V. By this,
Deterioration of the three-way catalyst 36 can be detected.

この様1:、本実施例の空燃比センサ1(上 複雑な構
造を採用しなくても、排ガスの空燃比の理論空燃比から
のずれを検出して極めて宕易に三元触媒36の劣化をT
h+定することができ、耐久性に優れているという利点
がある。その五 部品点数が少ないので故障も生じにく
く、また製造工程が少なくてすむので製造コストを低減
できるという効果があへ 次に、他の実施例の空燃比センサ40について、第7図
及び第8図に基づいて説明する。
Like this 1: The air-fuel ratio sensor 1 of the present embodiment (above) detects the deviation of the air-fuel ratio of exhaust gas from the stoichiometric air-fuel ratio and can very easily degrade the three-way catalyst 36 without adopting a complicated structure. T
h+, and has the advantage of being excellent in durability. Part 5: Because the number of parts is small, failures are less likely to occur, and because the number of manufacturing steps is reduced, manufacturing costs can be reduced.Next, regarding the air-fuel ratio sensor 40 of other embodiments, FIGS. This will be explained based on the diagram.

第7図CB)に示すよう1″−、本実施例の空燃比セン
サ401上 固体電解質基板42等からなる検出素子4
4とヒータ46とを別体に製造し、それらを近接して配
置してガス拡散を制限する間隙48を形成したものであ
る。
As shown in FIG. 7 CB), a detection element 4 consisting of a solid electrolyte substrate 42, etc., is placed on the air-fuel ratio sensor 401 of this embodiment.
4 and the heater 46 are manufactured separately and placed close to each other to form a gap 48 for restricting gas diffusion.

この空燃比センサ40を製造するに1友 第8図に示す
ように、まず、固体電解質基板42となるシート50の
片面1:、アルミナシート52を積層し、更にその表面
に多孔質電極54.56を印刷し、次に再びアルミナシ
ート58を積層して検出素子44を形成する。また、ヒ
ータ46は別体に製造し、検出素子44と所定の間隔(
例えば0゜05mm)を保って配置することにより、ガ
ス拡散の律速を行う間隙48を形成する。
One step in manufacturing this air-fuel ratio sensor 40 is as shown in FIG. 8. First, one side of a sheet 50 that will become the solid electrolyte substrate 42 is laminated with an alumina sheet 52, and then a porous electrode 54 is layered on the surface. 56 is printed, and then an alumina sheet 58 is laminated again to form the detection element 44. Further, the heater 46 is manufactured separately and is spaced apart from the detection element 44 by a predetermined distance (
For example, by arranging the gap 48 while maintaining a distance of 0°05 mm, a gap 48 is formed that controls the rate of gas diffusion.

そして、第7図(A)に示すよう1:、  ヒータ46
及び多孔質電極54.561;  定電圧電源E2から
抵抗R9*  R3を介して電圧を印加し、出力電圧V
 oulを取り出す。
Then, as shown in FIG. 7(A), 1:, heater 46
and porous electrode 54.561; voltage is applied from constant voltage power supply E2 through resistor R9*R3, output voltage V
Take out oul.

本実施例の空燃比センサ40(友 ガス拡散を制限する
手段として、多孔質のガス律速層12を使用しないので
、目づまりを起こすことがなく、またヒータ46を別体
に製造するので、ヒータ46の発熱パターンを所望の形
状に製造して好適な加熱状態を得られるという利点があ
る。
Since the air-fuel ratio sensor 40 of this embodiment does not use the porous gas regulating layer 12 as a means for restricting gas diffusion, clogging does not occur, and since the heater 46 is manufactured separately, the heater 46 There is an advantage that a suitable heating state can be obtained by manufacturing a heating pattern in a desired shape.

次に、固体電解質基板52の内部抵抗が、実際に空燃比
に応じてどの様に変化するかを確認した実験例について
、第9図に基づいて説明する。尚、本実験で1友 上記
実施例の空燃比センサ40とほぼ同様な構成のセンサを
用いたが、ヒータ46に電圧を印加する回路と1両電極
44.46の回路と分離し、センサの温度を独立して制
御できるものとし九 本実験例で(よ 両電極44.46間に微弱な定電流(
例えば100μA)を流し、両電極44゜46間の電圧
を測定して内部抵抗R1aを算出したここで、固体電解
質基板42の内部抵抗R1nを示す電圧1上 空燃比だ
けでなく他の要は 例えば温度 拡散制限の程度 印加
電圧 回路の抵抗固体電解質の種類等によって変動する
ので、そのうちの温度条イ東  即ちヒータ46の印加
電圧V、4&変えて実験を行った その結果を第9図に示す0図から明らかなよう1:、内
部抵抗R+nl上  空燃比がリッチから理論空燃比に
近づくにつれて急激に増加し、理論空燃比を越えてリー
ンになると急激に減少する。従って、この様な内部抵抗
R1nの変化を利用し、電圧又は電流の変化として取り
出すことにより、排ガスの空燃比の理論空燃比からのず
れを容易に検出できることは明かである。尚、温度が高
くなると、内部抵抗RInは減少するという性質がある
ので、 ヒータ46の印加電圧vHを変えることにより
、内部抵抗R1nを変えることができ、それによって出
力電圧V outの大きさを任意に設定できる。
Next, an experimental example in which it was confirmed how the internal resistance of the solid electrolyte substrate 52 actually changes depending on the air-fuel ratio will be described based on FIG. 9. In this experiment, a sensor having almost the same configuration as the air-fuel ratio sensor 40 of the above embodiment was used, but the circuit for applying voltage to the heater 46 and the circuit for both electrodes 44 and 46 were separated, and the sensor In nine experimental examples, we assumed that the temperature could be controlled independently.
For example, 100 μA) was applied, the voltage between both electrodes 44°46 was measured, and the internal resistance R1a was calculated. Temperature Extent of diffusion restriction Applied voltage The resistance of the circuit varies depending on the type of solid electrolyte, etc., so the results of experiments were conducted by changing the temperature, i.e., the applied voltage of the heater 46, V, 4 and 0 as shown in Figure 9. As is clear from the figure, 1: Internal resistance R+nl increases rapidly as the air-fuel ratio approaches the stoichiometric air-fuel ratio from rich, and rapidly decreases as the air-fuel ratio exceeds the stoichiometric air-fuel ratio and becomes lean. Therefore, it is clear that the deviation of the air-fuel ratio of the exhaust gas from the stoichiometric air-fuel ratio can be easily detected by utilizing such a change in the internal resistance R1n and extracting it as a change in voltage or current. Note that as the temperature increases, the internal resistance RIn has the property of decreasing, so by changing the voltage vH applied to the heater 46, the internal resistance R1n can be changed, and thereby the output voltage Vout can be adjusted to any desired magnitude. Can be set to

また、上述した様な空燃比センサ1,40+1三元触媒
36の劣化の検出に適用できるが、それ以外にも理論空
燃比点からのずれを検出する場合、例えば不完全燃焼を
検出して警告する場合等にも適用できる。
In addition, it can be applied to detect deterioration of the air-fuel ratio sensor 1, 40 + 1 three-way catalyst 36 as described above, but it can also be used to detect deviation from the stoichiometric air-fuel ratio point, for example, by detecting incomplete combustion and issuing a warning. It can also be applied when

[発明の効果] 以上説明したよう1:、本発明の空燃比検出方法1友 
測定ガスのガス拡散を制限して、一対の電極と固体電解
質基板とを測定ガスに曝し、固体電解質基板の内部抵抗
の極大値を含む変化を、両電極間の出力として取り出す
ことにより、空燃比の理論空燃比からのずれを極めて容
易に検出することができる。また 測定するガスの成分
濃度の状態を、この様な簡単な構成で容易に知ることが
できるので、その検出に使用する装置の構造も簡単にで
き、故障が少なく耐久性に富むものとなる。更にその装
置の製造工程も減らすことができるので、経済性にも優
れている。
[Effects of the Invention] As explained above, 1. The air-fuel ratio detection method of the present invention.
By restricting the gas diffusion of the measurement gas, exposing the pair of electrodes and the solid electrolyte substrate to the measurement gas, and extracting the change including the maximum value of the internal resistance of the solid electrolyte substrate as the output between the two electrodes, the air-fuel ratio can be determined. Deviations from the stoichiometric air-fuel ratio can be detected very easily. In addition, since the state of the component concentration of the gas to be measured can be easily known with such a simple configuration, the structure of the device used for detection can also be simplified, resulting in fewer failures and high durability. Furthermore, since the manufacturing process of the device can be reduced, it is also excellent in economical efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するグラフ、第2図は本実
施例の廓燃比センサの概略構成は 第3図はそのIII
 −I11断面は 第4図はその製造工程を示す説明は
 第5図はその使用位置を示す説明は第6図は排ガスの
空燃比及び空燃比センサの出力電圧を示すグラフ、第7
図は他の実施例の空燃比センサの概略構成は 第8図は
その製造工程を示す説明医 第9図は内部抵抗と空燃比
との関係を示すグラフである。 40・・・空燃比センサ 42・・・固体電解質基板 6.54.56・・・多孔質電極 46・・・ヒータ 2・・・ガス律速層 8・・・間隙 第1図
Fig. 1 is a graph explaining the present invention in detail, Fig. 2 is a schematic configuration of the fuel-fuel ratio sensor of this embodiment, and Fig. 3 is its III.
-I11 cross section is shown in Fig. 4, an explanation showing its manufacturing process, Fig. 5, an explanation showing its use position, Fig. 6, a graph showing the air-fuel ratio of exhaust gas and the output voltage of the air-fuel ratio sensor, and Fig. 7.
The figure shows a schematic configuration of an air-fuel ratio sensor according to another embodiment. FIG. 8 is an explanatory diagram showing its manufacturing process. FIG. 9 is a graph showing the relationship between internal resistance and air-fuel ratio. 40...Air-fuel ratio sensor 42...Solid electrolyte substrate 6.54.56...Porous electrode 46...Heater 2...Gas regulating layer 8...Gap Fig. 1

Claims (1)

【特許請求の範囲】 1 一対の電極を備えた固体電解質基板の電気的特性の
変化を利用して、測定ガスのガス成分濃度から空燃比を
検出する方法であって、 上記両電極と両電極間の固体電解質基板とを覆つてガス
拡散を制限するガス拡散制限手段を設け、該ガス拡散制
限手段とともに上記両電極及び固体電解質基板を測定ガ
スに曝し、上記ガス成分濃度に応じた固体電解質基板の
内部抵抗の変化を上記両電極間の出力として取り出し、
該出力と理論空燃比を示す内部抵抗の極大値に対応した
出力とを比較することにより、上記空燃比の理論空燃比
からのずれを検出する空燃比検出方法。
[Claims] 1. A method for detecting an air-fuel ratio from the gas component concentration of a measurement gas by utilizing changes in the electrical characteristics of a solid electrolyte substrate provided with a pair of electrodes, the method comprising: A gas diffusion limiting means is provided to cover the solid electrolyte substrate between them to limit gas diffusion, and together with the gas diffusion limiting means, both the electrodes and the solid electrolyte substrate are exposed to a measurement gas, and the solid electrolyte substrate is adjusted to the concentration of the gas component. Take out the change in internal resistance as the output between the two electrodes,
An air-fuel ratio detection method for detecting a deviation of the air-fuel ratio from the stoichiometric air-fuel ratio by comparing the output with an output corresponding to a maximum value of internal resistance indicating the stoichiometric air-fuel ratio.
JP1082983A 1989-03-31 1989-03-31 Detection of air/fuel ratio Pending JPH0348148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082983A JPH0348148A (en) 1989-03-31 1989-03-31 Detection of air/fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082983A JPH0348148A (en) 1989-03-31 1989-03-31 Detection of air/fuel ratio

Publications (1)

Publication Number Publication Date
JPH0348148A true JPH0348148A (en) 1991-03-01

Family

ID=13789452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082983A Pending JPH0348148A (en) 1989-03-31 1989-03-31 Detection of air/fuel ratio

Country Status (1)

Country Link
JP (1) JPH0348148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012203A (en) * 2008-07-07 2010-01-21 Keiji Nagao Care bed with crane
US7753814B2 (en) 2004-03-23 2010-07-13 Toyota Jidosha Kabushiki Kaisha Belt type continuously variable transmission
JP2013231659A (en) * 2012-04-27 2013-11-14 Ngk Spark Plug Co Ltd Sensor output processor and sensor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753814B2 (en) 2004-03-23 2010-07-13 Toyota Jidosha Kabushiki Kaisha Belt type continuously variable transmission
JP2010012203A (en) * 2008-07-07 2010-01-21 Keiji Nagao Care bed with crane
JP2013231659A (en) * 2012-04-27 2013-11-14 Ngk Spark Plug Co Ltd Sensor output processor and sensor system

Similar Documents

Publication Publication Date Title
JP3648063B2 (en) Gas sensor, gas sensor system using the same, and method of manufacturing gas sensor
JP3855483B2 (en) Stacked air-fuel ratio sensor element
US20070012566A1 (en) Multilayer ceramic NOx gas sensor device
US7887685B2 (en) Multilayer gas sensor having dual heating zones
JPH0437944B2 (en)
JPS58148946A (en) Detector for air fuel ratio
JP2000162175A (en) Gas sensor, its production, and gas sensor system
JP2000146906A (en) Gas sensor element
WO2020137180A1 (en) Gas sensor element and gas sensor
JPH0348148A (en) Detection of air/fuel ratio
JP2006133039A (en) Nitrogen oxide sensor
JP3841513B2 (en) Hydrocarbon sensor
JPS61195338A (en) Air fuel ratio sensor
JPS6366448A (en) Gas detector
JP3635191B2 (en) Gas sensor
JP2000214130A (en) Method for measuring concentration of gas
JPS59190646A (en) Rich-burn sensor
JP3395957B2 (en) Carbon monoxide detection sensor and carbon monoxide detection method using the same
JP2002071641A (en) Complex gas detector
JP2001041927A (en) Nitrogen oxide gas sensor
JP2921919B2 (en) Gas sensor and catalyst deterioration detection method
JP2000275215A (en) Gas sensor element
KR100269211B1 (en) Sensor for detecting deterioration of catalyst
JP2534297B2 (en) Oxygen detection element
JPS6183957A (en) Air/fuel ratio detection element